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EIGENVALUE FLUCTUATIONS FOR LATTICE ANDERSON
HAMILTONIANS*
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Abstract. We study the statistics of Dirichlet eigenvalues of the random Schrédinger operator
—e2A@) 4 () (), with A(D the discrete Laplacian on Z4 and £(€) () uniformly bounded indepen-
dent random variables, on sets of the form D¢ := {z € Z4: ze € D} for D C R? bounded, open, and
with a smooth boundary. If E€(€)(z) = U(xe) holds for some bounded and continuous U: D — R,
we show that, as € | 0, the kth eigenvalue converges to the kth Dirichlet eigenvalue of the homoge-
nized operator —A + U(z), where A is the continuum Dirichlet Laplacian on D. Assuming further
that Var(£(¢) (x)) = V(z€) for some positive and continuous V: D — R, we establish a multivariate
central limit theorem for simple eigenvalues centered by their expectation. The limiting covariance
for a given pair of simple eigenvalues is expressed as an integral of V' against the product of squares
of the corresponding eigenfunctions of —A + U(z).
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1. Introduction.

1.1. The model and main results. The phenomenological description of phys-
ical processes such as heat or electric conductivity in materials is typically governed
by differential equations with smoothly varying coefficients. However, due to an un-
derlying crystalline structure as well as the presence of impurities, the physical char-
acteristics of materials change quite rapidly at the microscopic level. The apparent
discrepancy in assumed regularity is reconciled mathematically by homogenization
theory, which provides tools to integrate out fine-scale oscillations and extract, in
specific cases, a suitable continuum limit. A key point for modeling is to track how
the microscopic details express into the values of material constants.

In this paper we study one specific example of this approach. The general con-
text is the spectral side of stochastic homogenization, which is currently a highly
active research area. The quantities of our interest are low-lying eigenvalues of ran-
dom Schrédinger operators called Anderson Hamiltonians. Such operators naturally
appear in theories of disordered materials in solid state physics; indeed, they describe
the motion of a single electron through a crystal with impurities. Our focus will be
on the limiting statistics of these low-lying eigenvalues with the aim of capturing both
the leading-order behavior, which turns out to be deterministic by a law of large num-
bers, as well as the leading-order random term, which turns out to be Gaussian by a
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central limit theorem (CLT). Asymptotic expansions for eigenvalues of such operators
are relevant for various natural questions of interest (e.g., decay of the heat kernel)
as well as for numerical analysis of such systems. Some additional motivation for our
work will be described in section 2.

Let us proceed to precise definitions and results. Let D be a bounded open
subset of R? whose boundary is C1* for some o > 0. Given an € > 0, we define the
discretized version of D as

(1.1) D= {z € Z%: disto(ve, D) > €},

where dists, is the ¢>®-distance in R? and D¢ is the complement of D. For any
numbers £ (z), z € D,, define an operator (a matrix) Hp_¢ acting on the linear
space of functions f: D. — R which vanish outside D, (i.e., the Dirichlet boundary
condition is imposed) via

(1.2) (Hp, ef)(x) == = 2(AWDf)(2) + €9 (@) f (),

where A is the standard lattice Laplacian

(1.3) QDS @)= D [fy) — ()]

y: ly—z|=1

with |z| denoting the ¢!-norm of z. The operator Hp_¢ is an example of the Anderson
Hamiltonian. Note that, by scaling the spatial coordinates by €, one can equivalently
regard Hp, ¢ as an operator on functions on eD.. The kinetic term, e 2A@) is a
natural approximation of the continuous Laplacian on D.

The potential £(¢) will be taken random with values at different vertices inde-
pendent of each other. Although this means that £(¢) will be quite rough in each
specific realization, we will require, as is common in homogenization theory, that the
probability laws of individual £(¢)(z) vary continuously with the position. Namely, all
results in this paper will be based on the following assumptions.

Assumption 1.1. There are numbers a,b € R with a < b and bounded continuous
functions U: D — R and V': D — (0, 00) such that the following hold for each € > 0:
(1) the random variables {¢(€)(x): = € D.} are independent;

(2) for any x € D,

(1.4) a < €E9(x) <b;
(3) for any x € D,
(1.5) EE©)(z) = U(ze) and Var(f(e) (z)) = V(ze).

