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1 Introduction

In this article we discuss the derivation and analysis of reduced models for a spe-
cific coarsening process which is known as Ostwald ripening. This phenomenon
appears in the late stage of phase transitions, when – due to a change in tem-
perature or pressure for example – the energy of the underlying system becomes
nonconvex and prefers two different phases of the material. Consequently a
homogeneous mixture is unstable and, in order to minimze the energy, it sep-
arates into the two stable phases. Typical examples are the condensation of
liquid droplets in a supersaturated vapor and phase separation in binary alloys
after rapid cooling.

With Ostwald ripening one usually denotes the case, when the composition of
the mixture is such that one of the two stable phases has much smaller volume
fraction than the other. Then the minority phase nucleates in form of many
small droplets which first grow from a uniform background supersaturation.
Once the latter is small, surface energy becomes the dominant part of the total
energy and to minimize it particles start to interact via diffusional mass exchange
to reduce their total surface area. As a consequence large particles grow, while
smaller ones shrink and finally disappear.

Ostwald Ripening is a paradigm for statistical self-similarity in coarsening
systems. Thie means that after a transient stage the particle number density
evolves in a unique self-similar fashion, which is independent of the details of the
initial data. The first quantitative description of this phenomenon was given by
Lifshitz and Slyozov (1961) and Wagner (1961) and is nowadays known as the
classical LSW-theory. In the regime where the volume fraction of the droplets
is small they derive an equation for the particle number density based on the
crucial assumption that in the dilute regime the interaction between particles
can be expressed solely through a common mean-field. However, it has been
established by a mathematically rigorous analysis that the long-time behavior
within the LSW model is not a universal statistically self-similar one but on the
contrary depends sensitively on the initial data. Hence, in order to overcome this
shortcoming, one has to go beyond the mean-field assumption and take higher
order effects such as screening induced fluctuations and particle collisions into
account.
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A number of different approaches to develop a corresponding theory can
be found in the physics and metallurgical literature. However, the predictions
based on the respective theories differ significantly and it seems that a more
rigorous analysis could be helpful in resolving some of the open questions. It
is the main goal of the present article to review corresponding progress on the
understanding of first order corrections to the LSW theory. While we go along,
we also point out some directions for future research, in particular where the
combination of analytic and stochastic tools could be relevant.

For more background on results, which are not discussed in detail here, as
well as for references to the applied literature, we refer to the review article
(Niethammer et al., 2006).

2 Basic models and mean-field theories

2.1 The starting point: a simplified Mullins-Sekerka evo-
lution

A basic model for diffusion controlled Ostwald ripening of spherical particles is
a simplified Mullins-Sekerka type model which is appropriate in the case that
particles have small volume fraction. In this model particles, called Pi, are dis-
tributed in a domain Ω ⊂ R

3 and are characterized by their immovable centers
Xi ∈ Ω and their radii Ri(t). Particles interact by diffusion, but in late-stage
coarsening we can assume that mass exchange between particles is much faster
than the growth of the interfaces. Hence we can use a quasi-steady approach,
that is we assume that the potential u relaxes at each time instantaneously to
equilibrium. This gives that for each time t the potential u = u(x, t) solves

∆u = 0 in Ω\
⋃

i

Pi

u =
1

Ri
on ∂Pi ,

(1)

where ∆ and later ∇ denotes derivatives with respect to the space variable
x. The second equation in (1) is the well-known Gibbs-Thomson law which
accounts for surface tension. To define the potential uniquely, we have to couple
(1) with suitable boundary conditions on ∂Ω. In the case that Ω is bounded, a
natural assumption is to consider closed systems and require

∂u

∂~n
= 0 on ∂Ω . (2)

We can also consider the problem in the whole space Ω = R
3 in which case the

appropriate boundary condition is a no-flux condition at infinity:

|∇u| → 0 as |x| → ∞ . (3)

We easily convince ourselves that if all particles have the same size, the
potential u is constant (indeed equal to the inverse radius of the particles).
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However, if particles have different sizes, this induces gradients in the potential
and these gradients drive the system towards a state of lower energy. The Gibbs-
Thomson law in (1) implies that u is large at small particles which have large
surface area compared to their volume, and small at large particles. Hence,
mass diffuses from the small to the large particles. The growth rate of a particle
is simply given by the total flux towards the particle, that is

d

dt

(4πR3
i

3

)

=

∫

∂Pi

∂ u

∂~n
dS , (4)

where here ~n denotes the outer normal to the particle.
It is not difficult to show that, if we start with a finite number of particles,

which do not overlap, the problem (1)+(2) or (1)+(3) is well-posed (cf. (Dai
and Pego, 2005a) for the case (3)) and depends Lipschitz-continuously on the
initial radii of the particles. As a consequence, the full time-dependent system
(1)-(4) is well-posed for short times. We can extend such a local solution up to
a time when a particle vanishes or when two particles touch. In the first case we
just eliminate the particle and continue with the remaining ones. In this way
we obtain a continuous in time, piecewise smooth solution. In the second case,
where particles touch, there is no way to extend the solution in a reasonable
way. In fact, the simplifying assumption that particles are spherical is not a
good approximation when particles are close.

However, we are interested in the dynamics of a large set of particles with
small volume fraction, and we expect that the event that particles touch is rare
if it occurs at all. Hence it is plausible that it does not have an influence on
the global behavior of the system. As we shall see, the latter is true to leading
order, but not if one is interested in higher order effects. We will return to this
issue later in Section 4.

