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Abstract

We consider a gradient interface model on the lattice with interaction potential which is a non-
convex perturbation of a convex potential. Using a technique which decouples the neighbouring
vertices sites into even and odd vertices, we show for a class of non-convex potentials: the
uniqueness of ergodic component for V¢- Gibbs measures, the decay of covariances, the scaling
limit and the strict convexity of the surface tension.
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1 Introduction

Phase separation in R%*! can be described by effective interphase models. In this setting we ignore
overhangs and for = € Z?, we denote by ¢(x) € R the height of the interface above or below the site
x. Following a Gibbs formalism, the finite Gibbs distribution Z/K) on R%* of (0()) peza

1
v{(dg) = — exp {=BH{(9) } doa, (1)
Zy
with boundary condition ¢(x) = ¥ (x), if x € OA and normalizing constant Z}f is characterized by
the inverse temperature 3 > 0 and the Hamiltonian H}f on A, which we assume to be of gradient
type:

HY(0) =YY V(Vi(x)), (2)

i€l xeA

where
I={-d,—d+1,...,-1,1,2,....d}. (3)
and where we introduced for each = € Z% and each i € I, the discrete gradient

Vig(x) = ¢(z +e;) — ¢(x),
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that is, the interaction depends only on the differences of neighboring heights. We thus have a
massless model with a continuous symmetry! Our state space RZ* being unbounded, such models
are facing delocalization in lower dimensions d = 1,2, and no infinite Gibbs state exists in these
dimensions. Instead of looking at the Gibbs measures of the (¢(z)), ¢z, Funaki and Spohn proposed
to consider the distribution of the gradients (V;¢(z));cs ,ez¢ under v, the so-called gradient Gibbs
measure, which in view of the Hamiltonian (2), can also be given in terms of a Dobrushin-Landford-
Ruelle description.
Assuming strict convexity of V:

0<Ci < |74 < (9 <0 (4)

Funaki and Spohn showed in [14], the existence and uniqueness of ergodic gradient Gibbs measures
for every tilt u € R?, see also Sheffield [21]. Moreover, they also also proved that the corresponding
free energy, or surface tension, o € C'(R?) is strictly convex. Both results are essential for their
derivation of the hydrodynamical limit of the Ginzburg Landau model.

In fact under strict the convexity assumption (4) of V', much is known for the gradient field. At
large scales it behaves much like the harmonic crystal or gradient free fields which is a gaussian field
with quadratic V. In particular Naddaf and Spencer [20] showed that the rescaled gradient field
converges weakly as € \ 0 to a continuous homogeneous gaussian field, that is

Se(f) = € Y7 (Vid(w) — w) f(ex) — N(0,0%(f)) as e =0,  feCo(RY)

x€Z4

(see also Giacomin et al. [16] and Biskup and Spohn [4] for similar results). This scaling limit
theorem derived at standard scaling ¢¥/2 is far from trivial, since, as shown in Delmotte and Deuschel
[9], the gradient field has slowly decaying, non absolutely summable covariances, of the algebraic
order

C
+ [l =yl
The aim of this paper is to relax the strict convexity assumption (4). Our potential is of the form

V(Vig(r)) = Vo(Vio(x)) + g(Vig(x))

where Vp, g € C%(R) are such that V; satisfies (4) and

|covy, (Vig(x), Vi (y))]

—Cop < gy <0, 19" 12wy < o0, (6)

with Cy > C5. Our main result shows that if the inverse temperature (§ is sufficiently small, that is

if:
B, 4
L < —F 7
\/ Cl||g 21 m) < 2053 (7)

then the results known in the strick convex case hold. In particular we have uniqueness of the ergodic
component at any tilt u € RY, strict convexity of the surface tension, scaling limit theorem and decay
of covariances. As stated above, the hydrodynamical limit for the corresponding Ginzburg-Landau
model, should then essentially follow from these results.

Note that uniqueness of the ergodic measures is not true at any [ for this type of models:
Biskup and Kotecky give an example of non convex V which can be described as the mixture of two
gaussians with two different variances, where two ergodic gradient Gibbs measures coexists at u = 0
tilt, cf. Biskup and Kotecky [3] (see also Figure 4: Example (a) below). At this particular 8 = (.
one expects a non strictly convex free energy Biskup [2] (personal communication). The situation
at lower temperature (i.e. large (3) is again quite different: using renormalization group techniques,
Adams et al. show the strict convexity for small tilt u, cf. [1].



In a previous paper with S. Mueller, cf. [8], we have proved strict convexity of the surface tension
for moderate (3 in a regime similar to (5). The method used in [8], based on two scale decomposition
of the free field, gives less sharp estimates for the temperature, however it is more general and
could be applied to non bipartite graphs. In this paper we use a different technique, which relies
on the bipartite property of our model. We consider the distribution of the even gradient (that is
of ¢(y) — ¢(x) where both x,y are even): which is again a gradient field and show that under the
condition (5), that the resulting Hamiltonian is strictly convex. The main idea, similar to [8], is that
convexity can be gained via integration (see also Bracamp et al. [6] for previous use of the even/odd
representation). In fact we show more: the Hamiltonian associated to the even variables admits an
random walk representation, cf. Helffer and Sjostrand [17] or Deuschel [11], which is the key tool
in deriving covariance estimates such as (7) and scaling limit theorems. The other ingredient is the
fact, that given the even gradients, the conditional law of the odd variables is simply a product law.
Of course this is a special feature of our bipartite model, in particular it would be quite challanging
to iterate the procedure, a scheme which could possibly lower the temperature towards the transition
B.. Note that iterating the scheme is an interesting open problem.

The rest of the paper is presented as follows: in Section 1 we define the model and recall the
definition of gradient Gibbs measures. Section two presents the odd/even characterization of the
gradient field, in particular our main result, Theorem 10, shows that the random walk representation
holds for the even sites under the condition (5). Section 2 also presents a few examples, in particular
we show that our criteria gets very close to the Biskup-Kotecky transition, cf. example 2.3.2. In
section 3, we give a proof of the uniqueness of the ergodic component. In view of the product law for
conditional distribution of the odd sites given the even gradient, this follows immediately from the
uniqueness of the even gradient ergodic measures. Here we adapt the dynamical coupling argument
of [14] to our situation. Section 4 deals with the decay of covariances, the proof is based on the
random walk representation for the even sites which allows us to use the result of [9]. Section 5
shows the scaling theorem, here again we focus on the even variables and apply the random walk
representation idea of [16]. Finally section 6 proves the strict convexity of the surface tension, or
free energy, which follows from the convexity of the Hamiltonian for the even gradient. We also
show a few useful equalities dealing with the derivative of o, since they play an important role for
the hydrodynamic limits of the Ginzburg Landau model.

2 General Definitions and Notations

2.1 The Hamiltonian
For all z,y € Z%, let

d
lz —yll= > e —wil, (8)
i=1

Let
I={-d,—d+1,...,-1,1,2,... .d}. 9)
For all i € I, we define e; in Z% by
(ei)j = 045, foralli=—-1,-2,...,—dand all j =1,2,...,d (10)
and

e; = —e_;, foralli=—-1,-2,...,—d. (11)



For each z € Z% and all i € I, we denote
Vig(z) = ¢(z + €;) — ¢(x). (12)
Let A be a finite set in Z? with boundary
ON:={z ¢ A, ||z —y|[ =1 for some y € A} (13)

and with given boundary condition % such that ¢(z) = ¢(x) for x € 9A. We consider a gradient
interface model with Hamiltonian

HY @) =D > UlVis(a) =Y > [ViVie(@)) + g:(Vie(x))], (14)
el J-Eeezlx\uaA el z+ef€€//\\U8A

where ¢p(x 4+ ¢;) = (x4 ¢;), if v € A and = + ¢; € OA.
For all i € I, U; € C%(R) are functions with quadratic growth at infinity:

Uitn) = Alnl* =B, n€R (15)
for some A > 0, B € R. We assume that for all i € I, V;, g; € C?(R) satisfy the following conditions:
01 < Vi” < 02, where 0 < 01 < 02 (16)

and
—Co < g;/ < 0, where C(] > Cl. (17)

Remark 1 Note that we can extend the results to the case where we have a perturbation with
compact support. More precisely, assume that U; = Y; + h;, where U; satisfies (15), D1 <Y/ < Dy
and —Dgp < h! <0 on [a,b] and 0 < h < D3 on R\ [a,b], with a,b € R and h}(a) = h}(b) = 0. Set

9i(s) = hi() 1 seiappy + [i(b) + Bi(D)(s — )] 1isspy + [hila) + hi(a)(s — a)] 1sca) (18)
and
VZ(S) = Y;(S) + hi(s)l{sgé[a,b}} — [hz(b) + h;(b)(s - b)] 1{s>b} — [hz(a) + h;(a)(s — a)] 1{s<a}. (19)

Thus, we have V;,g; € C%*(R), with =Dy < h!/(s) = g/(s) < 0 for s € [a,b] and g¢/(s) = 0 for
s € R\ [a,b] and Dy < V/'(s) = Y/ (s) + h{(s)1{s¢[ap)y < D2+ D3. Note that this procedure can
also be extended to the case where h! changes sign more than once.