We will write P, to denote the law of £(¢) but will not mark the e-dependence
explicitly on expectation. To ease our notation, we will also often omit marking the
e-dependence of £. The boundedness assumption (1.4) can be relaxed somewhat, but
we refrain from doing so in order to keep the paper focused on the phenomena we
wish to describe. Also, most of our results apply even when the equalities (1.5) just
hold in the limit € | 0.

As already stated, our focus will be on the asymptotic behavior of the low-lying
part of the spectrum of Hp, ¢ in the limit as € | 0. Here we note that, since Hp_ is a
symmetric |D| X | D.|-matrix, its eigenvalues are all real-valued and can be ordered as
(1.6) AL e SAD e <o <AL

€
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As our first result, we note that, in the limit € | 0, these converge to the eigenvalues
of a suitable (homogenized) continuum operator.

THEOREM 1.2. Under Assumption 1.1, for each k > 1,

(1.7) /\%175 ? AR in probability,

where A\ is the kth smallest eigenvalue of the operator —A+U (z) on H{(D), with A
denoting the continuum Laplacian.

Here, as usual, H}(D) denotes the closure of the set of infinitely differentiable and
compactly supported functions in D with respect to the norm || f||n1(py := (HfH%z(D) +

|\Vf||2L2(D))1/2. Thanks to our conditions on D and U, the spectrum of —A + U(x) is
discrete with no eigenvalue more than finitely degenerate. Moreover, any orthonormal
basis of eigenfunctions ¢} consists of functions that are continuously differentiable
on D. See Lemma 3.1 for details.

Statements of the form (1.7) have been proved in various contexts before; see, e.g.,
the monograph of Jikov, Kozlov, and Oleinik [21] and further discussion in section 2.
However, concerning the eigenvalues of Anderson Hamiltonians, we have found only
one homogenization result due to Bal [5], which is moreover restricted to d < 3. See
section 2.1 below for more details.

The formula (1.7) gives the leading-order deterministic behavior of the spectrum
of Hp_¢. Naturally, one might be interested in the subleading terms or even a full
asymptotic expansion in powers of €. Some of the terms in this expansion are likely
to be deterministic—e.g., those describing the boundary effects—while others could
genuinely be random. The leading-order random term captures the fluctuations of the
eigenvalues around their mean. To understand the typical scale of such fluctuations,
we note the following concentration estimate.

THEOREM 1.3. Under Assumption 1.1, for each k > 1, there is ¢ > 0 such that
for allt >0 and all e € (0,1),

CotZe—d
(1.8) Po(|XG) ¢ — BAG ¢ > 1) < e,

If ¢(k) marks the largest ¢ for which (1.8) holds, our proof gives c(k) > k22X .
However, this is probably quite far from optimal. Still, thanks to (1.8), the random
variables

(k) (k)
AD.g —BAD, ¢

(1.9) 7

are tight in the limit € | 0 and, in fact, have uniform Gaussian tails. This suggests
a possible Gaussian limit theorem. And, indeed, as our next and also main result
shows, a CLT holds and does so jointly for the collection of all eigenvalues that are
simple in the limit € | 0.

THEOREM 1.4. Suppose Assumption 1.1 holds, fit n € N, and let ky,...,k, € N
be distinct indices such that the Dirichlet eigenvalues A5V, ... A5 of —A + U(z)
on D are simple. Then, in the limit as € | 0, the law of the random vector

(k1) (k1) (kn) (kn)
(ADZ@ —EApl e Aple — ]E/\De@)

(1.10) L
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tends weakly to a multivariate normal with mean zero and covariance matriz o3 =
{02 )11 that is given by

(1.11) U?j ::/DW(I;”(JC)‘Z (k) | Vi

where @) denotes the ith normalized eigenfunction of —A + U(z) and V() is as in
Assumption 1.1(3).

Results of this kind are few and far between. One context where such a limit
law has been claimed is the crushed ice problem; see section 2.2 for further discussion
and references. Understanding the crushed ice problem has in fact been a prime
motivation for this work. We note that the aforementioned paper [5] also contains a
Gaussian fluctuation result, but again only for d < 3; see section 2.1.