As long as the evolution is well-posed we easily verify that it preserves the
total volume of the particles and decreases the surface energy. Indeed, we have

d

dt

∑

i

R3
i = 0 (5)

and
d

dt

∑

i

R2
i = −π

2

∫

Ω

|∇u|2 dx . (6)

In contrast to other curvature driven evolutions, such as the mean curvature
flow, the Mullins-Sekerka evolution (1)-(4) is nonlocal. More precisely, the evo-
lution of the radius of one particle depends on all the other particles in the
system, since all particles interact via the potential u. A priori the interaction
range between particles is large due to the slow decay of the fundamental solu-
tion of Laplace’s equation. The challenge is to derive the effective growth law
of a particle in a sea of surrounding particles. We will see that a key aspect in
the analysis will be to establish the screening effect which identifies the effective
interaction range between particles (cf. Section 2.5).
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2.2 The leading order theory (LSW-theory)

Our goal is to derive from the Mullins-Sekerka model the BBGKY hierarchy for
the number densities of particle radii and centers. The BBGKY hierarchy can
be derived from the Liouville equation by averaging and describes the evolu-
tion of the N -particle distribution in terms of the (N + 1)-particle distribution.
To obtain a tractable system of equations one typically tries to truncate the
hierarchy by a suitable closure hypothesis on the level of the one- or two par-
ticle number density. This procedure can often be justified if there is a small
parameter in the system, such as in our case the volume fraction of the particles.

The formal identification of the leading order terms in the dilute regime is
not difficult and goes back to the classical work by Lifshitz and Slyozov (1961)
and Wagner (1961) (called nowadays the “LSW-theory”).

If the particle size is much smaller than the typical distance between the
nearest neighbors one can assume that the potential u is approximately constant
in space away from the particles, that is u ≈ u∞(t). In other words, each particle
Pi feels the influence of the other particles only through u∞, also called a mean-
field. We then solve for particle Pi

−∆u = 0 in R
3\Pi

u =
1

Ri
on ∂Pi

u → u∞ as |x| → ∞ ,

(7)

whose solution is given by

u(x, t) = u∞ +
1 − Riu∞

|x − Xi|
.

Using this solution in (4) we obtain the simple law

d

dt

(4π

3
R3

i

)

= Riu∞ − 1 . (8)

So far, we have not specified u∞. In the above approximation we have not yet
taken into account that the evolution preserves the total volume of the particles.
This constraint determines u∞ and implies that

u∞ =

∑

i :Ri>0 1
∑

i Ri
=

1

mean radius
. (9)

We read off from (8)-(9) that the critical radius in this approximation is just the
mean radius. Recall that in the coarsening picture, the critical radius typically
increases, so that over time more and more particles start to shrink and finally
disappear.

Based on (8) we can now derive an equation for the one-particle number
density, that is the expected number of particles with radius R in (R, R + dR),
which we denote by f1 = f1(R, t). Due to the translation invariance of the
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Mullins-Sekerka evolution f1 is independent of the centers. The system (8)-(9)
translates without further approximation into the following evolution law for
f1:

∂tf1 + ∂R

( 1

R2
(Ru∞(t) − 1) f1

)

= 0 (10)

with

u∞(t) =

∫∞

0
f1(R, t) dR

∫∞

0
Rf1(R, t) dR

. (11)

2.3 Dynamic scaling and coarsening rates

Within the LSW model (10)-(11) we can investigate statistical self-similarity.
In fact, we check that the equation has a scale invariance R ∼ t1/3 which is
inherited from the Mullins-Sekerka evolution. It turns out that (10) has indeed
self-similar solutions, but not only one but a one-parameter family of the form
f(R, t) = t−4/3Fa(R/t) with u∞ = (at)1/3 and a ∈ (0, 4

9 ]. All of the self-similar
profiles have compact support, one is smooth, the other ones behave like power
laws at the end of their support. LSW predict in their work that only the smooth
self-similar solution is stable and is the unique scaling limit for the LSW model.
As a consequence they obtain universal growth rates of the coarsening process,

such as for example that the mean radius evolves as
(

4
9 t
)1/3

.
However, it has been rigorously established in (Niethammer and Pego, 1999)

(see also (Carr and Penrose, 1998) for a related model and (Giron et al., 1998) for
formal asymptotics) that the long-time behavior of solutions to the LSW model
is not universal, but depends on the contrary sensitively on the initial data,
more precisely on the behavior at the end of the support. Loosely speaking, if
the data behave like a power law of power p, the solution converges to the self-
similar solution with the same power law. The notion “to behave like a power
law” is made precise, the technical term is that the data must be regularly
varying with power p at the end of their support.

Before we continue to discuss how one could overcome this weak selection
problem, let us digress to discuss a related issue, which is to establish coarsening
rates, that is the growth rate of typical length scales, in general. While one can
often predict coarsening rates via a dimensional analysis, a rigorous treatment
has only recently become available. In (Kohn and Otto, 2002) a time averaged
upper bound of the coarsening rate within the Cahn-Hilliard theory has been
established via a lower bound on the decay rate of the energy density. The
argument uses an energy-dissipation relation and a relation between the energy
and a certain appropriate length scale. This technique has been shown to be
quite robust and has been applied to a large variety of other coarsening problems
(Kohn and Yan, 2004; Dai and Pego, 2005c), in particular also to the LSW
model (Dai and Pego, 2005b; Pego, 2007). Naturally, pointwise upper bounds
are much more difficult to obtain. For the relatively simple LSW model a first
result has been obtained in (Niethammer and Velázquez, 2006a), where upper
and even lower bounds on the coarsening rates have been established for data
which are close to a self-similar solution. In general lower bounds cannot be

5



expected, since there are configurations for which coarsening does not occur
(e.g. all particles with equal size in the LSW model) or is extremely slow (e.g.
one-dimensional coarsening in the Cahn-Hilliard equation).