2.2 ¢-Gibbs Measures

Let 8 > 0. For a finite region A C Z%, the Gibbs measure for the field of height variables ¢ € RA
over A is defined by

vl(dg) = ZLK’ exp {~BHY(6)} don, (20)
with boundary condition t and
Zy = /RA exp{—ﬁHK’(Qﬁ)} dgn, (21)
where
dgn = [] do(x) (22)
TzEA

is the Lebesgue measure over RY. For A € Z¢, we shall denote by F4 the o-field genereated of RZ*
generated by {¢(x): x € A}.



Definition 2 The probability measure v € P(RZd) is called a Gibbs measure for the ¢-field (¢-Gibbs
measure for short), if its conditional probability of Fae satisfies the DLR equation

v(-|Fae)@) = v (1), v—ae 1,
for every A C Z¢.

It is known that the ¢-Gibbs measures exist when the dimension d > 3, but not for d = 1,2,
where the field "delocalizes” as A  Z4, c.f. [13]. An infinite volume limit (thermodynamic limit)
for V}f and A ' Z¢ exists only when d > 3.

2.3 V¢—Gibbs Measures
2.3.1 Notation on Z¢

Let
Bya = {b = (zp,0) | Ty, yp € Z%, || — || = 1,b directed from z; to yb}, (23)
Bli =By N (AxA), A:=AU0IA, (24)
0% i= {o = ) | 20 € 24\ A € B ow — | =1} (25)

and
Béd = {b = (xp,yp) € Bya | zp € Aor yp € A}. (26)

The height variables ¢ = {¢(z);z € Z?} on Z? automatically determins a field of height dif-
ferences Vo = {V(b);b € Bya}. One can therefore consider the distribution p of Vi)-field under
the ¢-Gibbs measure p. We shall call p the Vi-Gibbs measure. in fact, it is possible to define the
V-Gibbs measures directly by means of the DLR equations and, in this sence, V-Gibbs measures
exist for all dimensions d > 1.

A sequence of bonds C = {b(l),b@), . 7b(”)} is called a chain connecting y and z, z,y € Z¢,
if yp, = ¥, 2p) = Yperny for 1 < i < n —1 and ) = x. The chain is called a closed loop if
Ty = Ypy- A plaquette is a closed loop A = {60 5@ p63) M} such that {zpw,1 = 1,...,4}
consists of 4 different points.

The field n = {n(b)} € RBz¢ is said to satisfy the plaquette condition if

n(b) = —n(—b) for all b € Bya and Z n(b) = 0 for all plaquettes in Z%, (27)
be A

where —b denotes the reversed bond of b. Let y be the set of all n € RPz¢ which satisfy the plaquette
condition and let L2,7 > 0 be the set of all n € RBz¢ such that

7 = Y )Pl < oo (28)
bGBZd

We denote x, = x N L? equipped with the norm | - |,.. For ¢ = (¢(2)),eze and b € Bya, we define
the height differences

1 (b) == Vo(b) = d(y) — d(x). (29)



Then V¢ = {Vé(b)} satisfies the plaquette condition. Conversely, the heights ¢™¢(©) ¢ RZ" can be
constructed from height differences 1 and the height variable ¢(0) at x = 0 as

gm0 (z) := Y~ n(b) + ¢(0), (30)

bECo,m

where Cy . is an arbitrary chain connecting 0 and . Note that ¢"?(%) is well-defined if n = {1(b)} € x.

2.3.2 Definition of V¢-Gibbs measures

We next define the finite volume V¢-Gibbs measures. For every £ € x and A C 7% the space of all
possible configurations of height differences on B/Z‘d for given boundary condition £ is defined as

Xgé\d,g ={n= (n(b))begé\d;n VE € X}, (31)

where 1V € € y is determined by (1 V €)(b) = 5(b) for b € BY, and = £(b) for b ¢ BA,. The finite
volume V¢-Gibbs measure in A (or more precisely, in B[Z\d) with boundary condition £ is defined by

1
pdn) = Z—exp =3 3 D Uiln()) p dnng € Plxg, o); (32)
AL bGBé\d el

where dnj ¢ denotes a uniform measure on the affine space xza ¢ and Zj ¢ is the normalization
zd’

constant. Let P(y) be the set of all probability measures on x and let Py(x) be those p € P(x)
satisfying E*[|n(b)|?] < oo for each b € Bya.

For every £ € x and a € R, let 1) = ¢S be defined by (30) and consider the measure Z/X}. Then

uf\ is the image measure of I/K under the map

{8(2)}een — {n(b) == V(¢ V¥)(b)}, b€ By (33)
Note that the image measure is determined only by & and is independent of the choice of a.

Definition 3 The probability measure p € P(x) is called a Gibbs measure for the height differences
(V ¢-Gibbs measure for short), if it satisfies the DLR equation

(- |}—Bzd\B§d)(§) = ,Ui('), uw—a.e &,
for every A C Z%, where Fu ABE stands for the o-field of x generated by {n(b);b € Bya \B%d},
Z 7d

We will define by

G(H) :={p € Po(x) : p shift invariantV¢ — Gibbs measure such that
1§ has Hamiltonian H&}. (34)

3 Even/Odd Representation

3.1 Notation on the Even Subset of Z<

As Z% is a bipartite graph, we will label the vertices of Z¢ as even and odd vertices, such that every
even vertex has only odd nearest neighbor vertices and vice-versa. Let

d
5d = {a:(al,ag,...,ad)EZd | ZaiZQPJ)EZ}y (35)
=1



Figure 1: The bonds of 0 in £2

d

0= {a:(al,ag,...,ad)EZd\ Zai:2p+1,p€Z}, (36)
=1

EL=ETNA, Of:=0%NA and 0% :=0"NA. (37)

We will next define the bonds in £% in a similar fashion to the definitions for bonds on Z<. For all
z,y € 7%, let

Bga = {b = (2, 90) | @, 9 € E, |l — yol| = 2,b directed from a; to yb}’ (38)

Bfi = Bea N (A x A), OBf := {b = (b, 50) | wp € ET\ Ay € ER, Il — | = 2} (39)

and

oEL = {y e & |y =1y, for some b e OBé‘d} . (40)

An even plaquette is a closed loop A% = {b() b3 . bM} where n € {3,4}, such that
{zp@,1 =1,...,n} consists of n different points. The field n = {n(b)} € RBe¢ is said to satisfy the
even plaquette condition if

n(b) = —n(=0b) for all b € Bea and Z n(b) = 0 for all even plaquettes in £%. (41)
be A€

Let x¢ be the set of all n € RBed which satisfy the even plaquette condition. For each b € Bea we
define the even height differences

e (b) := VEe(b) = d(ys) — p(a). (42)

The heights ¢n5,¢>(0) can be constructed from the height differences ¢ and the height variable
#(0) at a =0 as

o™ 2O () = 3 5 (b) + ¢(0), (43)

beC§ ,

where a € £% and C{i , is an arbitrary path in €% connecting 0 and a. Note that #?0)(a) is well-
defined if n = {n®(b)} € x*. We also define x¢ similarly as we define x,. As on Z%, let P(x%) be the



set of all probability measures on x¢ and let Py (x¢) be those p € P(x%) satisfying E*[|n (b)[%] < oo
for each b € Bga. We will define by