Remark 1.5. This remark concerns the restriction of Theorem 1.4 to simple eigen-
values. It is clear that some restriction is needed whenever the expectations of two
eigenvalues fall within o(e%/?) of each other. Although, by Theorem 1.3, the fluc-
tuations of individual eigenvalues perhaps remain CLT-like, under degeneracy they
decide the order, and hence no Gaussian limit is possible. The precise ordering also
depends on their expectations, and so further control of subleading terms in (1.7)
would be required in order to make a meaningful conclusion in the end. (Of course,
alternative formulations may still be possible—e.g., in terms of the Green operator or
spectral density—but our present proofs would not apply anyway.)

2. Key underlying idea. From the perspective of the theory of random
Schrodinger operators, it is interesting to ponder where the principal contribution
to the fluctuations of the eigenvalues comes from. Our method of proof indicates
this quite clearly. Let g5 . henceforth denote any eigenfunction of Hp, ¢ for the

eigenvalue )\%i ¢ normalized so that

(1.12) > gh @] =1

xeD,

Let C%* denote the event that A ¢ is nondegenerate, and note that, by (1.7),
P.(C®) — 1 as € | 0 for any k such that the Dirichlet eigenvalue A}, of —A + U(z)
is nondegenerate, i.e., simple. On C'" | write

(1.13) Ty =Y 2Vl (o))

TEZL

to denote the kinetic energy associated with the kth eigenspace of Hp_¢, where

V@ f(z) is the vector whose z'th component is f(x+&;) — f(x) for & denoting the ith
unit vector in R?. We regard gD ¢ as extended by zero to all of Z?. By testing the
eigenequation by the elgenfunctlon and using the summation by parts, we get the
following expression of the eigenvalue:

L) M= TH e+ X e (o)
xreD,

The following theorem implies that the main fluctuation comes from the potential
energy part, i.e., the second term on the right-hand side.
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THEOREM 1.6. Suppose Assumption 1.1 holds and that /\%) is simple. Then,

(1.15) e War(Tp | C*) =0
and
(1.16) e z; Var(ggzjg(x)z |C&) 3 0.

Based on (1.15), the exact form of the covariance is easy to explain as well: just
replace ggi,g(x) by the eigenfunction ¢}’ of the limiting operator —A + U, and note
that the potential energy thus becomes a weighted sum of independent and identically
distributed (i.i.d.) random variables for which the CLT with covariance (1.11) is well
known.

It turns out that a priori knowledge of (1.15)—(1.16) is nearly enough to justify the
CLT in Theorem 1.4. Indeed, let E® denote the conditional expectation given C*,
and let us, for ease of notation, drop the subindices on )\%i,g, ng)é, and gng. On C™
we have

(L17) AW —E®A® =T _EOT® 4 3 (5(96)9““(96)2 - E“”(é“(:v)g“”(x)z))-
x€eD,

The sum on the right can be recast as

(1.18) Y [£(x) —EWE()]EW (9% (x)?)
zeD,

+ Y @) 9P (@) —EP (¢ (2))]

zeD,

+ 30 B9 ((e) - EVe@) (9 @) ~ BV (% (0)7)).

x€D,

A routine use of the Cauchy—Schwarz inequality shows that the second moment of the
latter two sums is dominated by (powers of) the sum in (1.16). Using also (1.15), we
get

(1'19) AR R \®) — O(ed/2) + Z [f(x) _ E(k)é‘(x)} E(k)(g(k)(x)2)7
xeD,

where o(e%/?) represents a random variable whose variance is o(e?). Under the as-
sumption that the kth eigenvalue of —A + U(x) is nondegenerate, the complement of
C* can be covered by events from (1.8) for indices k — 1, k, and k + 1. This permits
us to replace the conditional expectations of A® and £(z) by unconditional ones. To
get the multivariate CLT stated in Theorem 1.4, it then suffices to show

(1.20) e E® (g (|/e))?) T ESCl

in L?(D,dx) for any k of interest. As we will see, our proof of Theorems 1.4 and 1.6
is indeed strongly based on controlling the convergence of the discrete eigenfunctions
to the continuous ones in proper LP-norms.
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Remark 1.7. Asis common in homogenization theory, analyzing differential equa-
tions with rapidly varying coefficients typically requires separating the rapid oscilla-
tions into, or compensating for them by, a “corrector” term. The reader may thus
be surprised to find that no such term needs to be introduced in our case. This is
because this term is naturally of a smaller order in € and thus will not contribute to
the fluctuations of the eigenvalues.