It would be extremely interesting to establish lower bounds for coarsening
rates using probabilistic arguments, which characterize “typical” configurations,
for which the system coarsens with the expected rate.

2.4 Questions around the LSW theory

We have seen that one problem in the LSW theory is the weak selection of self-
similar asymptotic states, which suggests that some mechanisms are neglected
in the LSW model.

Another shortcoming of the LSW model becomes apparent if one compares
the predictions by LSW with experimental data. It turns out that the discrep-
ancy is rather large: the constants in the coarsening rates are much larger and
the size distributions are less narrow than predicted by the LSW theory.

It is usually argued in the applied literature that one disadvantage of the
LSW theory is its mean-field nature which neglects the build up of correlations
between particles, which are relevant already in the dilute regime. In other
words, the LSW theory assumes that the interaction range of a particle is infinite
and the contribution of all the other particles is given by a deterministic average,
the mean-field. This picture however neglects screening, which implies that the
interaction range of one particle is screened by its neighbors and hence finite,
which leads to deviations of the effective mean-field from its average.

It is the goal of Velázquez (2000) to investigate whether these discrete effects
in the mean-field and similarly in the data change the weak-selection criterion
of the LSW model over the relevant time scales, that is as long as a sufficiently
large number of particles is still present. However, the analysis is restricted to
a regime, in which screening effects are not relevant. It turns out that in this
regime, stochastic effects do not essentially modify the effective dynamics as
described by the LSW model and thus do not provide a selection mechanism.

Before we continue to give an overview of further attempts to access the
effect of finite volume fraction on Ostwald ripening, we describe screening in
Section 2.5 and review results on the rigorous derivation of the LSW model
from the Mullins-Sekerka evolution in Section 2.6.

2.5 Screening

The screening effect, described above, can be most easily understood by referring
to electrostatics. We briefly recall the argument which gives us the scaling of
the screening length in terms of the parameters of the system.

To that aim we consider a point charge at X0 ∈ R
3 surrounded by conducting

balls Pi = B(Ri, Xi) which are uniformly distributed according to a number
density ρ, have volume fraction ε � 1 and average radius 〈R〉. The point
charge at X0 creates an electric field and a corresponding potential G and thus
induces a negative charge on ∂B(Ri, Xi). This induced charge roughly equals
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−4πRiG(Xi), where 4πRi is the capacity of a single ball in R
3. In a dilute

system capacity is approximately additive which implies that the total negative
charge density is approximately given by −4π〈R〉ρG. Hence the effective electric
potential satisfies

−∆G = δX0
− 4π〈R〉ρ G in R

3,

and thus

G(x) =
1

4π|x − X0|
e−

|x−X0|
ξ , (12)

where the “screening length” ξ is given by

ξ =
1

√

4π〈R〉ρ
. (13)

Formula (12) shows that the presence of the balls has the effect that the effective
range of the electric potential is limited to ξ, whereas the electric potential in a
system without balls is just 1

4π|x−X0|
and decays slowly. Notice that the number

of particles within the screening range is ξρ1/3 which according to (13) equals
〈R〉−1/2ρ−1/6 ∼ ε−1/6. Hence, in the dilute regime, the number of particles
within the screening range is still large and becomes infinite as ε → 0.

For further reference, we also note another relevant scaling, the ratio between
typical radius and screening length, which is 〈R〉/ξ ∼ ε1/2.

2.6 Rigorous derivation of the LSW theory

The rigorous derivation of the LSW model from the Mullins-Sekerka evolution as
ε → 0 is by now rather complete. It is treated in a series of papers (Niethammer,
1999; Niethammer and Otto, 2001; Niethammer and Velázquez, 2004a,b) which
deal with different assumptions on the data respectively. First, the simplest
case was treated in (Niethammer, 1999), where the system size is smaller than
the screening length. More precisely, one starts with Nε � 1 well-separated
particles in - say - the unit box with volume fraction ε � 1, that is ρ = Nε

and Nε〈R〉3 = ε. That the system size (here equal to one) is smaller than
the screening length means in view of (13) that limε→0〈R〉Nε → 0 as ε → 0.
In this regime it is established in (Niethammer, 1999) that the solution of the
Mullins-Sekerka problem converges to the (unique) solution of the LSW model.
(Well-posedness of the LSW model is established in (Niethammer and Pego,
2005); see also (Laurençot, 2002).)

In the case that the system is of the order of the screening length or larger
one obtains an inhomogeneous extension of the LSW model (Niethammer and
Otto, 2001). Most interesting and natural is the case that the system size is
much larger than the screening length. This implies that when rescaling the
system with respect to the natural length scale, the screening length, one ob-
tains a homogenization problem in an unbounded domain. As a consequence
energy-type estimates are not useful in the analysis. One important step in the
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analysis of (Niethammer and Velázquez, 2004a,b,c) is the result (Niethammer
and Velázquez, 2006b) which establishes that the fundamental solution of the
microscopic problem decays exponentially w.r.t. the screening length. This al-
lows to ”localize” the homogenization procedure in (Niethammer and Velázquez,
2004a,b). While in previous work it has been assumed that initially particles are
well-separated so that they cannot touch during the evolution, Niethammer and
Velázquez (2004b) treat the case of initially randomly distributed particles. In
this case particles might overlap and the evolution is defined by merging these
particles in a larger one and continue. To justify this procedure it is important
to show that very small fraction of particles can overlap and that this does not
affect the macroscopic evolution law for the remaining particles. This result
rules out corrections on the zero order level due to a stochastic nature of the
data.

