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Summary. We study transport properties of isotropic Brownian flows. Under a transience
condition for the two-point motion, we show asymptotic normality of the image of a finite
measure under the flow and – under slightly stronger assumptions – asymptotic normality
of the distribution of the volume of the image of a set under the flow. Finally, we show that
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martingale) converges to a random variable which is almost surely strictly positive.

Keywords. Stochastic differential equation, stochastic flow, isotropic Brownian flow, vague
convergence, asymptotic normality

2000 Mathematics Subject Classification : 60F05, 60G15, 60G60, 62H30

1 Introduction

It has been suggested that stochastic flows can be used as a model for studying the spread
of passive tracers within a turbulent fluid. Individual particles perform diffusions while the
motions of adjacent particles are correlated and form a stochastic flow of homeomorphisms
{φs,t}0≤s≤t. We consider isotropic Brownian flows (IBF) on Rd – a special class of stochastic
flows characterized by their spatial translation and rotational invariance, temporal homogeneity
and independence of their increments. They have been extensively studied by many authors e.g.
Baxendale and Harris ([3], [2]), Le Jan ([10], [11], [12]), Yaglom [13], Cranston, Scheutzow and
Steinsaltz [4]. We will recall basic facts about IBFs in the next section.
The one-point motion of an isotropic Brownian flow is a Brownian motion, but the distribution of
the two-point motion (φt(x), φt(y))T is not Gaussian (we write φt for φ0,t). In the transient case,
in which the distance |φt(x)− φt(y)| grows to infinity as t→∞, the correlation between φt(x)
and φt(y) decays to zero and it is reasonable to expect some kind of joint asymptotic normality
of the empirical distribution of {φt(x), x ∈ B} for suitable initial sets B. In the following, we
fix d ≥ 2 and let λ be Lebesgue measure on Rd. We will consider the following two questions:
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1. Given two “nice” sets A, B ⊂ Rd, what portion of the set B moves under the action of
the flow at time t into the set

√
tA? That is, how does

1
λ(B)

λ
(
B ∩ φ−1

t (
√
tA)

)
behave as t→∞?

2. Given two “nice” sets A, B ⊂ Rd, what portion of the set φt(B) is in the set
√
tA? That

is, how does

1
λ(φt(B))

λ
(
φt(B) ∩

√
tA

)
behave as t→∞?

Theorems 3.1 and 3.2 below deal with these questions. The asymptotic normality result arising
from the second question is however weaker in the sense that it holds only on the set where
limt→∞ λ(φt(B)) > 0. In case the top Lyapunov exponent of the flow is strictly positive, results
of Le Jan on the statistical equilibrium show that

(
λ(φt(B))

)
t
is a uniformly integrable martin-

gale and thus its limit cannot be trivial, i.e. P
[
limt→∞ λ(φt(B)) > 0

]
> 0 whenever λ(B) > 0.

One can ask, if the limit is almost surely strictly positive, that is if the volume persists almost
surely. In Section 4 we answer this question affirmatively for a class of IBFs characterized by a
simple condition on the parameters.
In [6], Question 1. is considered for rather general measures and for stochastic flows driven by
a finite dimensional Brownian motion on a compact manifold (or periodic flows on Rd). Using
different techniques relying crucially on the compactness of the state space, they show asymp-
totic normality.
In [15] and [14], the authors treat the asymptotic behavior of the first and the second moments
of m ◦ φ−1

t for some finite measure m on Rd. This is a somewhat different approach for describ-
ing the dispersion of sets. Observe that Question 1 above can be formulated as the asymptotic
behavior of λB ◦ψ−1

t with ψt := φt√
t
, where λB(dx) = 1

λ(B)1lB(x)λ(dx). This suggests to general-
ize Question 1 by considering the transport of an arbitrary finite measure m rather than just λB.

2 Isotropic Brownian flows

We provide a brief introduction to IBFs following mainly [3], [10] and [13]. A rather extensive
collection of properties can be found in [5].