We can elucidate this further by invoking rank-one perturbation and (1.7); see
Lemmas 5.2 and 5.3. Define ¥*® by the equation

(1.21) e_d/2ggi75(x) = o) (we) + TP ().

Invoking the eigenvalue equations, we then have

A@D g (z) = 6*2*‘1/2A(d>ggi75(x) _ 672A(d><p<[’;>(. €)(x)

(Np, e = E@) e 2gp) (a) = (AD = U(we)) iy (we),

where we approximated the discrete Laplacian by its continuous counterpart. Assum-
ing that e~%/2g{}) .(z) is in fact pointwise close to ¢} (ze), we get

(1.22)

Q

(1.23) — ADT® (z) = (&(x) — U(we) + o(1)) o (e);

i.e., U™ golves a corrector-like Poisson equation. Since the Dirichlet Laplacian on D,
is invertible, ¥ can in principle be computed and studied. Dropping the o(1)-term
suggests that U* has finite variance in d > 5.

1.3. Outline. The remainder of this paper is organized as follows: In the next
section, we review some earlier work related to the present paper. In section 3 we
establish Theorem 1.2 along with some useful regularity estimates on discrete and
continuous eigenfunctions. In section 4 we prove Theorem 1.3 dealing with concen-
tration of the law of discrete eigenvalues. Then, in section 5, we proceed to prove our
main result (Theorem 1.4). Theorem 1.6 is then derived readily as well.

2. Related work. Before we delve into the proofs, let us make some connections
to the existing literature. These have so far been suppressed in order to keep the
presentation focused.

2.1. Homogenization approach. As alluded to earlier, a result closely related
to ours has been derived by Bal [5]. There the operator of the form He ; = —A+¢(z/e)
in D C R? with Dirichlet boundary condition is studied, where ¢ is a random centered
stationary field. Note that this can naturally be regarded as a spatially scaled version
of our model. (Bal in fact studied the more general situation where A is replaced by
a pseudodifferential operator.) In dimensions d < 3 and under the assumptions that

e either ¢ is bounded and has an integrable correlation function, or

e E[¢(0)°] < oo and a mixing condition holds ([H2] on page 683 of [5]),
it is proved in section 5.2 that the kth smallest eigenvalue \{*) of H, , has Gaussian
fluctuations around A} with U = 0, provided this eigenvalue is simple. This is
slightly different from our result, which shows a CLT around the expectation. In the
case d < 3, we a posteriori know that E]AX)] - A} = 0(¢%/?) by combining Bal’s result
with ours, but we do not know how to prove this directly.

The argument in [5] is based on a perturbation expansion of the resolvent operator
and an explicit representation of the leading-order local correction to the eigenfunc-
tions; cf. Remark 1.7. In order to control the remainder terms, one then needs that
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the Green function of the homogenized operator is square integrable, and this requires
the restriction to d < 3. The method employed in the present paper is different in
that it avoids having to deal with local perturbations altogether. Incidentally, as was
recently shown by Gu and Mourrat [18], for the random elliptic operators (see sub-
section 2.3 below for a formulation) the limit laws of the local and global fluctuations
to eigenfunctions are in fact not even the same.

2.2. Crushed ice problem. Our attention to fluctuations of Dirichlet eigenval-
ues arose from our interest in the so-called crushed ice problem. This is a problem in
the continuum where one considers a bounded open set D C R¢ with m Euclidean balls
B(z1,€),...,B(xm,€) of radius € removed from its interior. The positions x1, ..., Zpy
of the centers of these balls are drawn independently from a common distribution
p(z)dz on D. The principal question is how the eigenvalues of the Laplacian in

(2.1) D, := D~ (B(z1,6) U---UB(xm,€))

behave in the limit as € | 0, for interesting choices of m = m(e) — oco. (The most
natural boundary conditions are Neumann on 0D and Dirichlet on dB(z;, €) but all
mixtures of these can be considered.) To make the connection to our problem, note
that one can view the negative Laplacian on D, as the operator —A + £(z) on D
with £(z) vanishing on D, and &(z) = oo for x € D \ D..