The result by Niethammer and Velázquez (2006b) should also turn out to be
useful in further related investigations. In fact, the Mullins-Sekerka evolution
has not yet been considered in the setting, where infinitely many particles dis-
tributed in the whole space, e.g. according to a homogeneous Poisson process.
Even if one handles collision of particles in some way, global existence of a solu-
tion to this problem is not obvious, since if locally screening is very weak there
could be a mass flux from infinitely far away leading to the finite time blow up
of the radius of one particle. We expect, however, that if particles are initially
uniformly distributed, such that there is a uniform - in a sense which has to be
made precise - screening length, such a scenario does not take place and that
the evolution is well-posed.

3 Scaling of the first order correction: a cross-
over due to screening

In order to derive a perturbative theory to the LSW model which takes nonzero
volume fraction into account we first have to identify the correct expansion
parameter, or in other words, the scaling of the first order correction. In this
chapter we review a result which rigorously establishes such a scaling. The
analysis combines a variational viewpoint with elementary probability.

In the applied literature there had been a controversy about the size of the
scaling of the first order correction, since numerical simulations for finite systems
predicted an error of order ε1/3, whereas theories for infinite systems predicted
an error of order ε1/2. This was first to some extent resolved by numerical
simulations in (Fradkov et al., 1996), which show a cross-over from ε1/3 to ε1/2

when the system size becomes larger than the screening length. We will now
discuss in some detail a result, which proves a refined version of this observation.

3.1 Set-up and assumptions

Our starting point here is the monopole approximation of (1), (3),(4). In fact, it
has been established in (Dai and Pego, 2005a), that the monopole approximation
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is exact for a variant of (1), (3),(4), where the Gibbs-Thomson condition is
averaged, instead of the Stefan condition (4).

In the monopole approximation we use the ansatz u(x, t) := −
∑

i
Vi

|Xi−x|

for a solution of (1), where {Vi}i are the growth rates of the particle volumes,
that is Vi := d

dt [
4 π
3 R3

i ] = 4 π R2
i

dRi

dt . Using the Gibbs-Thomson condition in
(1) gives to leading order the following linear system of equations

1

Ri
= u∞ − Vi

Ri
−
∑

j 6=i

Vj

dij
, (14)

where dij := |Xi −Xj | is the distance between particle centers and u∞ is such
that

∑

i

Vi = 0 . (15)

We consider from now on a fixed distribution of n � 1 particles centers
{Xi}i in a sphere of volume n (that is the number density ρ satisfies ρ ∼ 1)
which satisfies certain regularity assumptions listed below. The particle radii
{Ri}i are identically and independently distributed according to a distribution
with compact support and mean volume ε. Within this setting the screening
length is given by ξ ∼ 1√

〈R〉
∼ ε−1/6 and hence the screening length is smaller,

resp. larger, than the domain size if ξ � n1/3 or ξ � n1/3 – in other words
if εn2 � 1 or εn2 � 1 – respectively. We call these regimes supercritical and
subcritical respectively.

In the following we estimate the deviation of the joint distribution
{Xi, Ri, Vi}i from {Xi, Ri, V

LSW
i }i, where the {Vi}i are determined accord-

ing to (14) and {V LSW
i }i are the LSW growth rates, given by the truncation of

(14)
1

Ri
= uLSW

∞ − V LSW
i

Ri
and

∑

i

V LSW
i = 0. (16)

Such an analysis is also called “Snapshot”-analysis, since we only estimate the
difference in the rate of change of the system at a given time.

The quantity we consider in the following will be the relative deviation in the
rate of change of energy, which is another convenient measure for the coarsening

rate. More precisely we consider ĖLSW −Ė
|〈ĖLSW 〉|

, where E is the interfacial energy of

the particles, i.e. E = 1
2n

∑

i R2
i , and its rate of change is

Ė =
1

n

∑

i

Vi

Ri
,

while

ĖLSW =
1

n

∑

i

V LSW
i

Ri
,

with V LSW
i given by (16). Since the energy is decreasing, Ė is always negative.

Likewise ĖLSW is always negative, but we expect the difference ĖLSW − Ė to

9



be negative for most realizations, since the LSW theory should underestimate
the rate at which E is decreasing.

For the analysis we need the following regularity assumptions on the distri-
bution of {Xi}i. The first one ensures a certain uniformity in the distribution.
We assume in the supercritical case, i.e. when the system size is much larger
than the screening length, that each subdomain of size of order ξ, contains at
least of the order of ε−1/2 particles. This assumption can be shown (at least if
ε ≤ 1

ln n5 , cf. (Niethammer and Velázquez, 2004b)) to be satisfied with proba-
bility converging to one as n → ∞.

The second assumption is less natural. We assume that the minimal distance
between particles is of the order of the mean nearest neighbor distance, that is
minj 6=i dij ≥ c0 > 0. This assumption is not satisfied with probability close
to one. The number of particles which violate this assumption is small and
one might expect that the inclusion would not destroy our result. It would be
very interesting to establish a corresponding result rigorously, or show, on the
contrary, that the above assumption is relevant.

One consequence of these two assumptions on the distribution of particle
centers is that we can approximate discrete sums by the corresponding integrals,
an approximation we use frequently in the proofs.