A (forward) stochastic flow of homeomorphisms on Rd is a family of random homeomorphisms
{φs,t : 0 ≤ s ≤ t <∞} of Rd into itself, such that (up to a set of measure zero) φu,t ◦ φs,u = φs,t
for s ≤ u ≤ t and (s, t, x) 7→ φs,t(x) is continuous. The flow is called Brownian if the incre-
ments are independent, i.e. for arbitrary s1 ≤ t1 ≤ s2 ≤ · · · ≤ tn, the increment mappings
φs1,t1 , . . . , φsn,tn are independent. If the increments are stationary, the flow is called temporally
homogeneous. A flow is called spatially homogeneous if its distribution is invariant with respect
to translations T : Rd → Rd in the sense that the flows T ◦ φ and φ ◦ T have the same law. A
spatially and temporally homogeneous Brownian flow is called isotropic Brownian flow (IBF) if,
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in addition, φ is invariant under orthogonal transformations on Rd.
For an IBF φ, the one-point motion t 7→ φ0,t is a d−dimensional Brownian motion. The covari-
ance tensor b of φ is defined as

bi,j :=
d〈φi0,t(x), φ

j
0,t(0)〉

dt
|t=0, x ∈ Rd, i, j ∈ 1, ..., d,

where 〈φi0,t(x), φ
j
0,t(0)〉 denotes the covariation process of φi0,t(x) and φi0,t(0). The properties

of φ then imply that d〈φis,t(x), φ
j
s,t(y)〉 = bi,j(φs,t(x) − φs,t(y))dt for all x, y ∈ Rd, 0 ≤ s ≤ t.

Following [3], we assume that b(0) = IdRd (which is just a normalization condition) and that
x 7→ b(x) is C4. We will further assume that d ≥ 2 and that lim|x|→∞ b(x) = 0 (so the random
translation part of φ is zero).

According to [3] and [13], the positive semidefinite function b has necessarily the form

bi,j(x) =

 (BL(|x|)−BN (|x|)) xixj

|x|2 + δi,jBN (|x|) for x 6= 0

δi,j for x = 0 ,
(2.1)

where BL and BN are the so called longitudinal and transversal covariance functions defined by

BL(r) = bp,p(rep), r ≥ 0 and
BN (r) = bp,p(req), r ≥ 0, p 6= q ,

where ei denotes the i-th standard basis vector in Rd. BL and BN are bounded C4 functions
with bounded derivatives. Set

βL := −∂p∂pbp,p(0) = −B′′
L(0)

βN := −∂q∂qbp,p(0) = −B′′
N (0) q 6= p ,

where B′′
L(0) and B′′

N (0) denote the right-hand second derivatives of BL and BN at zero. The
asymptotics of BL and BN around zero are given by

BL(r) = 1− 1
2
βLr

2 +O(r4) , for r → +0 and

BN (r) = 1− 1
2
βNr

2 +O(r4) , for r → +0,
(2.2)

where βL, βN > 0. Moreover, |BL(r)|, |BN (r)| < 1 for arbitrary r > 0. The constants βL and
βN satisfy

0 <
d− 1
d+ 1

≤ βL
βN

≤ 3 . (2.3)

We will abbreviate φt := φ0,t. According to Theorem 4.2.4 from [9], the n-point motion{
(φt(x1), . . . , φt(xn))T : t ≥ 0

}
is a diffusion on Rnd with generator

Lnf(x1, . . . , xn) =
n∑

p,g=1

d∑
i,j=1

bi,j(xp − xq)
∂2f

∂xip∂x
j
q

(x1, . . . , xn)
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for f ∈ C2
b (Rnd : R). An important and useful consequence of the isotropy and the translation

invariance is that the distance process ρt := ρt(x, y) := |φt(x)−φt(y)| is a diffusion. Its generator
is (see Lemma 3.10 and Corollary 3.16 in [3])

Lg(r) = (1−BL(r))
d2g

dr2
(r) + (d− 1)

1−BN (r)
r

dg
dr

(r) for all g ∈ C2
b .

The independence of the increments and the spatial homogeneity imply that the law of the
matrix-valued linearization Lt := Dφt(x) of the flow around the trajectory started in x ∈ Rd

does not depend on x and has itself stationary and independent increments. Therefore it follows
from Oseledec’s multiplicative ergodic theorem ([1]) that

lim
t→∞

1
2t

log si
[
LTt Lt

]
=: λi

exists almost surely, where si[M ] denotes the i-th largest eigenvalue of the symmetric matrix
M . Moreover, λ1 ≥ · · · ≥ λd are constant and are called Lyapunov exponents. The following
formula for the Lyapunov exponents can be found for example in [3] and [10]:

λi = (d− i)
βN
2
− i

βL
2

for i = 1. . . . , d.

The recurrence/transience modes of the distance process can be characterized by the top Lya-
punov exponent λ1 (see [3] and [10]). In particular we have the following

Remark 2.1. For arbitrary x 6= y

|φt(x)− φt(y)| −→
t→+∞

∞ in probability , (2.4)

if one of the following holds
(i) d ≥ 4 or (ii) d = 3 and λ1 ≥ 0 or (iii) d = 2 and λ1 > 0.
We will call an IBF transient if it satisfies (2.4). These conditions are also necessary with the
possible exception of the case d = 2, λ1 = 0 which seems to be unclear. The above convergence
holds also almost surely in the cases (i) and (ii), but not in case (iii).