Since its introduction by Kac in 1974, much effort went into analyzing the crushed
ice problem in various regimes of dependence of m on €. The main references include
Kac [22], Huruslov and Marchenko [20], and Rauch and Taylor [29]; see also the
monographs by Simon [31] and Sznitman [33]. More recently, extensions to nonhomo-
geneous kinetic terms have also been considered, e.g., by Douanla [13] and Ben-Ari [8].
The most interesting limit is obtained when

(2:2) m(e) Cap(B(0,6)) 2 4 € (0,00),

where Cap(A) denotes the Newtonian capacity of A when d > 3 and the capacity for
the operator —A + 1 when d = 2. The kth Dirichlet eigenvalue of —A in D, then
tends to that of the Schrodinger operator —A + pp(z) on D. Note the appearance
of a nontrivial “potential” up(z) despite the fact that the total volume occupied by
the m balls vanishes in the stated limit.

The problem of fluctuations was in this context taken up by Figari, Orlandi,
and Teta [14] and later by Ozawa [27]. Both of these studies infer a (single-variate)
CLT assuming simplicity of the limiting eigenvalue, but they are confined to the case
of d = 3. In addition, the proofs are very functional-analytic, as in [5], and (at least as
claimed by Ozawa) they do not readily generalize to other dimensions. Ozawa himself
calls for a probabilistic version of his result.

We believe that our approach to eigenvalue fluctuations is exactly the kind called
for by Ozawa. In particular, we expect that several key steps underlying our proof of
Theorem 1.4 extend to the crushed ice problem in all dimensions. Notwithstanding,
as the situation of independent and bounded potentials on a lattice is considerably
simpler, we decided to start with that case first. Moreover, lattice Anderson Hamil-
tonians are well-studied objects, and so results for them are of interest in their own
right. (See subsection 2.4 for some more comments.)

2.3. Random elliptic operators. In homogenization theory, the leading order
of the eigenvalues of various random elliptic operators, whether in divergence form
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or not, has been studied quite thoroughly; see again the book by Jikov, Kozlov, and
Oleinik [21]. An example of such an operator (in divergence form) is the (scaled)
random Laplacian

€ 1 _
(2.3 LOf@) = 5 Y en[f0)— F),
y: |z—yl=1
where {c,y: v,y € Z% |v —y| = 1} is a family of nonnegative conductances with
Cay = Cya-

We can naturally study the same question for the operator —L(9) as we did for
the Anderson Hamiltonian (1.2). Indeed, let A} denote the kth ecigenvalue of —L(<)
on the linear space of functions that vanish 0uts1de the set D, defined in (1.1). Under
the assumption that (cyy)z~y is ergodic with respect to spatial shift and uniformly
elliptic in the sense that

(2.4) da,b e (0,00), a < b: Cay € [a,b] almost surely,

the eigenvalue /\%i converges (in probability) to the kth smallest eigenvalue of —Q
on D, where Q is the elliptic second-order differential operator

(2.5) Z Gij o 8% 8$J (z)

3,j=1

with Dirichlet boundary conditions on 0D and (g;);; denoting a positive-definite
symmetric (constant) matrix.

To the best of our knowledge, the fluctuations of )\(M for i.i.d. conductances have
not been studied yet. Notwithstanding, the analysis of a related effective conductance
problem (Nolen [26]; Rossignol [30]; Biskup, Salvi, and Wolff [10]) indicates that

ed/ 2[)\('“) — IE/\““)] should be asymptotically normal with mean zero and variance

that is a biquadratic expression in Vgp(k) integrated over D, where go%” denotes a kth
eigenfunction of the operator Q. A significant additional technical challenge of this
problem is the need to employ the corrector method (this is what gives rise to the
“homogenized” coefficients g;; above).

2.4. Anderson localization. Our discussion of the background would not be
complete without making at least some connection to the problem of Anderson local-
ization. The name goes back to the seminal (physics) 1958 article by Anderson [2]
who noted that metals may turn from conductors to insulators when impurities are
inserted into the crystalline structure at sufficient density. Mathematically, the insu-
lator phase refers to the situation when the infinite-volume version of the operator
(1.2) with e := 1 exhibits a band of localized eigenvalues. (This is what is referred to
as Anderson localization.) The conductor phase indicates the existence of a band of
continuous spectrum.