3.2 The result

The main result in (Hönig et al., 2005b) is that for a fixed distribution of particle
centers satisfying our regularity assumptions we have with high probability (with
respect to the radius distribution)

− Ė − ĖLSW

|〈ĖLSW 〉|
∼
{

n−1/3 ε1/3 for n � ε−1/2

ε1/2 for n � ε−1/2

}

. (17)

Notice that this is a qualitative statement about the entire distribution, not
just its expected value, which is usually considered in numerical simulations.
Furthermore it makes the dependence on n precise and gives a proper cross-
over, that is the scalings agree in the case that n ∼ ε−1/3.

In the following 〈·〉 denotes the expected value with respect to the joint
probability measure P of the variables {Ri}i.

Theorem 3.1 ((Hönig et al., 2005b), Theorem 2.2) (The super-critical regime)
If n � ε−1/2 and ε ≤ ε0 we have with high probability that

−C ε1/2 ≤ Ė − ĖLSW

|〈ĖLSW 〉|
≤ − 1

C
ε1/2 ,

that is for all δ > 0 there exists a constant C = C(δ) such that

P

({

−C ε1/2 ≤ Ė − ĖLSW

|〈ĖLSW 〉|
≤ − 1

C
ε1/2

}c)

≤ δ.
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Theorem 3.2 ((Hönig et al., 2005b), Theorem 2.1) (The sub-critical regime)
If n � ε−1/2 and ε ≤ ε0 we have with high probability that

Ė − ĖLSW

|〈ĖLSW 〉|
≥ −C n−1/3 ε1/3.

Furthermore
〈Ė − ĖLSW 〉
|〈ĖLSW 〉|

≤ − 1

C
n−1/3ε1/2.

Remark: Notice that in the sub-critical regimes we only succeed to derive a
lower bound, whereas we obtain an upper bound only for the expected value.
It is not surprising, that subcritical systems have less good self-averaging prop-
erties than supercritical systems and, in fact, a recent rigorous result by Conti
et al. (2006) shows, that for any M > 0 there is a finite probability ρM > 0 such
that (Ė − ĖLSW )/|〈ĖLSW 〉| > M .

3.3 Sketch of proof

In the following we present the main ideas of the proof of Theorem 3.1.
We first perform the natural rescaling, by rescaling radii with respect to

their typical size ε1/3 such that (14) becomes

1

Ri
= u∞ − Vi

Ri
− ε1/3

∑

j 6=i

Vj

dij
, (18)

where again u∞ is such that
∑

i Vi = 0. Recall that the radii are distributed
according to a distribution with compact support. Thus, after rescaling we can
assume that Ri ≤ C0 for some C0 > 0.

Variational formulation:
A key idea in the proof of Theorem 3.1 is that the deviation in the rate of

decrease of the energy can be formulated variationally. First we observe that
the solution of (18) can also be characterized as a minimizer of

min
{Wi}i;

P

i Wi=0







1

n

∑

i

1

2Ri
Wi

2 + ε1/3 1

n

∑

i

∑

j 6=i

WiWj

2dij
+

1

n

∑

i

Wi

Ri







.

and the solution {Vi}i satisfies

1

n

∑

i

1

2Ri
V 2

i + ε1/3 1

n

∑

i

∑

j 6=i

ViVj

2dij
+

1

n

∑

i

Vi

Ri
=

1

n

∑

i

Vi

2Ri
=

1

2
Ė.

Hence

Ė − ĖLSW = min
{Wi}i,

P

i
Wi=0

{

1

n

∑

i

1

Ri
Wi

2

+ ε1/3 1

n

∑

i

∑

j 6=i

WiWj

dij
+

1

n

∑

i

2Wi

Ri
− 1

n

∑

i

V LSW
i

Ri

}

.
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and after some elementary manipulations, recalling V LSW
i = Ri

R
− 1 with R :=

1
n

∑

i Ri, we find

Ė − ĖLSW = min
{Wi}i;

P

i
Wi







1

n

∑

i

1

Ri

(

Wi − V LSW
i

)2
+ ε1/3 1

n

∑

i

∑

j 6=i

WiWj

dij







.

(19)
Hence our goal will be to show that for any δ > 0 there exists a constant
C = C(δ) such that

P
({

− C ≤ T ≤ − 1

C

}c)

< δ , (20)

where

T := min
{Wi}i;

P

i
Wi







ε−1/2 1

n

∑

i

1

Ri

(

Wi − V LSW
i

)2
+ ε−1/6 1

n

∑

i

∑

j 6=i

WiWj

dij







.

Notice that this is exactly the statement in Theorem 3.1, since our scaling is
such that |〈ĖLSW 〉| = O(1).

The variational formulation has the advantage that, first, we get rid of the
nonlocal term u∞, which is not explicit, and, second, that we can obtain an
upper bound by constructing a suitable test function {Wi}i.

The upper bound:
In the supercritical case, that is the case when the system size is much larger

than the screening length ξ, our intuition is, that the system separates into many
small subsystems of size of order ξ. With this idea in mind we divide our system
into subsystems of order ξ and use the LSW construction in each subsystem j,
that is Wi := Ri

R[j]
−1, where R[j] means that we take the average over subsystem

j. This construction indeed gives the desired upper bound. The computations
are somewhat tedious but straightforward (see (Hönig et al., 2005b) for details).