As pointed out in [10], the measure ψ(|x− y|)λ(dx)λ(dy), where

ψ(s) =
1

1−BL(s)
exp

−(d− 1)

∞∫
s

BL(u)−BN (u)
u(1−BL(u))

du

 (2.5)

is a reversible invariant measure for the two-point motion (the integral in (2.5) is always finite).
Further we have

lim
s→+∞

ψ(s) = 1 and ψ(s) ∼ c

βL
s
(d−1)

βN
βL

−(d+1) for s→ +0, (2.6)

where c is a strictly positive constant. We conclude this section by mentioning, that an IBF can
be represented as the solution flow of a Kunita-type stochastic differential equation, see [4].

4



3 The dispersion of volume

In this section, we will deal with the two questions about asymptotic normality formulated in the
introduction. We will assume throughout this section, that φ is a transient IBF. As pointed out
at the end of the introduction, we will generalize the first question by considering the transport
of finite measures rather than of sets of finite Lebesgue measure.

Theorem 3.1. Let {φs,t(x, ω) : s, t ∈ R+} be a transient IBF and let m be an atomless nonzero
finite measure on (Rd,Bd). Further, let the random measure lt on the Borel sets of Rd be defined
as

lt(A) :=
1

m(Rd)
m({x ∈ Rd : φt(x) ∈

√
tA}).

Then we have
lt(A) −→

t→+∞
N (0, IdRd)(A) in L2 ,

for every A ∈ B(Rd). In particular, lt converges to N (0, IdRd) weakly in probability.

Theorem 3.2. Let {φs,t(x, ω) : s, t ∈ R+} be an IBF with λ1 > 0 and B ∈ B(Rd) be a Borel set
with nontrivial Lebesgue measure λ(B) ∈ (0,∞). Then, for any set A ∈ B(Rd), we have

λ
(
φt(B) ∩

√
tA

)
−N (0, IdRd) (A)λ (φt(B)) −→

t→+∞
0 in L2. (3.7)

Moreover, conditioned on the set ΩB :=
{

lim
t→∞

λ(φt(B)) 6= 0
}
,

1
λ(φt(B))

λ
(
φt(B) ∩

√
tA

)
−→
t→+∞

N (0, IdRd)(A) in P(· | ΩB) probability (3.8)

Remark 3.3. We will see in Section 4.2, that the limit limt→∞ λ(φt(B)) exists almost surely
and is finite and strictly positive with positive probability, i.e. ΩB has positive probability. It is
still an open question, whether under the condition of Theorem 3.2 we always have P (ΩB) = 1,
but we will see that under the additional condition βN

βL
> d

d−1 we indeed have P(ΩB) = 1.

3.1 Proofs of the dispersion results

The proofs of Theorems 3.1 and 3.2 rely on the following two simple lemmas:

Lemma 3.4. Let (Ω,F , (Ft)t∈R+ ,P) be a filtered probability space, satisfying the usual condi-
tions. Further, let {Mt : t ∈ R+} be a continuous local Ft-martingale starting at m ∈ R, with
quadratic variation satisfying

lim
t→+∞

1
t
〈M〉t = c in probability (3.9)

for some strictly positive constant c. Then

1√
t
Mt −→

t→+∞
N (0, c) in law, (3.10)

where N (0, c) denotes the zero mean Gaussian distribution with variance c.
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Proof :
It suffices to consider the case m = 0 and c = 1. The continuous local martingale M can be
represented as a time-changed Brownian motion (on a possibly enriched probability space), see
[8], p.174-175, i.e. there exists a standard Brownian motion B and an increasing family τ(t),
t ≥ 0 of random times such that Mt = B(τ(t)) for all t ≥ 0. For T > 0, define a new Brownian
motion B̃T (t) := B(tT )√

T
, t ≥ 0. Due to (3.9), we have τ(t)/t→ 1 in probability and therefore

MT√
T

= B̃T

(
τ(T )
T

)
→ N (0, 1) in law,

and the proof is complete. �

Lemma 3.5. Let {φs,t(x, ω) : s, t ∈ R+} be a transient IBF. For every x, y ∈ Rd, x 6= y the
following convergence holds:

1√
t

(
φt(x)
φt(y)

)
−→
t→+∞

N (0, IdR2d) in distribution.