GE(H) := {p € Py(x°) : p shift invariant V¢ — Gibbs measure such that
for all A € Z4, ,ugd has Hamiltonian Héd}. (44)

3.2 Restriction of a V¢-Gibbs measure to £¢

For simplicity of calculations, we will assume for the remainder of the paper that for all i € I,
U; = U_; and that U; are symmetric, though this condition is not necessary. Note that throught
the paper we will use the notation

Vig(x) = ¢p(x + e;) — o(x). (45)
Let
9($) = (¢(x + 61), s ,¢(J} + ed)a ¢($ - 61), s ,Cb(.l‘ - ed))' (46)
Lemma 4 Let u € G(H), where H has the form in (14). Then p|ga € GE(H®), where
HE(0) = Y Falb(@)), (47)
xEO%
where
FL(0(z)) = — log / B Ticr UlTi6) 5 (). (48)
R
ProoOF. Let
Fpai=0 ((b(m)),:c c Zd) and Fpa =0 (qb(x),m c 5d) (49)
and
T, =0 (n(b),b € Bya) and Fp_, := 0 (15 (b),b € Bea) . (50)

Since u € G(H), for all A finite sets in Z¢ and for all A € FB,, we have

HAVEg 3O = pae(d) = 5— [0 ] asw) T] 66 o). 61

Z
At €A yEZA\A

where Z, ¢ is the normalizing constant. Let A¢ be a finite set in £%. We will construct from A¢ a
finite set A € Z% as follows: if z € A, then z+e¢; € A for alli € I, ANE? = A and such that A and
A¢ have the same boundary conditions, that is only even vertices are boundary points (see Figures
2 and 3). Then, since p is a V¢-Gibbs measure and since for every A € Z4, ’7:55 \Bie C Fg La\BA,

it follows that for every A € Fp_,
M(A\fsgd\sﬁg)(ﬁ) = E, <E“(1A|‘7:Bzd\32d)|}—85d\8/\5> (&) = E, (ﬂA,é(A)LFBEd\BAg) €3]

- E, / @) [T do@) J] 06w) — ) | Fons.e | ©: (52)

TEA yEZd\A



where Fg_\p.. = 0 (11(b),b € Bea \ Be). In particular, from (52), by integrating out the odd points
and due to the boundary conditions on A, we have for every A € fBAd
&

1(AlFp \B5e ) (E)
1 -2 FM¢(ater),...p(z—eq))
= 5[ e T 1 CII D1 detete) I 000w &) (53)
AL /A i€l eod. yeEd\AE
m+ei65[d\
Therefore p|ga satisfies the DLR equations, so the proof is finished. O

Remark 5 Note that for any constant Cyy = (C,C,...,C) € R??, we have
Fy(0(2)) = Fo(0(x) + Cag). (54)
In particular, this means that for any i €
F,(0(x)) = Fp(p(x+e1) —p(z+e€),...,0(x —eq) — p(z + e;)). (55)

Therefore we are still dealing with a gradient system, even though this is no longer a two-body
gradient system.

Remark 6 Note that the new Hamiltonian H® depends on through the functions F.

Lemma 7 The conditional law of (¢(x)),coa given Fga is just the product law with density at
x e O

pa(do ()| FB,,) = Z(;( exp( B ;U (z +ei) ¢>(w))> do(x) (56)
with
Z(0(x)) = /eXp< BZ;U (z+e) qb(:r))) do(z). (57)
ic
PRroOF. First note that for A = z € 0%, (52) becomes
(-1 Fp,0087,)(6) = 1. (58)
Figure 2: The graph of A® Figure 3: The graph of A



Note now that because Fp_, C mxeodfgzd\lg;d7 we can reason as in (52) to get
(1 P8, )(€) = @pcoin( | Fi 052, (6) = @pcouns. (59)
The statement of the lemma follows now from (59). O

As an immediate consequence of Lemma 7 and of Remark 5, we have

Corollary 8 The conditional law of (V$(x)),coa given Fea is just the product law with density at
x e O

o (dd(z + er) — d(2)|Fs,,)

1
= Zvoe) ™ ( ﬁ;U oz +ex) — Pz + 62‘)))) dg(x), (60)
which depends only on the even gradients V¢, where we defined
Z(V0(x)) = Z(d(x +e1) = bz +ex), ..., 6z — eq) — ¢z + ex)), (61)
O

3.3 Random Walk Representation
3.3.1 Definition and Theorems

Definition 9 Let € O%. We say that F, satisfies the random walk representation, if there
exists c1,co > 0 such that for alli,j € 1

DWE, = — Z DY E, and ¢y < —D"F, < ¢y fori # j, (62)
it
where for i € I, we denoted by

. 0
‘DZF(yla"'7yd7y*17"°7y—d) = ay'F(ylw"yduy*h"'7y—d)' (63)
K]

The main result of this section is:

Theorem 10 (Random Walk Representation) For alli € I, let U; € C?*(R) be such that they satisfy
(15). We also assume that, for alli € I, V;, g; € C*(R) satisfy (16) and (17). Then, if

ﬁ 1" Cy
= sup||g; < 64
e (64)

there exists c1,co > 0 such that for all x € (’)j‘—{, F, satisfies the random walk representation.

Lemma 11 Suppose x € O%. Then for all j € I such that v +e;j € Ej‘f, we have

DY Fy( - Y DR, (65)
1€1,i#]

DI Fy( — ) DYE( (66)
i€l,i#]

and for all i € 1,i # j such that x + e; € 5/‘{
DY Fy(0(x)) = =B covy, (Ui (Vig(x)), Ui (V;6(x))) , (67)

where fi, is given by (56) and E,, and cov,, are the expectation, respectively the covariance, with
respect to the measure fiy.

10



PRrOOF. For all j € I, from (55) we have

J = 0 ; —eq) — oz + e
DF:B(Q(%‘)) - mFx(¢($+€l)_¢(x+ej)7"'v¢(x d) ¢( + g))
= — Y D'F(d@+e)—d@+e),. .. .o —e) —dlate))  (68)
i€l it
and for i # j
: -2 r+er)— oz +e x—eq) —o(r+e;
DEB() =SS Fel6(e+ ) = 9l ), 0(a = ea) = 6(a +¢5)
= D'F(¢(x +e1) = ¢z +¢j),.... bz — eq) — bz + ). (69)
It follows now from (68) and (69) that
DIF(0(z)) = = Y D'Fy(0(x)). (70)

i€l i#j
By simple differentiation in F}, we have for for all i,j € 1,7 # j
DY Fy(0(x)) = —B%covy, (U (Vid(2)), Uj(V;6(x))) - (71)
(66) now follows immediately from (70) and (71). O

The following lemma is elementary to prove by using Taylor expansion and will be needed for
the proof of Theorem 10:

Lemma 12 (Representation of Covariances)
Let k € N. For all functions F,G € C*(R*;R) and for all measures i € P(R¥), we have

conu(F.G) = 5 [[1F6) = FW)IGO) - 60) ndo)u(av)

- % // (6 =) - DF(6,9)] [(¢ — ¥) - DG(¢, %)) p( dgp)p( da))
(72)

where we denoted by

1 1
DF () = /0 DF (4 + t(6 — ) dt, DG(, ) == /O DG +sé—v)ds  (3)
and by

DF($) := (DlF(¢), . ,DkF(gb)) . (74)

Proof of Theorem 10 It follows from Lemma 11 that, in order to be able to use the random
walk representation, all we need is to estimate the covariances:

covy, (UH(Vig(x)), UH(Vi6())) -

We have U; = V; + g; and U; = V; + g;, where C; <V, Vj” < (3. Then using Lemma 12 for V/ and
V], we see that

0 < Cfvar ,, (¢(x)) < Creovy, (¢(2), Vi (V;6())) < covy, (V] (Vid(x)), V] (V;é()))
< Cheovy, (6(2), Vi(Vié(x))).  (75)

11



Since g;', g7 < 0 and since we have

covy,, (9i(Vid(2)), 95 (V(2))) = covy, (—gi(Vid(x)), —g5(V;6(x))), (76)
we can also estimate cov,, (g;(Vip(2)), g5(V;¢(z))) using Lemma 12 to get
0 < covy, (6;(Vid(x)), g5 (V(x) < Civar 4, (¢(x)). (77)