The lower bound:
We now turn to the mathematically most interesting part, which is the lower

bound for T . We write T = T0 + T1 with

T0 := ε−1/2 1

n

∑

i

1

Ri

(

Wi − V LSW
i

)2
, T1 := ε−1/6 1

n

∑

i

∑

j 6=i

WiWj

dij
,

that is, T0 is the “good” positive part, and what we need to show is that T1

can be split in terms which can be absorbed in T0 and other terms which are
bounded in weak-L1, that is we aim to show that |T1| ≤ 1

2T0 + T̃ , where T̃
is bounded in weak-L1. (We say that T is bounded in weak-L1 if there exists
exists a constant C such that P (|T | ≥ M) ≤ C/M for all M > 0.)

• Replace V LSW
i by Ri

〈R〉 − 1:
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In a first step we replace in T0 the term V LSW
i by Li := Ri

〈R〉 − 1. This has

the advantage that 〈Li〉 = 0 and 〈LiLj〉 = 0 for i 6= j. It is not difficult
to show that the error which is made by this replacement is bounded in
the supercritical regime, which ensures that R is a good approximation of
〈R〉. We omit the details here.

• Introduce cut-off length ξ̂ := δξ:

Next, we introduce a length ξ̂ := δξ, where δ > 0 is a small number, which
will be chosen appropriately. We split the kernel

1

dij
=

e−dij/ξ̂

dij
+

1 − e−dij/ξ̂

dij

into a far-field and near-field respectively, a splitting motivated by the
screening effect and also used for example in the Ewald summation method.
Accordingly we split

T1 = ε−1/6 1

n

∑

i

∑

j 6=i

e−dij/ξ̂

dij
WiWj + ε−1/6 1

n

∑

i

∑

j 6=i

1 − e−dij/ξ̂

dij
WiWj

=: T11 + T12 .

• The “far-field” term:

It turns out that the far-field term T12 is the simpler one to estimate. We
split again

T12 := ε−1/6 1

n

∑

i

∑

j

1 − e−dij/ξ̂

dij
WiWj − ε−1/6 1

nξ̂

∑

i

W 2
i

=: T121 − T122 .

We see that T121 is positive, since the kernel is even and is the Fourier
transform of a positive measure and hence a function of positive type
according to Bochner’s theorem.

On the other hand

T122 = ε−1/6 1

nξ̂

∑

i

(

Wi − Li + Li

)2

≤ 2ε−1/6 1

ξ̂

( 1

n

∑

i

(Wi − Li)
2 +

1

n

∑

i

L2
i

)

≤ Cε−1/6 1

ξ̂

(

ε1/2T0 +
1

R
2

)

since Ri ≤ C0 and since 1
n

∑

i L2
i ≤ C 1

R
2 . Recall that ξ ∼ ε−1/6 and hence

T122 ≤ C

δ

(

ε1/2T0 +
1

R
2

)

.
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Using large deviation theory one can show that the expected value of all

moments of R
−1

are bounded. Hence, once we have chosen δ, we can
choose e.g. ε ≤ δ2 such that and T122 is bounded by CδT0 plus a term
which is bounded in weak-L1.

• The “near-field” term:

It remains to estimate the near-field term T11. We write

T11 = ε−1/6 1

n

∑

i

∑

j 6=i

e−dij/ξ̂

dij

(

Wi − Li

)(

Wj − Lj

)

+ 2ε−1/6 1

n

∑

i

∑

j 6=i

e−dij/ξ̂

dij
Lj

(

Wi − Li

)

+ ε−1/6 1

n

∑

i

∑

j 6=i

e−dij/ξ̂

dij
LiLj .

(21)

The first term on the right hand side can be estimated by a kind of con-
volution argument and turns out to be smaller than Cε1/3(ξ̂)2T0 ≤ CδT0.
We denote the second term in (21) by T112 and have with

Z2
i :=

∑

j 6=i

∑

k 6=i

e−
dij

ξ

dij

e−
dik

ξ

dik
LjLk

that
∣

∣T112

∣

∣ ≤ ε−1/6
( 1

n

∑

i

(

Li − Wi

)2
)1/2

( 1

n

∑

i

Z2
i

)1/2

.

As before we argue that 1
n

∑

i

(

Li − Wi

)2 ≤ Cε1/2T0. Furthermore, due
to 〈LjLk〉 = 0 for j 6= k, we have

〈Z2
i 〉 =

∑

j 6=i

e−
2dij

ξ

d2
ij

〈L2
i 〉 ≤ Cξ ,

where the last inequality follows from our regularity assumptions on the
distribution of particle centers which allow to approximate sums by the
corresponding integrals. Thus, we obtain

P
(

|T112| ≥ M
)

≤ 1

M
〈|T112|〉

≤ 1

M
ε−1/6ε1/4

√

T0

√

ξ

=
1

M
ε−1/6+1/4−1/12

√

δT0

≤ C

M

(

δT0 + 1
)

,

which says that T112 is bounded in weak-L1.

The third term in (21) can be handled similarly, we omit the proof here.
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• Summary:

Collecting the above computations we have

T ≥ (1 − Cδ)T0 + T̃1

with P
(

|T̃1| ≥ M
)

≤ C
M . Choosing δ sufficiently small finishes the proof

of the lower bound.

4 Approaches to extend the LSW model

In this section we review different approaches to derive extensions to the LSW
model which take nonvanishing volume fraction into account. The theories we
present now are not derived in full rigor, which due to the complexity of the
problem can also not be expected. The first approach, described in Section 4.1,
has been derived by establishing several building blocks rigorously. The model
is also self-consistent for small times. However, it turns out not to be self-
consistent for large times. Another approach, which overcomes this difficulty is
presented in Section 4.2. Section 4.3 finally discusses an ad-hoc model which
takes encounters of particles into account.