Proof :
The proof relies on the Cramér-Wold Theorem (see e.g. [7]).
For arbitrary ξ = (α1, . . . , αd, β1, . . . , βd) ∈ R2d satisfying |ξ| = 1,

ψt :=
d∑
i=1

αiφ
i
t(x) +

d∑
i=1

βiφ
i
t(y)

is a continuous Ft-martingale with quadratic variation

〈ψ〉t = t

d∑
i=1

(
α2
i + β2

i

)
+

d∑
i,j=1

αiβj

t∫
0

bi,j(φs(x)− φs(y))ds. (3.11)

Since lim|x|→+∞ bi,j(x) = 0 for all i, j ∈ {1, . . . , d} and φ is transient, we obtain

1
t

t∫
0

bi,j(φs(x)− φs(y))ds −→
t→+∞

0 in L1,

and hence

1
t
〈ψ〉t −→

t→+∞

d∑
i=1

(
(αi)2 + (βi)2

)
= |ξ|2 = 1 in L1.

ψt satisfies the conditions of Lemma 3.4 and the statement of the lemma therefore follows from
the Cramér-Wold Theorem. �

Now we are ready to prove the main theorems:
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Proof of Theorem 3.1:
Without loss of generality, we assume that m is a probability measure on Rd. Fix a Borel set
A. Fubini’s Theorem and Lebesgue’s dominated convergence theorem imply that

E lt(A) = E
∫
Rd

1l√tA(φt(x))m(dx) =
∫
Rd

P(φt(x) ∈
√
tA)m(dx)

=
∫
Rd

P(φ1(0) ∈ A− x√
t
)m(dx) =

∫
Rd

N (0, IdRd)(A−
x√
t
)m(dx) −→

t→+∞
N (0, IdRd)(A) .

Assuming in addition that the set A is closed and using Lemma 3.5 and the fact that m ⊗m
does not charge the diagonal D := {(x, x) : x ∈ Rd}, we get

lim sup
t→∞

E(lt(A))2 = lim sup
t→∞

E
∫

Rd×Rd

1l√tA×√tA(φt(x), φt(y))m⊗m(dxdy)

= lim sup
t→∞

∫
(Rd×Rd)\D

P
( 1√

t
(φt(x), φt(y)) ∈ A×A

)
m⊗m(dxdy) ≤ N (0, IdR2d)(A×A)

= (N (0, IdRd)(A))2

and hence

0 ≤E([lt(A)−N (0, IdRd)(A)]2)

= E l2t (A)− 2N (0, IdRd)(A)E lt(A) + (N (0, IdRd)(A))2 −→
t→+∞

0 .

Taking complements, the assertion of the theorem follows also for open subsets. The case of
a general Borel subset A follows since every probability measure on Rd is regular. The “in
particular” statement in the Theorem now follows easily and the proof is complete. �

Proof of Theorem 3.2:
IBFs enjoy the property that their laws are invariant under time reversal. This fact can be easily
derived (see e.g. [5], Corollary 1.2.1) by observing that the correction term in the backwards
generator vanishes ([9], Section 4.2). In particular, for each fixed t > 0, the random functions
φt and φ−1

t have the same distribution and therefore

E
[
λ(φt(B) ∩

√
tA)

]2
= E

∫
1lφt(B)×φt(B)(x, y)1l√tA×√tA(x, y)dxdy

= E
∫

1lB×B(φt(x), φt(y))1l√tA×√tA(x, y)dxdy . (3.12)

Let µ(dxdy) := ψ(|x−y|)dxdy be the invariant measure for the two-point motion given in (2.5).
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The reversibility of the two-point motion with respect to µ(dxdy) implies

E
∫

1lB×B(φt(x), φt(y))1l√tA×√tA(x, y)dxdy

= E
∫

1lB×B(φt(x), φt(y))1l√tA×√tA(x, y)
1

ψ(|x− y|)
µ(dxdy)

=
∫

1lB×B(x, y)E
{

1l√tA×√tA(φt(x), φt(y))
1

ψ(|φt(x)− φt(y)|)

}
µ(dxdy) . (3.13)

Setting

Mt(A) := 1l√tA×√tA(φt(x), φt(y))
1

ψ(|φt(x)− φt(y)|)
and

DL := {(x, y) ∈ R2d : |x− y| ≥ L, |x| ≥ L, |y| ≥ L}, L > 0

we have

EMt(A) = E(Mt(A)1lDc
L
(φt(x), φt(y))) + E(Mt(A)1lDL

(φt(x), φt(y))). (3.14)