We now have to find an upper bound for var ,, (¢(z)). From (75), it is sufficient to find an upper
bound for covy, (¢(z), V/(V;¢(x)). Note now that from (75), we have

1
covy, (¢(2), V] (Vio(z) < 240, OV (V/ (Vio(x), Y Vi (Vig(x ) (78)
1€l
Using integration by parts, we have
/ ! 1 1
€OV, (‘G(Vj¢($))72%(vi¢(w)> = P (Vj'(V0(2)))
el

—covy, (Vj’(ngb(a:)),Zgé(Vieb(x))) . (79)

iel

It now remains to estimate covy, (V/(Vié(2)), g;(V;¢(z)). By using Lemma 12, we get that
0 < —cov,,, (V] (V;6(2)), Y gi(Vid(@)) < 2dCocov,, (¢(x), V] (V(x))), (80)

which has the wrong sign. But by using the Cauchy-Schwarz inequality and (75), we have

Vvar , (V/(Vio(@)y var 1, (65(V6(2))
< /Cacovy, (6(2), V] (Vi) [var 1, (g}(V50()). (81)

—cov,,, (V (Vi(2)), 6}(V;6(x))

IN

A

Then we estimate var ,, (g}(ngZ)(a:)) by applying Lemma 12 to get

var , (9(V56(x))
1 2
= 5 [ 6@ - vy [ |6 i) + 6@~ v@) — o(e + 1) dt} o (A ()
()~ d(a-+e;) 2
-5 // [ / g (s) ds] e A8)a(00) < 516712 sy (2)
(x)— q5$+e])
From (78), (79) and (82), we now get the upper bound
o (000 V(Y300 £ 502 L sup 13 ayyfoov, (6a). VT,0(e). (89

from which we get

2
N(es Lo , C
covi, (6(2), V/ (V;6(2))) < (2 Ve sup gl + \/QCQSupHg 121y + dﬂg). (34

12



Also, by using (75), we get from (84)

2
1 Vs ” Co p Co 9
var Mz (QZ)(.’E)) — Cl (2\/501 S;é}) Hgl HLl(R) 202 Sup Hg H dﬂc g ( )

The upper bound now follows from (75), (77), (84) and (85). To find a lower bound, note now that
from (75) we get

1 / !
covy,, (6(x), Vi (V;o(x))) > 340, OV (Vj(VW(fC)),Z Vi (Vicfb(x))) : (86)
el
By using (79) and (80), we get
C
0y, (§(2), V(V36(@)) = 555 (87)
From (75), (77) and (82), we get
COVy, (U»'(V<b( ); '-(V'cb(w)))
> \foon, (600). V(¥ 00 | O feowy (00, V/(T50(0) ~ VEaTsupll! s
(88)
The lower bound now follows from (87) and (88). O
Remark 13 Note that condition (64) can be replaced by other conditions. For example
(a)
1 C )3/2
(B3 52161? gi 2wy < W (89)

We obtain this condition by using the Cauchy-Schwartz inequality and (75)
[cov (Vi (Vid(2)), g (V6(x))|
< v, (V (Vio( anr .(9}(V9())
< /Cacovy, (6(2), V/ (Vi) [var 1, (g}(V0()). (90)
Then we estimate var ,, (gj(qub( x)) by applying Lemma 12 and Jensen’s inequality to get
var , (95(V;6(2))
2

= 5 [[ow s [ [ W+t~ vt~ oo + ) ] (A0 (00)

1 2
<! // z) — p(x) / [ ((z) + () — (@) — bz + ;)] At 1y, (D), ()
0

)¢(x+31) I 2
_ // 2) — ¥(x)) / (97 ()] ds p, (dB)py, (d0)
P(z)—

P(z+e;j)
< 5l ey [ 1660) — @) . (46, (a0)
< Sllo 1 \/ [ 6@ — 6@ . (40, (a0)
_ %HQ;IH%Q(R) Vaer(qb( ))<H HLQ(R \/COVHI((p(J:)Q)’C,‘l/Z(VZQS(x)) (91)

13



The rest of the argument to obtain the bound in (64) follows the same steps as in proof of
Theorem 10.

(b) Another possible condition is

s sz < %W (92)
obtained by using the Cauchy-Schwarz inequality, (75) and Lemma 14 below, to get
|covy, (Vi (Vig(x)), 9;(V6(x))]
< yfvar  (V/(Vio(@)Jvar 1, (65(V ()
< <c2>3/4<2cw>1/4w:ovumw(x», V/(Vi6(w))) sup (61)?l|s (93)

Lemma 14 If h € LY(R), then we have

B, (h)] < \/2dBCs||h|| 1 (w)- (94)

Proor. Using integration by parts and Cauchy-Schwartz, we have

B = (B (5 ([ 0e14:) )| =B (200 ([ rieraz) )

EY2 ()2 E? ((/: h(z) dz>2> —-E/*(H)E.? </y h(z) dz>2

— — 0o
< V2dBCs|h]| 1 (r)- (95)

Note that we also used property (15) and integration by parts in the above formula. ]

IN

Remark 15 As we mentioned before, we can adapt all the reasoning in Section 3.2 and Section 3.3
to the case where U; do not fullfil the assumption that for all ¢+ € I, U; = U_; and U; symmetric. In
this more general case,

Fu(0(z)) = —log / B L i1 Ui(VOE) U (~Vo@)] 4 ). (96)
R

Remark 16 Note that if we consider the case where for all ¢ € I, U; are strictly convex such that
Cy < U/ < Oy, in view of (75), (87) and (83) applied to the case with g =0

Ct : : C3
< '(V; (V. < .
2d/802 — COVNI (U’L (vl¢(x))7 U] (v]¢($))) = Qdﬂ01 (97)
3.3.2 Examples
(a) Let p€ (0,1) and 0 < ko < kq. Let
52 52
U(s) = —log <pe_k17 + (1 —p)e_]”T) .
Set a = ]]2—2 Take p < a~! in order that the potential U is non-convex. If
1
0 < 3/4 1— 1/4 -1 1/4 < - 98

14



Figure 4: Example (a)

then (92) is satisfied and the RW representation holds. If 5 = 1 and k1 > ko, the above
e . ~1/4 .

condition is equivalent to p < pg, where pg = mg)sw. This is close to, for d = 2, the

critical point p., such that lf—;c = a~ /4, of [3], where uniqueness of ergodic states is violated

for this example of potential U.

The computations follow. Take

and
" o p(1 —p)(k1 — k2)252
g (S) - 2 2"
p2€—(k1—k‘2)7 +2p(1 —p)+ (1 — p)2€(/€1—k2)7
We have
ki1 —k
ky <V"(s) < pky + (1 - p)ky and — p(%p” <g¢"(s) <0,

where the lower bound inequality for ¢”(s) follows from the fact that ¢”(s) attains its minimum

for s > 1/W2]€2. Then

2 2
19 Ol < 7250 k4 o (250 ) ).

By using condition (92), the RW representation holds.

U(s) = s> +a —log(s> +a), where 0 <a < 1. Let0 < f< m. Then the RW
representation holds.

Then, using the notation from Remark 1, take Y(s) = s and h(s) = —log(s® + a). We have
Y"(s) =2, so Dy = Dy = 2; also h/'(s) = Q(S‘fTa)Q, with —2 < 1(s) < 0 for s € [—/a,/d]
and 0 < h"(s) < 52 otherwise. Then Cp = 2, Cy = 2,05 = 2+ 52— and ||g"(s)|| 1 (r) =
By using condition (64), the RW representation holds.

2
Vo

15



(c) Let 0 <a<1and

U(s) = %—Hog(s—i—a) if s>0
2—I—%—i—log(a—s) it s<0.

Then

1

1 ; i
R B e if s>0 e N 1_W if s>0
U(S)—{SJF%JFL it s<o and U(s)= l— 2 if s<0.

s—a

U is non-convex on the interval a — 1 < s < 1 — a and achieves its unique minimum on

—co<s<a—1. Let 0<+/B< ﬁ. Then the RW representation holds.