4.1 BBGKY hierarchy to capture correlations

The first attempt to derive a corresponding theory was done in (Marqusee and
Ross, 1984), where an evolution of the one-point statistics under the assumption
of independently and identically distributed particles is derived. However, it is
obvious that the assumption of statistical independence is not preserved up to
the relevant order O(ε1/2) by the evolution and thus this theory is not self-
consistent.

A more advanced theory has been developed by Marder (1987) who takes the
build up of correlations into account. Let us briefly discuss, why one expects a
faster coarsening process due to correlation effects. Consider a system which has
undergone coarsening and suppose you find a large particle. The likely reason
for it being large is that it is surrounded by smaller than average particles.
Because of that fact the large particle can also grow faster than predicted by
the LSW mean-field theory. Equally, smaller than average particles shrink faster
than predicted by the mean-field theory, and one should obtain larger coarsening
rates than within the LSW model.

In order to access correlations Marder (1987) derives the evolution of the
two-point statistics up to an error o(ε1/2). Starting from the monopole approx-
imation he generates the BBGKY hierarchy for the particle number densities,
computes the growth rates which appear as coefficients in these equations and
truncates the hierarchy on the level of two-particle statistics by a closure hy-
pothesis.

The goal of Hönig et al. (2005a) was to find a new method to identify the
conditional expectations of particle growth rates under a more natural closure
hypothesis than Marder’s.
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The assumption in (Hönig et al., 2005a) is that the joint probability distribu-
tion of {(Ri, Xi)}i≥1 satisfies a cluster expansion. More precisely, if f1(R1, t) and
f2(R1, R2, X1, X2, t) denote the one- and two-particle number densities respec-
tively, it is assumed, with g2(R1, R2, X1, X2, t) := f1(R1)f1(R2)
−f2(R1, R2, X1, X2, t), that g2

f1f1
= O(ε1/2) and that higher order correlations

are of order o(ε1/2) and can henceforth be neglected.
Under this assumption Hönig et al. (2005a) derive that f1, f2 satisfy the

Liouville equations

∂f1

∂t
+

∂

∂R1

( 1

R2
1

〈V1 | 1〉 f1

)

= 0 ,

∂f2

∂t
+

∂

∂R1

( 1

R2
1

〈V1 |1, 2〉 f2

)

+
∂

∂R2

( 1

R2
2

〈V2 |1, 2〉 f2

)

= 0 ,

(22)

where 〈V1 | 1〉, 〈V1 |1, 2〉 denote the expected growth rates of particles conditioned
on size and position of particle (R1, X1) and (R1, X1, R2, X2) respectively. These
are given by

〈V1 |1〉 =
(

1 +
R1

ξ

)

(R1u∞ − 1 − δu1) + o(ε1/2), (23)

〈V1 |1, 2〉 =
(

1 +
R1

ξ

)

(R1u∞ − 1 − (δu1 + δu2))

+
R1

d12
e−

d12
ξ (1 − R2u∞) + o(ε1/2) , (24)

where for i = 1, 2

δui =

∫

e−
|y−X1|

ξ

|y − X1|
(

1 − Ru∞

)g2(Ri, Xi, R, y)

f1(Ri)
dR dy (25)

and δui have relative size of order O(ε1/2). The mean field u∞ is implicitly
determined by volume conservation, which is expressed by the condition 〈V1〉 =
0.

Notice that the terms R1/ξ and R1/d12, etc. are terms which have typically
size of order ε1/2 due to (13). Hence, we recover in (23) to leading order the
LSW theory.

We also observe that (24) has the expected structure. The second term on
the right hand side describes how a particle (R2, X2) affects the growth rate
of particle (R1, X1). If it is larger than average, the growth rate of particle
(R1, X1) is smaller than predicted by LSW, if it is smaller than the growth rate
of particle (R1, X1) increases. The effect is more relevant the closer particle
(R2, X2) is to particle (R1, X1) and can be neglected if the distance between
two particles is larger than the screening length ξ.

Nevertheless, it turned out that the model (22)-(25), despite its complexity,
is still not satisfying. First, even though this is not demonstrated rigorously,
it seems that the model contains no mechanism to select a unique self-similar
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solution. Furthermore, and most important, the model is not self-consistent for
large times, more precisely it fails for the largest particles in the system. The
argument for the latter is basically as follows. Suppose one solves (22)-(24) for
uncorrelated initial data, where f1(R1, 0) has compact support. Consequently,
the support of f2 = f2(R1, R2, X1, X2, 0) is also compact in R1 and R2. How-
ever, the evolution of R1 and R2, determined by (24), depends on space due
to the term e−d12/ξ/d12 in (24). Therefore, particles R1 and R2 which are at a
distance smaller than ξ evolve differently from particles R1 and R2 which are at
a distance much larger than ξ. As a consequence also the support of f2 in R1

and R2 varies in space and we obtain regions in the variables (R1, R2, X1, X2)
where f2 identically vanished but f1(R1) and f1(R2) not and consequently g2

is of the order f1(R1)f1(R2) which violates the cluster expansion.

4.2 Boundary layers due to fluctuations

For the reasons described in the previous section one cannot assume that cor-
relations are small around the largest particles and hence a uniform cluster ex-
pansion approach cannot be successful. The onset of correlations for the largest
particles has instead to be described by a suitable boundary layer, that is a
small region in the space of radii on which the number densities vary rapidly.
A corresponding model has been derived in (Niethammer and Velázquez, 2007).
The analysis is quite elaborate and also the resulting model is complicated to
state in full detail. We confine ourselves here to describe the most important
aspects.