The first term in the decomposition converges to zero by the Lebesgue’s bounded convergence
theorem, since 1

ψ(|x−y|) is uniformly bounded from above (see (2.3) and (2.6)) and 1lDc
L
(φt(x), φt(y)) →

0 in probability as t→ +∞. That is,

lim
t→+∞

E(Mt(A)1lDc
L
(φt(x), φt(y))) = 0 . (3.15)

The second term in (3.14) can be bounded from above by:

HLE1l√tA×√tA(φt(x), φt(y)), (3.16)

where HL := sup(x,y)∈DL

{
1

ψ(|x−y|)
}
. Now we assume that the set A is closed. According to

Lemma 3.5, we have

lim
t→∞

HLE1l√tA×√tA(φt(x), φt(y)) ≤ HL (N (0, IdRd)(A))2 . (3.17)

Combining (3.17), (3.15) and (3.14), we obtain for arbitrary L > 0

lim sup
t→+∞

EMt(A) ≤ HL (N (0, IdRd)(A))2 . (3.18)

We have HL ↘ 1 for L→ +∞ because ψ(s) → 1 as s→∞. Since (3.18) holds for every L > 0
we can conclude that

lim sup
t→+∞

E1l√tA×√tA(φt(x), φt(y))
1

ψ(|φt(x)− φt(y)|)
≤ (N (0, IdRd)(A))2 . (3.19)

Plugging this into (3.13) and applying Fatou’s lemma yields

lim sup
t→+∞

E
(
λ(φt(B) ∩

√
tA)

)2
= lim sup

t→+∞

∫
1lB×B(x, y)EMt(A)µ(dxdy)

≤ µ(B ×B) (N (0, IdRd)(A))2 .
(3.20)
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The application of Fatou’s lemma is justified since 1/ψ is bounded (and therefore Mt(A) is
uniformly bounded) and µ(B ×B) <∞. Indeed,

µ(B ×B) =
∫

Rd×Rd

1lB(x)1lB(y)ψ(|x− y|)dxdy =
∫

Rd×Rd

1lB(x)1lB(z + x)ψ(|z|)dxdz <∞,

since λ(B) < ∞ and ψ(|z|) is integrable over the unit d-dimensional ball B(0, 1) and bounded
outside. Notice, that the condition λ1 > 0 is really needed at this point: clearly

∫
B(0,1)

ψ(|z|)dz =
2π

d
2

Γ(d2)

1∫
0

ψ(x)xd−1dx

and according to (2.6) for x → 0 we have ψ(x)xd−1 ∼ c
βL
x

(d−1)
βN
βL

−2. The condition that

λ1 = (d−1)βN/2−βL/2 > 0 clearly reads (d−1)βN
βL
−2 > −1 and thus implies that ψ(x)xd−1 is

integrable in a neighborhood of the origin. The above reasoning also implies that the condition
λ1 > 0 is necessary for ψ to be integrable over the unit d-dimensional ball B(0, 1).

As in the derivation of (3.20), we get for an arbitrary (not necessarily closed) Borel set A:

E
[
N (0, IdRd)(A)λ(φt(B))λ(φt(B) ∩

√
tA)

]
= N (0, IdRd)(A)E

∫
1lφt(B)×φt(B)(x, y)1l√tA(x)

1
ψ(|x− y|)

µ(dxdy)

= N (0, IdRd)(A)
∫

1lB×B(x, y)E
[
1l√tA(φt(x))

1
ψ(|φt(x)− φt(y)|)

]
µ(dxdy)

−→
t→+∞

(N (0, IdRd)(A))2µ(B ×B) . (3.21)

Combining (3.20), (3.21) and Theorem 4.1(ii), we obtain for a closed set A

0 ≤ lim sup
t→∞

E
[
λ(φt(B) ∩

√
tA)−N (0, IdRd)(A)λ(φt(B))

]2
= lim sup

t→∞

{
E

[
λ(φt(B) ∩

√
tA)

]2

+ E [N (0, IdRd)(A)λ(φt(B))]2 − 2E
[
λ(φt(B) ∩

√
tA)N (0, IdRd)(A)λ(φt(B))

] }
≤ 2(N (0, IdRd)(A))2µ(B ×B)− 2(N (0, IdRd)(A))2µ(B ×B) = 0 ,

which proves (3.7) for closed A. Taking complements, (3.7) follows also for open sets and –
like in the proof of the previous theorem – L2-convergence for a general Borel set follows from
the regularity of probability measures on a Euclidean space. Further (3.8) is a consequence of
(3.7) and the fact that λ(φt(B)) converges almost surely to a nonnegative random variable (by
Theorem 4.1(ii)). �
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4 Persistence of volume

We investigate the evolution of volume under the action of an IBF, that is we are interested in
the asymptotics of

Vt(A) :=
∫
Rd

1l{φt(A)}(x) λ(dx) = λ(φt(A)) ,

for A ∈ B(Rd). Note that Vt defines a random measure on the Borel subsets of Rd.
We aim at showing P(limt→∞ Vt(A) > 0) = 1 for a nonempty open set A under additional

conditions on the parameters of the IBF.