Then take V(s) = s?/2 and g(s) = log(s+a) if s > 0 and g(s) = 2s/a+log(a—s) if s < 0. We
have V"(s) = 1, s0 C; = Cy = 1; also ¢"(s) = —1/(s + a)? if s > 0 and ¢"(s) = —1/(s — a)?
for s < 0; also ||g" (s)|[L1(r) = 2 By using condition (64), the RW representation holds.

Note that by using (89), the condition on 3 becomes 0 < /3 < 30 and by using (92), it

2v/d
1/3
< _al®
becomes 0 < /3 < ENGTE

16



4  Uniqueness of ergodic component

In this section, we extend to a class of non-convex potentials, the uniqueness of ergodic component
result, proved for strictly convex potentials in [14].

We denote by S the class of all shift invariant u € P5(x) which are stationary and by ext S those
p € S which are ergodic with respect to shifts. For each v € R?, we denote by (ext S )z the family
of all u € ext S such that E, (n(eq)) = ta, @ = 1,2...d, where we denoted by e, the bond (eq,0).
We will prove that

Theorem 17 Let U; = V;+g;, where U; satisfy (15) and V; and g; satisfy (16), (17) and (64). Then
for everyu € RY, there exists at most one ergodic p € G(H) such that E,, (ni(eq)) = tq,a = 1,2...d.

The proof will be done in 2 steps: first, we will prove the uniqueness of ergodic component on £¢
and then we will use this result combined with the properties of the V¢-Gibbs measure to extend
the result to pu.

4.1 Uniqueness of ergodic component for the even

Let F' € C?(R?%;R) be such that for all (ay,as,...,aq,a_1a_g) € R? and for all ¢ € R

F(ay,...,aq,a-1,...a_q) = F(a1 +¢,...,aqg+c,a_1+¢,...,a_q+c). (99)
Note that from property (99), by the same reasoning as in Lemma 11 we have that for all j € I, (65)
and (66) hold. Assume that there exist c_ > 0 and ¢4 > 0 such that for all (aq, as,...,aq,a_1a_4) €
Rd
c_ < DY F(ay,ag,..., a4, a_1a_q) < cy. (100)
Let
L= {F € C*(R*:R) | F satisfies (99) and (100)}. (101)

The proofs in this section follow very closely the arguments from [14]. To make the current paper
self-contained, we will sketch proofs for all the theorems in the section. There are three main
ingredients necessary in proving uniqueness of ergodic component for a Hamiltonian satisfying (99)
and (100). These steps are: the study of the dynamics of the height variables, which dynamics are
generated by SDE, a coupling argument and the use of the ergodicity.

4.1.1 Dynamics
Suppose the dynamics of the even height variables ¢, = {¢(a)} € REY are generated by the SDE

dora) = — % aﬁﬁﬂwww+q%~q@@+64»®+WQMWWL (102)

:ve(’)%,\:v—a\:l

where for all z € Oji—\, F, € £ and {W;(a),a € £} is a family of independent Brownian motions.
Note that in (102), for each = € O% such that |z — a| = 1, there exists ¢ € I such that a = x + e;.

The dynamics for the even height differences n° = {1 (b)} € Bga are determined by the SDE
0
dng(b) = dou(we) — dou(ye) = — Z mwat(ﬂ? +e1),. ., 0r(x+e_q))dt

a:e(’)%,\a:—zrb|:1

0
> 3¢(yb)F’”(¢t(x+€1)a---,</5>t(:c+e,d))dt

ze04 |z—yp|=1

+V2d[Wy (1) — Wilws)], (103)

17



where b = (xp, yp) € Bé\d.
Lemma 18 (a) The solution of (103) satisfies nf € x for all t > 0.
(b) If ¢y is a solution of (102), then 1t := VEy is a solution of (1083).

(c) If nf is a solution of (103) and we define ¢¢(0) through (102) for x = 0 and V¢ ¢:(b) = n¢ (b),
with ¢o(0) € R, then ¢ = ¢ 2O) s ¢ solution of (102).

(d) For eachn® € x&,r > 0 the SDE (103) has a unique x-valued continuous solution 1 starting
at 5 = nt.
PRrOOF. The proofs for (a), (b) and (c) are immediate, so we will concentrate on the proof for (d).

For every 6;(x) and ;(z), by expanding D’ F,(0;(z)) in Taylor series around 6;(x) to get

1
DIF,(0(x)) — D’ Fy(0;(2)) = Z i (x + €k)/0 DPRE, (0,(x) + y (6.(z) — 04(x))) dy.  (104)
kel

By using now the fact that F, € F, we obtain global Lipschitz continuity in x¢ of the drift term of
the SDE in (103), from which existence and uniqueness of the solution in (103) follows. O

First, we will prove

Lemma 19 Let ¢; and ¢; be two solutions for (102) and set ¢;(a) = ¢i(a) — ¢¢(a), where a € EL.
Then for every A € Z%, we have

%Z(qgt(a))Z = -2 > |:DjFx(¢)t(«T+€1),...,(bt(l‘—i—e_d))

acéf :1:6(’)% {el]

otejecd}
—DIF, (¢s(x+e1),...,b¢(x + e_d))] b (x + e;), (105)
where
S Gy <o X [VEa0)] e Y Il [V (106)
ac&d beBY, bedByl,

PROOF. From (102), we have

%((Ma))? - eod%:— =1 [%@)Fw((bt(m ter) 0z +e-a))
0 - - -
_—a¢(a)Fx(¢t($+€1),...,(bt(l‘-l-e_d)) oi(a). (107)

By summing now over all a € £{ in (107), we get (105). For simplicity of notation, we will denote
as before by 0;(2) := (¢u(z + €1), ..., de(z + e_q)) and by b(z) := (de(x +e1),... s or(T + e_q)). To
find an upper bound for S;, we expand now D7 F,(0;(x)) in Taylor series around 6;(z) to get

~ 1 . — —
DIF,(0(x)) — D' Fp(0y(2) = el + ex) /0 DI*E, (04(z) +y (0(x) — Oy(2))) dy.  (108)
kel

18



By using now (100), (108) and the equality D*JF, = D?*F, in (105), we obtain

IO

aESX

~ ~ 1 . — —
= 2Y Y Yhbradtete) [ DEF (Ga) +1 (6a) = ) dy

ceod el kel
A :L‘+€]'€£X}

~2
=2 Z Z Z [¢t (z +ej) —¢t(93+€k)¢t(x+ej)]
ze04 {iel, kel k#j
A z+5j€£/(€}

1
/0 DI*E, (yn(x) + (1 — y)de(x)) dy

2 b
=Y Y [aere-dtra)] [ DR o+ -y

v€0d  LIkELiFh
z+ej,z+ek€5/‘{}

2y Y Y [Fete) - dlete)dile+e)

ze0d Ul kel
a:+ej GEA} z+6j EBEA}

1
| DE (o) + (1= (@)
< Y [VER0)] e X Il [7Eh) .

A A
beBh, beoBh,

4.1.2 Coupling Argument
We will call

N ={f5| f=ei+ej, wherei,jel,j+#—ii<j}
the set of neighbours of 0 in £%. Let
Ny ={f| fiy=ei+ej, whereijel,j#—ii<jj>1}

Let us define now a generator set in £%:

6?261—1-62,...,6371:€d71+€d,6§:€d—€1 if d even
and
ef =ei+en,.... 65 | =eq1+eq s =es+e if dodd
For each u € R?, let @, v = 1,2, ..., d be defined as follows:
U = Ug + Ugt1, @ =1,2,...,d — 1 and uqg = ug — uy if d even
and
Ug = Ug + Uat1, @« =1,2,...,d—1 and g = ug + vy if d odd.

19

Gi(x)) dy

(109)

(110)

(111)

(112)

(113)

(114)
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For 2 € Bga, we define the even shift operators o : REY ]Rgd, for even heights by of (y) =
¢y — z) for y € €% and ¢ € RE’ and for even height differences by (eSn)(b) = n(b — ), for
b € Bea and 1 € x°. We denote by S¢ the class of all shift invariant (with respect to the even
shifts) p € Py(x®) which are stationary for the SDE (102) and by ext S¢ those u® € S€ which are
ergodic with respect to the even shifts. For each u € RY, we denote by (ext S )ﬂ the family of all
pé € ext S such that E,c (75 (€4)) = @ia,a = 1,2...d. We will prove that y is unique.