Through tremendous effort by mathematicians over the last four decades, An-
derson localization has now been at least partially understood. Instead of trying to
summarize the vast literature, we refer the reader to the monographs of Pastur and
Figotin [28], Stollmann [32], Carmona and Lacroix [12], and the notes by Hundert-
mark [19]. The upshot is that one-dimensional models exhibit only localized states,
while all models exhibit localized states near the “spectral edge.” The delocalized
phase remains a complete mystery, being so far successfully tackled only in the case
of tree graph models (cf. the book by Aizenman and Warzel [1]).
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Another way to look at Anderson localization is by analyzing the limiting spectral
statistics for operators in an increasing sequence of finite volumes. In the localized
regime, the statistics are expected to be given by a Poisson point process. This has
so far been proved in the “bulk” (i.e., the interior) of the spectrum (Molchanov [25]
in d =1 and Minami [24] for general d > 1). At spectral edges there seem to be only
partial results for bounded potentials at this time (Germinet and Klopp [15, 16]),
although a somewhat more complete theory has been developed for some unbounded
potentials (Astrauskas [3, 4]; Biskup and Konig [9]). In the delocalization regime, the
spectral statistics are expected to be those seen in random matrix ensembles.

Having noted all these facts, we rush to add that the main point of our paper is
to describe the situation of a very weak disorder, which one can see by multiplying
Hp, ¢ by €2. The effective strength of the random potential, and, consequently, also
the effect of Anderson localization, vanishes in the limit € | 0. Notwithstanding, as for
the crushed ice problem, a residual term coming from smooth spatial variations of the
mean (expressed by the function U) prevails, and the eigenvalues are asymptotically
those of a nontrivial continuum Schrédinger operator.

3. Convergence to continuum model. We are now in a position to start the
expositions of the proofs. Our first task will be to prove Theorem 1.2 dealing with
the leading-order convergence of the random eigenvalues to those of the continuum
problem. Let us begin by fixing some notation.

3.1. Notations. We will henceforth assume that D is a bounded open set in R?
with C1**-boundary for some a > 0 and that Assumption 1.1 holds. We write

(3.1) Qup = [a, 07"

for a set that supports P, for every € > 0. Recalling the notation gg;g for the kth
eigenvector of Hp_¢ normalized as in (1.12), we similarly write ¢ for an eigen-
function of —A + U(z) corresponding to A} normalized so that [, |¢}) (z)[*dz = 1.
These eigenfunctions are unique up to a sign as soon as the corresponding eigenvalue
is nondegenerate.

We will write ||f||, for the canonical £P-norm of R- or R%valued functions f
on Z*. When p = 2, we use (f, h) to denote the associated inner product in £2(Z%).
All functions defined a priori only on D, will be regarded as extended by zero to Z%
D.. In order to control convergence to the continuum problem, it will sometimes be
convenient to work with the scaled ¢P-norm,

Y
(32) = (¢4 X 1@17)
z€Zd
This implies, e.g., that
(3.3) ||€_d/29(1§z,g”e,2 =1
We will sometimes use (f, g)c.2 to denote the inner product associated with || - ||¢ 2.

For functions f, g of a continuum variable, we write the norms as || f||.»ra) and the
inner product in L?(R%) as (f, 9)L2(Rd)-
3.2. Regularity bounds. Our starting point is some regularity estimates on

both the continuum and discrete eigenvalues and eigenfunctions. Note that, in our
earlier convention, A{;) ; corresponds to the kth eigenvalue of —¢72A@ with Dirichlet
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boundary conditions on D¢. Recall that C1:*(A) denotes the set of functions that
are continuously differentiable on the interior of A with a uniform estimate on the
a-Hoélder norm of the gradient.

LEMMA 3.1. For all k>1

(34) b, sup [AD. ¢ = AD, ol < max{[b], [al}.
a,b

Similarly, both —A and —A + U(x) have compact resolvent on Hy(D), and their
spectrum thus consists of isolated, finitely degenerate eigenvalues. Moreover, if )\%30

denotes the kth eigenvalue of —A on Hy(D), then

(3.5) 1A = ABl| < U]l
In addition, any eigenfunction ¢ of —A + U(z) obeys
(3.6) 'S e ct (D).