4.1 The statistical equilibrium

To put our result in the framework of existing results, in the following theorem we provide a
collection of facts concerning (Vt)t≥0. They can be found in works of Baxendale and Harris
[3], Baxendale [2], Le Jan [10], [11], Darling and Le Jan [12] and Kunita [9] (Lemma 4.3.1 and
Theorem 4.3.6), where also the proofs are available. The proofs can be found also in [5], Theorem
4.0.1 – with the exception of the of part (iv) (which is contained in [12]).

Theorem 4.1.

(i) The family {Vt : t ≥ 0} converges a.s. vaguely to a random measure V as t→ +∞, which
we call the forward statistical equilibrium.

(ii) Assume further that the top Lyapunov exponent λ1 of the flow is strictly positive. Then
for all bounded and measurable f, g : Rd → R

E
∫
Rd

f(x) V (dx) =
∫
Rd

f(x) λ(dx) and

E
∫

R2d

f(x)g(y) V ⊗ V (dxdy) =
∫

R2d

f(x)g(y)ψ(|x− y|) λ(dxdy) ,

where ψ(|x− y|) λ(dx) is the invariant measure for the two-point motion{
(φt(x), φt(y))T : t ≥ 0}, introduced in (2.5). In other words, the first moment of V is the

invariant measure for the one-point motion and the second moment of V is the invariant
measure for the two-point motion.
Furthermore, for arbitrary A ∈ B(Rd), λ(A) <∞, the process t 7→ Vt(A) is an L2-bounded
martingale and

lim
t→+∞

Vt(A) = V (A) P− almost surely and in L2.

(iii) The measure V is almost surely orthogonal to the Lebesgue measure, provided it is neither
zero nor Lebesgue measure itself (volume preserving case).

(iv) In case the top Lyapunov exponent is strictly negative, the measure V is almost surely
identically zero.
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Remark 4.2. The statistical equilibrium of a Brownian flow with stationary increments is
usually defined (see [2], [11], [12]) as the almost sure vague limit

µs := lim
t→+∞

µ ◦ φ−1
−t,0,

where µ is an invariant measure for the one point motion (modulo a multiplicative constant
the Lebesgue measure in case φ is an IBF). In order to define the above limit one considers the
canonical extension of the flow to double sided time, using the independence and the stationarity
of the increments. Time reversibility of an IBF implies that the processes λ ◦ φ−1

−t,0 and Vt have
the same joint distribution and therefore the statistical equilibrium µs has the same law as
the forward statistical equilibrium V . Observe that V and µs are independent, since they are
functions of the increments of φ on [0,∞) respectively (−∞, 0].

4.2 Persistence of volume

Let A be a nonempty bounded open subset of Rd. We will investigate, if the volume of the set
A persists almost surely under the action of the flow, that is if

P
(

lim
t→∞

λ(φt(A)) 6= 0
)

= 1 .

The statement is trivially true in the volume preserving case, characterized via βN
βL

= d+1
d−1 .

Darling and Le Jan showed in [12], that in case λ1 < 0, we have

P
(

lim
t→∞

λ(φt(A)) = 0
)

= 1.

For the rest of the section, we will assume that λ1 > 0. The idea of the proof of the persistence
of volume is to use a second moment method together with some geometric considerations about
the image of the set A under the action of the flow. In fact, for an arbitrary set A of positive
Lebesgue measure, we have by Theorem 4.1

λ(A) = E [V (A)] = E
[
V (A)1l{V (A) 6=0}

]
≤

√
E [V 2(A)] P(V (A) 6= 0)

and therefore

P(V (A) 6= 0) ≥ λ2(A)
1

E [V 2(A)]
= λ2(A)

1∫
A×A

ψ(|x− y|)dxdy
. (4.22)

Conditioning on Ft, one obtains that P(V (A) 6= 0) = 1 provided that

1
λ2(φt(A))

∫
φt(A)×φt(A)

ψ(|x− y|)dxdy −→
t→∞

1 .