Next, for clarity purposes, we will sketch the coupling argument used in [14] to prove uniqueness
of ii. Suppose that there exist uf € (ext Sg)z2 and i€ € (ext ¢ )5 for u,v € R?%. Let us construct two
independent-y¢ valued random variables n¢ = {nf(b)} and 1€ = {#°(b)} on a common probability
space (0, F, P) in such a manner that 7 and 7¢ are distributed by pé and i€ respectively. We
define ¢g = ¢™0 and ¢y = ¢"". Let ¢; and ¢; be two solutions of the SDE (102) with common

Brownian motions having initial data ¢o and ¢q. Since u®, ¢ € S€, we conclude that nf = (775 )‘m

and 7775 = (775 )¢t are distributed by pf and i respectively, for all ¢ > 0. Let @ and @ be such that
Uo = E e (¢ (€5)) and ¥ = E;e (75 (€5)). We claim that:

Lemma 20 There ezists a constant C > 0 independent of @, v € R? such that
_ 1 [T d - 2
iy [ DB (1 () - ()| de < Cla— o (116)
T 0 a=1

PROOF. Step 1. For simplicity of notation, we will label for this proof the ElQ elements of N as
f2 19, ..., f%. By applying Lemma 19 to the differences {¢y(z) := ¢¢(z) — ¢¢(x)}, where x € &,
one obtains just as in [14] for every T' > 0, A = Ay, where N € N

T d2 B 2/ 2d2 T _
/O g0yt < 2L BP | S (o) | 4 BT /0 sup |G @) e b, (117)

— A 2
Cc_ |B€d| veed (C—N) yE@SX

where ¢/, = 4cy +2C,

O T | 9B,
g(t):az::lE [(vﬁbt(fa))} and ¢g := {Jsvlg} N B, < 0. (118)

Step 2. Next we derive, just as in [14], the following bound on the boundary term: For each
€ > 0 there exists an [y € N such that

¢
sup [16:(y) |22y < Ci (N + N o+ N [ g(s) ds) (119)
yE@SX 0
for every t > 0 and [ > [y, where C7 > 0 is a constant independent of €,1, and t.
To this end, because £¢ is a subalgebra, we can use the mean ergodic theorem for cocycles (see
for example [5], [19] or [18]) and apply it to u& € (ext S¢), to obtain
1 0 -

i, e @ =@ il =0 (120)

zegd
In order to apply the proof from Step 2 in [14], we will need the result proved below in (123). By
using (105) and the reasoning used to derive (70), we have

%{ZW“)} =2 ) ) [Djwt(x))—Dﬂ'Fx(exx))}

ach’ zeEA'NOL  {i€l]
z+ej ESX}

= -2 > [DjF:c(Ht(a:))—DjFx(Ht(x))}, (121)

{zeN N0 jel|zte eed

sier,i#j such that zie;ga’y
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where A" = Ajy/g N EL Oz +e) = (pe(x + €i),...,dt(x + &) € R and O,(x + ;) = (de(x +
€i),...,¢t(x + e;). By using Taylor’s expansion and (100) in (121), we get

IDIF, (0(x)) = DIF, (B@) | S e D |0+ ex) = dlo+ ;)| (122)
kel k]
Then
3 IDIF, (6:(x) — 6,(x + e3)) — DI Fy (Bu(2) — (e + 1)) |12(p)

{zeA'nOd jel|ote;ce
sier,i#j such that zte;¢a’}

o/’
< 1o ‘Zuw IOl (123)

where we define

OpN = {b= (zp,p) | 2 € ET\ A,y € E°
2y — yol| = 2,32 € OF with ||z, — 2| = |lyp — 2|| = 1}.  (124)

‘ﬁi{\ﬂ < %, the proof from Step 2 in [14] follows now

With these estimates and knowing that
immediately.
Step 3 The proof for Step 3 follows the same way as in [14]. The desired estimate follows now

from the fact that

/ T;ZEP () ) ar< [t (125

O
Theorem 21 For every u € R?, there exists at most one ué € (ext Sg)a.

PRrROOF. By using Lemma 20, the proof follows the same arguments as in [14], so it will be omitted.
O

4.2 Proof of Theorem 17

PROOF.

Note first that any u € G(H) is reversible under the dynamics 7; defined by the (103). In
particular, G C S.

Suppose now that there exist p, i € G(H) ergodic such that E, (n:(eq)) = ta, a0 =1,2...d for
u € R Note first that E, (nf (¢5)) = Eg (1§ (€f)) = @i, = 1,2...d. Hence, from Lemma 4, we

get that i|ea, filga € GE(H®) such that for all finite A € Z%, we have Hé? eL.

Since for all n° € x¢, with n°(b) = é(yp) — d(xp), b € Bea, we can write n€(b) = n(by) + n(bs),
bi,by € Bya, ergodicity and invariance under the even shifts for y|gq, fi|ga follow immediately from
the similar properties for p, 1. We also have reversibility for the even (see for example [15]).

Therefore fi]ga, fi|ca € (ext SS){L, so we can apply Theorem 21 to get y|ga = fi|ga. Then for any
A€ Fp,,, we have E,(14|F5,,), Ex(14|FB,,) € FB,, From Lemma 7, we have

E,(1a78,,) = Ex(14|F5,,) (126)
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and thus

n(4) = E,(1a) =Eu(Ey(14|F8,,)) = Ex(E.(14]FB,,))
= Eu(Ez(14|75,,)) = Ea(A) = (A). (127)

0

Remark 22 Note that as an immediate consequence of the results in Sections 3.2, 3.3 and of
Remarks 15 and 16, we can also adapt the reasoning above to get the uniqueness of the ergodic
component in the case where, for all ¢ € I, U; are strictly convex and non-symmetric.

5 Covariance

We will extend in this section the covariance estimates of [9] to the class of non-convex potentials
U; = V; 4+ g; which satisfy (15) such V; and g; satisfy (16), (17) and (64).

Let p, € Po(x) be the unique shift invariant measure, ergodic with respect to shifts such that
E,., (n(eq)) = uq,a=1,2...d.

Let

Bgd = {b = (b, Yp),b € Bya such that x;, € Od} . (128)

Let F € C} (]RB%). We will denote for every ¢ € I and for every b = (z,x +¢;) € Bgd by

0

F = N = ——
ab a(a:,a:-l—el) avequ(x)

F(Ve) and [|0p ate, Flloo = Sup |0 2te. (V). (129)

Theorem 23 Let F,G € C}} (]RB%). Then there exists C' > 0 such that

196 F |0y Glloo

[cov,, (F(V6), G(V9))| <Cb7b,€ZBOd TR (130)
PrOOF. We have
cov,, (F(V9),G(V)) = By, [cov,, (F(V6),G(V0)|s,,)|
+ cov, (B F(VO)| ) B [G(VO) s, ) (131)
where
E,. (F(Vo)lFe,) = [ F(V6) [] ()0l +e0) - o)l P ) dotw).  (132)

yeOd

since the conditional measure is a product measure; a similar formula holds for G. Note that under
1(- | Fs,,), the gradients (V¢;(z), x € 04i € I) are independent. Thus

covy, (F(V$), G(V9)|Fa,,)

< D I06F | lo||06Glloovar i, (Vo (b)| Fi,, )

beBY,

< 0% D 106F llo 106G |oo (133)

beBY,
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where for the first inequality we used a result in [10] and for the last inequality we used (85). Next,
in view of [9]

A A 8 F 00 a /é o0
v, (BG)| <e 3 1b+||‘|b et |||L ’ (134)
b/ EBya 170
where
F=E,,[F(V¢)|Fs,,] and G = E, [G(V)| F5_,]. (135)

We need to estimate now 9yF and 9,G. Suppose that b = (z + ey, + ¢;) for some x € 0% and
J, ke l. But

OF = OE,,[F(Ve)|Fs,.] = 0

[ Feo) I 6 >y<¢<y+ek>¢<y>fsgd>d¢<y>]

yeOd
= O /F(V¢) 11 Z(%Q(GXP< X;U oy +ex) — ¢(y+€i)))> d¢(y)}
yG(’)d 1€
1
— o T — < Uis +ed)— o +ei>>>> a6(y)
/b ygdZ(W( ; oy + ey y y