The main idea in the derivation of the model is that we do not start from
an expansion on the level of the number densities, but instead on the level of
the trajectories of particles. This allows for a closure relation using Taylor’s
expansion in order to express f2 by f1 and ∂Rf1.

One aspect is however very similar to the analysis of Hönig et al. (2005a). A
key idea in the computation is always to describe a system of particles through
the ones in a system where a particle has been removed. This is a version of
Schwarz alternating method.

The resulting model has the following form:

∂tf1 + ∂R

(

1

R2

(

Ru∞ − 1
)

f1

)

= ε1/2 ∂R

(

D(R) ∂Rf1

)

(26)

where the function D = D(R) acts as a kind of diffusion coefficient and is
determined via a complicated nonlocal integral equation. We refer for details to
(Niethammer and Velázquez, 2007); the most relevant property of D however
is, that it is positive and has the appropriate scaling such that (26) has a scale
invariance.

Let us emphasize again, that the right hand side is seemingly a higher order
term due to the factor ε1/2. However, this is only true where f1 is not small.
For largest particles, where f1 is small, the right hand side of (26) becomes of
the same size as the left hand side.
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By formal asymptotic expansion it is also established in (Niethammer and
Velázquez, 2007) that a unique self-similar solution to (26) exists. This is a
perturbation of the LSW self-similar solution with a Gaussian tail. Thus, the
boundary layer provides a possible solution to the selection problem within the
LSW theory. The induced correction to the mean particle size of order ε1/4.
Notice, that the latter does not contradict our scaling analysis in Section 3. For
short times we have that the correction terms are of order ε1/2. This does not
say, however, what order of size of correction we can expect in a self-similar
regime.

4.3 The LSW model with encounters

A different approach from the ones described in the last two sections has been
suggested already in (Lifshitz and Slyozov, 1961). As we have already men-
tioned, particles may collide during their evolution and merge into a larger par-
ticle. At first glance, this effect seems to be of higher order than correlations,
since the number of particles per unit volume which are involved in collisions
is of order ρε and as a consequence the correction of the LSW model due to
collisions should have relative size of order ε.

A model which takes this effect into account has already been suggested in
(Lifshitz and Slyozov, 1961). To state it it is more convenient to change variables
from radius R to volume v := R3. After rescaling time by a constant, the LSW
law Ṙ = 1

R2 (Ru∞ − 1) reads in the volume variable v̇ = v1/3u∞ − 1 and the
LSW model for the density of volumes g (defined by g(v) dv = f1(R) dR) is
given by

∂tg + ∂v

(

(v1/3u∞ − 1)g
)

= 0 .

Introducing self-similar variables via x := v
t , F (x, τ) := t2g(v), τ = ln t and

λ = u∞t1/3 we obtain the equation in self-similar variables as

∂τF − x∂xF − 2F + ∂x

(

(x1/3λ − 1)F
)

= 0 . (27)

To account for collisions, or “encounters” as the phenomenon is called by Lifshitz
and Slyozov, a coagulation term is added on the right hand side which is of the
form

1

2

∫ x

0

K(y, x − y)F (x − y)F (y) dy − F (x)

∫ ∞

0

K(x, y)F (y) dy . (28)

Since merging particles basically add their volume (this is not completely cor-
rect, since at the same time they still interact with the other particles, but
sufficient for our purpose), it is assumed that K is additive and grows pro-
portional to x + y as x, y → ∞. For simplicity we set K(x, y) := x + y. To
summarize, after normalizing to

∫

xF (x) dx = 1, self-similar solutions for the
LSW model with encounters are given by the equation

−x∂xF − 2F + ∂x

(

(x1/3λ − 1)F
)

= ε
(x

2

∫ x

0

F (x − y)F (y) dy − xF (x)

∫ ∞

0

F (y) dy − F (x)
)

.
(29)
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Naively, one would expect that since the order of the right hand side is
O(ε) collisions are not as relevant as correlations and fluctuations which are of
order O(ε1/2). However, all particles can encounter other particles and thus two
colliding particles of medium size produce a large particle which then dominates
the long-time behavior. Hence, for the large-time behavior encounters could be
more relevant than fluctuations and correlations.

This conjecture is supported by an asymptotic analysis by Lifshitz and Sly-
ozov (1961). Assuming that there exists a fast decaying solution to (29), they
find that the correction of the growth rate of the particles is of order is of order

1
| ln 1

ε
|2

and hence much larger than the correction induced by fluctuations.

It is still open, however, whether the analysis in (Lifshitz and Slyozov, 1961)
is correct, since is is not obvious that exponentially fast decaying solutions to
(29) exist at all. In fact, we know from the pure coagulation equation that such a
solution only exists for ε = 1. The situation here might be of course completely
different. Preliminary computations by Herrmann et al. (2007) suggest, that for
small ε there are both, algebraically decaying solutions, as well as an exponen-
tially decaying one. If this turns out to be correct, it is reasonable to expect,
that solutions to the time dependent problem with compactly supported data
converge to the self-similar solution with exponential decay and the correction
to the mean radius is indeed of order 1

| ln 1
ε
|2

.

To summarize, even though the model including encounters is set up only
ad hoc and is not derived from the Mullins-Sekerka evolution, which would be
another challenging task, the enormous effect on the mean radius and hence the
coarsening rate suggests that encounters are in fact more relevant for the long-
time self-similar dynamics than fluctuations. The explanation lies in the kinetic
character of the collision term, that the fraction of particles which are trans-
ported to the super-critical regime is of order ε, whereas the diffusive correction
due to fluctuations in (26) only involves the few largest particles.
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