Unfortunately, our knowledge about the shape of φt(A) is not detailed enough to prove this in
general. Let B(z, r) denote the closed ball of radius r and center z. Unless the flow preserves
Lebesgue measure, we have

1
λ2(B(z, r))

∫
B(z,r)×B(z,r)

ψ(|x− y|)dxdy r↓0−→ +∞ ,
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since ψ(s) → +∞ as s→ +0, so it will not help to replace φt(A) by a (possibly very small) ball
contained in φt(A) in case A is nonempty and open. Replacing φt(A) by long and thin tubes
contained in φt(A) will work however in some cases.
To prove the main theorem in this section, we first need the following two lemmas:

Lemma 4.3. Let h : R+ → R+ be a monotonically decreasing function such that there are
positive constants a,C > 0 and a number µ > −1 such that

lim
s→+∞

h(s) = 1 and h(s) ≤ Csµ for s ∈ (0, a) .

Let further Z := Z(L, δ) be the cylinder

Z(L, δ) := {x ∈ Rd : x1 ∈ [−L/2, L/2], |(0, x2, . . . , xd)T | ≤ δ}, L, δ > 0.

Then

(i) lim
L→+∞

1
2L

L∫
−L

h(|r|)dr = 1 and

(ii) 1
λ2(Z(2L,δ))

∫
Z(2L,δ)×Z(2L,δ)

h(|x− y|)dxdy ≤ 1
2L

L∫
−L

h(|r|)dr.

Remark 4.4. Clearly (i) and (ii) imply

1
λ2(Z(2L, δ))

∫
Z(2L,δ)×Z(2L,δ)

h(|x− y|)dxdy −→
L↑+∞

1 uniformly in δ , (4.23)

since h ≥ 1.
The claim in (4.23) is invariant with respect to rigid motions on Rd and therefore holds for

arbitrary cylinders with length 2L and radius δ.

Proof of Lemma 4.3:
(i) is obvious. To show (ii), observe that

1
λ2(Z(2L, δ))

∫
Z(2L,δ)×Z(2L,δ)

h(|x− y|)dxdy =
1

λ2(Z(2L, δ))

∫
Z(2L,δ)

∫
Z(2L,δ)−y

h(|x|)dxdy

≤ 1
λ(Z(2L, δ))

sup
y∈Z(2L,δ)

∫
Z(2L,δ)−y

h(|x|)dx =
1

λ(Z(2L, δ))

∫
Z(2L,δ)

h(|x|)dx

≤ 1
λ(Z(2L, δ))

∫
Z(2L,δ)

h(|x1|)dx =
1

2L

∫ L

−L
h(|r|)dr ,

where we used the monotonicity of h and the fact that Z(2L, δ) is centered at the origin. �
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Lemma 4.5. Let the function h be as in the previous lemma. Let A be a bounded subset of Rd,
diffeomorphic to an open ball and let L be some number strictly between 0 and the diameter of A.
Then there exist a positive integer n, l > 0 and n pairwise disjoint linear segments

(
γi

)
i=1,...,n

of length l and a number δ̄ > 0 such that:

(i) the length of γ(A) := γ := ∪ni=1γ
i is at least L

7 , that is nl ≥ L
7 ,

(ii) for all δ ≤ δ̄ the “piecewise cylinder” set γδ(A) := γδ := ∪ni=1γ
i
δ, where γiδ is the closed

cylinder with axis γi and radius δ is completely contained in A. Moreover, the cylinders
γiδ are disjoint.

(iii) the following holds for all δ ≤ δ̄:

1
λ2(γδ)

∫
γδ×γδ

h(|x− y|)dxdy ≤ 1
λ2(Z(nl, δ))

∫
Z(nl,δ)×Z(nl,δ)

h(|x− y|)dxdy .

Proof :
Since A is an open connected subset of Rd with diameter greater than L, we can find a piecewise
linear, connected curve

γ̃ :=
ñ⋃
i=1

γ̃i

with the properties:

(1.) The curve γ̃ is completely contained in A.

(2.) All linear segments γ̃i have the same length l > 0, which is a strictly positive number
depending on the shape of A.

(3.) The diameter of the curve γ̃ is L.

Let a, b ∈ γ̃ are such that |a− b| = L and Yab be the linear segment connecting a and b, i.e.

Yab = {x ∈ Rd : x = αa+ (1− α)b , α ∈ [0, 1]} .