—Covy, ( (Z ZU oy +ex) — ¢(y+€i))))

yeod i€l

fggd) : (136)

To estimate the above equation, we will use now the following simple change of variables
S+ ex) + ¢z +ej) = a and $(x + ) — $(x + ;) = b, (137)

therefore ¢(z + e;) = 2 and ¢(z + ;) = 252 Then

OF (Vo) d(¢(2) — )
R RPN LCCETCEE Rt
se{kl} {ze€%] 2= (x+es)||=2}

where we denoted by i +e) the partial derivative D!F such that [ is the indice which gives the
position in F' of ¢(z) — ¢(z + e5). Since a similar formula holds for the term differentiated in the

covariance, from (136) we obtain

af < 5 3

sef{kl} {z€€%||z—(z+es)||=2}

OF (Vo)
a(z zT+es) b

+leov, | F(VO),Y Y. Uldy) — (6ly+er) — by + €:))| Fs,,

1€l {yeod:
y+e;Eb or y+ep€b}

(139)

By using (133) applied to F(V¢) and to Y ,.; > (yeod: Ul(o(y) — (d(y + er) — oy + €i))),

y+e;€b or y+epcb}

by using the fact that |U/| < Cp+ Cs and a similar formula to to the one used to derive (138), we
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get

covp, | F(V),> > Ul (¢(y) — (6(y + ex) — oy + €:)))| Fs,,
el {yeod:
y+e; €b or y+ek€b}
< 8d%(Cy+Cy) > 10 F ||sovar ,, (Vé(b)| Fs,,) < 8d°0(Co+Ca) > 1105 F | so-
beBCQ beBCQ
Z! VA
y+ep€b or y+e;€d y+ep€b or y+e;€d

(140)

We also used in (140) the fact that 9, (Zie[ > (yeod: Ul(o(y) — (o(y +ex) — oy + el)))> =

y+e;€b or y+6k€b}
0 if neither y + ey, nor y + e; are vertices of the bond b.

Note now that

_ . ' _ 9 -
52(F) <> [[0(,0e0)Flloe and 6,(G) < (10,04 Glloo, with 6,(F) = sup 5 F(qb)‘ .(141)
iel iel @ o(x)
The statement of the theorem follows now from (139), (140), (141), (133) and (134). O

6 Scaling Limit
We will extend next the scaling limit results results from [16] to a class of non-convex potentials.

Theorem 24 Let u € R?. Let yu, € G(H) ergodic with

E,, [n(e:)] = u;

Assume U; = V; + g;, where U; satisfy (15) and V; and g; satisfy (16), (17) and (64). Set

S(f) =€ > flae)(p(z +e;) — dlx) — uj), (142)

x€Zd
where f € Cg°(RY). Then
Se(f) = N(0,05(f)) as e—0, (143)
where o2(f) > 0.

PROOF. Let us write Ej for the even sites and Oy for the odd sites of Z%. Then

S(f) = Y7 flae)(dla +e) — dla) —wi) = € Y flwe)(dlx + 2¢) — d(a) — 2uy)

x€Z4 zegd

—e/? Z flae)(d(x +2¢:) — o + €;) — ug) + €/ Z f(ze)(d(z + €) — o(z) — u;)

zc&d xc0d

= €2 fze)(d(z + 26;) — $(x) — 2u;)

zc&d

+ed/? Z (f((x +e;)e) — f(a:e)) (p(x +26€;) — p(x +€;) —wi) = SE(f) + Re(f). (144)

zc&d
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Now we can show CLT for S¢(f) since the summation is concentrated on the even sites; the
proof uses the same arguments as in [16] and is based on the RW representation. Also, since by
Theorem 23

o, (V16(2). V0()| € sy (145)
we have
var , (Re(f)) < €t > [Vif(2)||Vif (ye)|covy, (d(x + &) — d(x), oy + &) — d(y)))|
z,yc&d
d I ) — O
< € xﬂ%gd‘vzf( )Hvzf(y )‘(Hx_yn_i_l)dv (146)

where V;f(xe) = f((x + e;)e) — f(xe). Expanding f((z + e;)e) in Taylor expansion around xe, we
have

Vif(xe) = D' f(a)e, (147)

for some a € R%. As f € C5°(R?), there exist M, N > 0 such that for all z € R? with |ex| < N we
have f(ex) < M, |Dif(ex)| < M and both functions equal to 0 for |ex| > N. Therefore

1
var,, (Re(f)) < 2m?c Y (148)
S .z =yl +1)7
z,yc&d,
lea| <N Jex|<N
: 1
It now remains to evaluate the sum ) ‘EIE%“ZZ"SN (CE=TESALE But
Z 1 < Z /Nj_l /Nj_l d.’Eldl‘Qded
(lz —uyll £ 1)d = d
zyeed, (lz =yl +1) jeed, I - (Zgzl |z — yil + 1)
lea| <N, |ex| <N eyl <N
< €2C(d,N)log (1 +2dN/e) < 2dNC(d, N)e, (149)

where C(d, N) is a positive constant depending on d and N. It follows that R.(f) — 0 as e — 0 in
probability. O

7 Surface tension

7.1 Surface tension on the torus

We will extend here to the family of non-convex potentials satisfying (15), (16), (17) and (64), the
surface tension strict convexity result from [14] and [12]. Additionally, in Theorem 28 we prove
a series of surface tension equalities, which are important for the derivation of the hydrodynamic
limit.

To study the convexity properties of the surface tension (as a function of the tilt u) for non-
convex gradient models on a lattice, we will work on the torus, instead of the finite box on the lattice
Z%. Thus, let T = (Z/NZ)? = Z¢ mod (N) be the lattice torus in Z¢ and let u € R%. Then, we
define the surface tension on the torus ']lev as

B
1 Zh (u)
B Tn
on (u) = — lo , 150



where

ZNORY I CE R | R (151)

v z€T4\{0}
and where Hr, is the Hamiltonian on the torus T‘fv given by

Hry(¢) =Y Y UVip(z)=>_ > | ) + gi(Vid(x))] . (152)

d d
el zerd, el zerd,
:E+ei€']l“]iv :E+ei€']l“]iv

Note that we define u_; = —u; for i = 1,2,...,d. Just as before, let us label the vertices of the
torus as odd and even; let the set of odd vertices be (O)ﬁl\, and the set of even vertices be Eﬁl\,. Then
we can of course first integrate all the odd coordinate first and then:

2w = [ | [ ettt TT ao@ | I aotw)

€0, zeE4\{0}

- /R L exp(—BHg (bw)  [[  dele), (153)

N veEd\{0}
where Hg, (¢, u) is the induced Hamiltonian on the even. It is easy to see that
Hey (¢, u) = Hey (¢ + (-5 u),0). (154)

Then, defining the even surface tension on E¢ Y as

8 _ 1 ZlgN (u)
where
28, = [, ew(-AHey 6+ (). 0) [ doto) (156)
RN v€E4\{0}

we obtain the following result by integrating out the odds
Lemma 25

U@N (u) = %J%V (u). (157)

We will next prove strict convexity for the even surface tension, uniformly in N.

Lemma 26 Suppose that V;,g; € C*(R) such that they satisfy (16), (17) and (64). Then, for all
N = 2k, we have

D*sf (u) > C|EX|Id, ¥ u e R". (158)
That is, the even surface tension is uniformly convex, uniformly in N.