In order to ease notation and without loss of generality we can assume that L = 2n · 3l for some
integer n. Consider a partition {xk : k = 0, . . . , 2n} of Yab by the points

xk = a+ k
3l
L

(b− a) = a+
k

2n
(b− a) ,

that is |xk+1 − xk| = |b−a|
2n = 3l.

Let Ek denote the d− 1-dimensional hyperplane containing xk and being orthogonal to Yab and
for all k = 1, . . . , 2n let Vk be the set of all points strictly between the planes Ek−1 and Ek.
For every k ∈ {1, . . . , 2n} there is at least one ik ∈ {1, . . . , ñ} such that the line segment γ̃ik is
contained in Vk. Further, all these indices are different since the Vk’s are disjoint.
Consider the disjoint union of linear segments γ ⊂ γ̃ given by

γ =
n⋃
k=1

γk with γk = γ̃i2k−1 ,
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that is γ contains exactly one linear piece of length l in every set Vk for odd indices k, i.e. one
linear segment in every second Vk.
We show that γ satisfies (i), (ii) and (iii).
The different pieces in γ are clearly disjoint. The length of γ is given by

Length(γ) = nl =
L

6l
l =

L

6
>
L

7
.

Now, the family
(
γk

)
k=1,...,n

is disjoint and contained in A and therefore we can find δ1 > 0 such
that for all δ < δ1

1. the family
(
γkδ

)
k=1,...,n

is disjoint,

2. γδ := ∪nk=1γ
k
δ is contained in A,

3. for all k ∈ {1, . . . , n} γkδ is contained in V2k−1.

It remains to show that (iii) holds. Intuitively this is clear, since if we piece together all cylinders
γkδ in order to obtain a tube of length nl and radius δ, then we either reduce the distances between
the points x and y if they lie in different pieces or |x− y| does not change if x and y lie in the
same piece. Since h is decreasing, (iii) follows. Those readers, who really want to see a detailed
rigorous proof of this, are referred to the proof of Lemma 4.1.2 in [5]. �

Now we have collected all prerequisites for proving the main theorem in this section:

Theorem 4.6. Let φ be an isotropic Brownian flow with

βN
βL

>
d

d− 1
.

The volume of every nonempty open set A persists with probability one under the action of the
flow, i.e.

P
(

lim
t→∞

λ (φt(A)) 6= 0
)

= 1.

Remark 4.7. The parameters βL and βN always fulfill the inequalities

1
3
≤ βN
βL

≤ d+ 1
d− 1

,

where βN (d−1) = βL(d+1) corresponds to the volume preserving case, for which the persistence
of the volume is trivial. The preceding theorem states that the volume persists also if we are
close to the volume preserving case, in the sense that

d

d− 1
<
βN
βL

≤ d+ 1
d− 1

.

Recall that the top Lyapunov exponent is strictly positive iff

1
d− 1

<
βN
βL

,

which is satisfied under the assumption of Theorem 4.6.
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Proof of Theorem 4.6:
Since every nonempty open set A contains an open ball, it is enough to prove that

P
(

lim
t→∞

λ (φt(B(0, r))) 6= 0
)

= 1 for every r > 0 .

Since βN
βL

> d
d−1 , we have ψ(s) ∼ c

βL
sµ for s ↓ 0 with µ > −1. Therefore there exists a

function h ≥ ψ which satisfies all assumptions in Lemma 4.3 (with the same µ). We abbreviate
Γs := γδ(φs(B(0, r))), and Zs := Z(nl, δ), where γδ and Z(nl, δ) are defined as in Lemma 4.5 in
case we replace A by φs(B(0, r)).

Using the independence of the increments of the flow, Lemmas 4.3 and 4.5, and (4.22), we
obtain:

P
(

lim
t→∞

λ (φ0,t(B(0, r))) 6= 0
∣∣ Fs) = P

(
lim
t→∞

λ (φs,t ◦ φ0,s(B(0, r))) 6= 0
∣∣ Fs)

= P
(

lim
t→∞

λ (φs,t(B)) 6= 0
)∣∣∣
B=φ0,s(B(0,r))

≥ P
(

lim
t→∞

λ (φs,t(B)) 6= 0
)∣∣∣
B=Zs

≥ λ2 (Zs)
[∫

Zs×Zs

ψ(|x− y|)dxdy
]−1

≥ λ2 (Zs)
[∫

Zs×Zs

h(|x− y|)dxdy
]−1

−→
s→∞

1,

where we used the fact that the diameter of φs(B(0, r)) converges to ∞ as s→∞ almost surely
(see [4]). Unconditioning, the assertion follows. �
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