PRrROOF. First note that if N = 2k, we can write Hg, (¢, u) as

Hgy (¢,u) = > Fy(0,u) (159)
xe@d
where for all x € @ﬁl\,
Fo(0(x),u) = —log / e ier BV dg(a) (160)
R
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and where, just as in (46)
0(z) = (¢(z +e1),...,9(x — ea)). (161)
Note that for all i € I, we have u_; = —u;. Then

=2 cod Fo(0(z)u)
1 fﬂ«:«}v e T [Tier Hx+€i€E§i\f dop(z + ei)

B -
OR 5 (u) = |E§l\7‘ log fg% eleqe@?v F.(0(x),0) Hiel HHQGE% G0+ o) . (162)
As the denominator of o, (u) doesnt depend on w, it is enough to focuss on the term
Ray (u) = log / e et OO T T dg(at e, (163)
Ef, i€l gte;cBY,
Note now that by Theorem 10, we have that for each x € Oj{, F, is convex, that is
(D2Eo(0)(8)) (0) > 1 Y |0z +e5) — O(z + e5)|”. (164)
ijel,
i

Because by Theorem 10 the F, fullfil the random walk representation, we can apply to Ry
Lemma 3.2 in [8], (164) and the fact that for all i € I, we have u_; = —u;, to get the statement of
the lemma. ]

We consider the finite volume Gibbs measures fiy ., € P (XT‘fv ) with periodic boundary conditions
which, for each v € R%, are defined by

N N _ 1 N -
Ainu(di) = Zyyexp | =5 D Vib) +up) | diy € Plxg ,»)- (165)
bEBZdN

Here d7y is the uniform measure on the affine space Xtd, and Zy, is the normalizing constant.
The law of {n(b) := 7(b) + up} under fiy,, is denoted by pp -

Lemma 27 puy, converges weakly to i, € ext G.

ProoF. Tightness of the family {4y}~ is known for non-convex potentials with quadratic growth
at oo (see Remark 4.4 page 152 in [15]). Therefore a limiting measure exists by taking N — oo along
a suitable subsequence. From now on and using Theorem 17, the proof follows the same reasoning
as the proof of Theorem 3.2 in [14]. In particular, because of the uniqueness of ergodic gradient
Gibbs measures for each u, pn, converges weakly to fi,. O

Let

. aO'Td
VJTL}V = (DlUTEiv’ . ,Ddawv) , where D’JT% = 8u;\[ vi=1,...d. (166)

Theorem 28 Suppose that V;,g; € C*(R) such that they satisfy (16), (17) and (64) and such that
for alli e I, U; are symmetric. Then we have

(a)

lim agN (u) = or(u), or € CHRY); (167)
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(b) or is strictly convex as a function of u;

(¢) By, [n(b)] = up;
(d) E,,[U!(n(e;)] = Dior(u), for alli=1,...d;

(¢) B [XL  n(e)Ul(n(e;)] = u-Vor(u) + 1, for all i =1,...d;
(f) |Vo(u) — Vo (v)|] < Clu—v| for some C > 0.

PROOF.

(a)

(b)

Noting from Lemma 27 that iy, converges weakly to fi, as N — oo and using the tightness
of the family {un .}, the proof now follows the same steps as the proof of Theorem 3.4.(0)
in [14].

Since by (a)

lim UgN (u) = or(u), (168)

N—o0

every subsequence of U%N (u) will converge to op(u), in particular for N = 2k. The statement
of the theorem follows immediately by using now Lemma 25 and Lemma 26 applied to the

subsequence (O’%?-N (u))N, with N = 2k.

, (d) and (e) follow just as in [14], so their proofs will be omitted.

Let N = 2k. Define

1
M (d6F) = —g—exp | = 3 Fo(0(x),u)| dg™, (169)
Nyou ze0pn

where d¢®r = erEgi\, \foy 2(@), Z}%u is the normalizing constant and F, and 6(x) are defined
as in (160) and (46), respectively. Due to the fact that the random walk representation holds
on the set of the evens and to Theorem 21, one can show as in [14] that for N = 2k, ,u]}EV’u
converges weakly to pL € (ext SE)Q, where the same notations as in the uniqueness of ergodic
component section apply. Note now from (160) that

By, [Ui(Vig(@)] =B,z [D'Fa(0(x) w)], (170)

where = € (O)‘Jiv. Using now (d), the weak convergence of uy ,, to p,, and the weak convergence
of ,u]}EV’u to ut, we get

E,: [D'F.(0(x),u)] = D'or(u). (171)
Uisng the random walk representation and Taylor expansion, we have
|DIEL(0(x)) = D'FL(0())| < cx 3 [o(a + ex) — bl + 1) (172)
kel

The bound in (f) is now a simple consequence of (171), (172) and Lemma 20.
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7.2 Equality between the surface tension on the torus and the surface tension
on the box

Let Ay = [-N,N]¢NZ% be a cube of side length 2N + 1 in Z¢ with boundary dAy = {
(21,...,2n)||za = N for at least one a,a = 1,...d}. We enforce a tilt u = (uy,...uq) € R? by
setting ¢(x) = x - u for x € OAN. Then, we define the surface tension on Ay as
Zy ()
B 1 An
oy (u)=— lo , where 173
N
Zy (u) = /Ad exp(—BHay () [[ de@) J] 6(o(y) —u-y), (174)
REN zeAy yeIA N

and where Hy , is the Hamiltonian given by (14).
Noting that C; — Cy < U/ < (9, the proof for the existence of the surface tension on the box
follows the same steps as in [14]. We thus have

Theorem 29

Ah/HZld op(u) = op(u) (175)

exists and is independent of the chosen sequence A.

To prove the equality between the surface tension on the torus and the surface tension on the box,
we follow the same steps as Lemma I1.2 in [14]. Note that we will also use the same reasoning as
from our covariance section in order to estimate the variance needed for the proof.

Lemma 30 Let U;, i € I, be symmetric potentials. Then we have
op(u) = or(u), (176)

where or(u) is the one from Theorem 28.

8 Appendix

8.1 Counter-Example to Random Walk Representation

We will next outline a method to check if the RW representation holds for large 3; we will also
provide a counter-example when the RW doesnt hold for very large 3.
Let p(dx) = %exp(—ﬁH (s)) ds. We assume that there exists a unique minimum § such that

H(5) = min H(s), where H"(5) > 0. (177)

S

Let Uy, Uy € C%(R), with U/(5) # 0, for i = 1,2. Note that
COV g (U1,Us) = // (s1,52)pp(ds1)ps(dsa), (178)
with F(Sl, 82) = [Ul(Sl) - Ul(SQ)] [UQ(Sl) - UQ(SQ)]. Note now that

F(s1,82) = F(5,5)+ 0s,F(5,5)(s1 — 8) + 05, F(5,5)(s2 — 5) + %(8§1F(§ 5)(s1 — 5)*

+20;,05,F(5,5)(s1 — 8)(s2 — 5) + 02, F(5,5)(s2 — 8)%) + o(1),
(179)
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F(3,5) =0, 02 F(5,8) = 02,F(5,8) = 2U{(5)U3(5) and 05,05, F(5,8) = —2U{(5)U5(5).  (180)

Also H(s) = H(3) + $H"(3)(s — 5)> + o(1). For large 3, we can ignore the rest o(1) and using
)

[ 1= 51052 = mat s (dse) = o). (181)

Then

8 (61— 9 atdsn) = S+ o) (182)

and we get for large 3

Beov,,, (Ur, Uz) = %QU{(E)UQ(E) +o(1). (183)

Take U(s) as in Example (c¢) from the Random Walk Representation section, H(s) = 2U(s—1)+
2U(s + 3) and a = 0.72. Take d = 2, [ large and the vector of the even vertices § = (1,1, -3, —3).
We will show using (183) that for large 3

C\/%U”(g —1)U"(5+3)

Beov(U'(s —1),U'(s +3)) < 77(5)

<0, (184)

where § is the minimum of H(s). For this, it is enough to show that the minimum will fall in the
region where U”(s — 1) is strictly convex and where U”(s + 3) is non-convex. Note first that for

a = 0.8, we have

1 1
—— >0 (185)

B =20~ vy

We have 3 cases to consider

(1) s> 1. Then H'(s) > 0, so the minimum can not be found on this interval.

(2) =3 < s < 1. Then H"(s) is increasing on [—3, —1] and decreasing on [—1,1]. In view of (185),
H"(s) >0 on [-3,1].

(3) s < —3. Then H"(s) decreasing on (—oo,—3) and H"(s) > 0 because of (185).

It follows now from all the 3 cases that H”(s) > 0 on R. Therefore H has a unique minimum §. As
H'(—3) < 0 and H'(—2.68) > 0, we have that § € (—3, —2.68), on which interval H"(s+3) < 0 and
H'(s—1)>0.
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