Proof. The estimates (3.4)—(3.5) are consequences of the minimax theorem. The
regularity of the eigenfunction follows from the regularity of the boundary of D via,
e.g., Corollary 8.36 of Gilbarg and Trudinger [17]. O

The following estimate will be quite convenient for the derivations in the rest of
the paper.
LEMMA 3.2. For k > 1, there is a constant ¢ = c(k,a,b, D), such that

(3.7) sup g ¢lloo < ce¥/.
fega,b <

Proof. Let g be an eigenfunction of Hp_¢ for an eigenvalue A normalized so that

llgll2 = 1. The key observation is that the inner product <5z,em(d)5y>, with A(d)
taken with respect to the Dirichlet boundary condition, coincides with the transition
probability p;(z,y) of a continuous-time (constant-speed) simple random walk on Z¢
killed upon exit from D.. The eigenvalue equation and the Feynman—Kac formula

imply
(A _ 2
g(x) =M (e AT g (x)

Y (exp{ /0 o 625(X5)ds}g(Xte—2)) ,

where the expectation is over random walks (X;) started at . Taking absolute values,
bounding |£(z;)| by [|¢||co, and writing the result using the semigroup, we get

(3.9) |g()| < ePFIEE N oy (2, )|g(y)]-
yeD.

(3.8)

Applying the Cauchy—Schwarz inequality and using that g is normalized yields

(3.10) g(z)? < SOHIEN=I §™ o (2,4)2 < 2OFIEN=)tp, s (2, 2),
yED.

where the second inequality follows from the fact that p; is reversible with respect to
the counting measure. But p;(z, ) is nondecreasing in D, and so it is bounded by
the corresponding quantity on Z?. The local CLT (or other methods to control heat
kernels) then yields p;(z,z) < Ct~%/2 for all t > 1. Setting ¢ := 1 in (3.10), the claim
follows. d
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Note that Lemma 3.2 and the fact that |D .| = O(e~%) imply

(3.11) sup sup sup ||67d/2g$2,§||6,p<oo

p€E[l,00] 0<e<l £€Qq
for all £ > 1.

3.3. Continuum interpolation. Having dispensed with regularity issues, we
now proceed to develop tools that will help us approximate discrete eigenfunctions by
continuous ones. The piecewise constant approximation is a natural first candidate:
For any function f: Z% — R, set

(3.12) flx) = eid/2f(tx/ej), r e R

The scaling ensures that, automatically, (f,h) = (f,h) r2ray- Unfortunately, our
need to control the kinetic energy makes this approximation less attractive in detailed
estimates. Instead, we will use an approximation by piecewise linear interpolations
over lattice cells. The following lemma can be extracted from the proof of Lemma 2.1
in Becker and Konig [7].

LEMMA 3.3. There is a constant C = C(d) for which the following holds: For any
function f: Z% — R and any € € (0,1), there is a function f: R? — R such that
(1) the map f +— ]? is linear;
(2) f is continuous on R and f(xe) = f(z) for all x € Z9;
(3) for any x € Z¢ and any y € ex + [0,¢€)? we have

(3.13) o) < _max 1)

and

(3.14) fly) = f(2)| <d _max |V f(z)[;
zexz+{0,1}

(4) for all p € [1,00] we have

(3.15) 11l 2oy < C)] fllep
and
(3.16) I fllz2@ay = [1flle2| < C@IVD £l .25

(5) ]7 is piecewise linear and thus a.e. differentiable with

(3.17) 19 ey = IV £

€,2:

Proof. Although most of these are already contained in the proof of [7, Lemma 2.1],
we provide an independent proof as the desired statements are hard to glean from
the notation used there. A key point is that for any y = (y1,...,vq) € [0,1)¢ there
is a permutation o of {1,...,d} such that Yo(1) =+ = Yo(d)- Moreover, when all
components of y are distinct, such a o is unique.

Given y € ze +[0,¢€)?, let o be a permutation that puts the components of y — e
in nonincreasing order. Writing the reordered components of y/e —z as 1 > a3 >
- > ag > 0, we have

d
(3.18) Yy =1x€+e Z @i €4 (4

=1
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We then define

d
(3.19) fly) = f(z) + Za (VSO )@ + ey + -+ &oin),

where, we recall, (ng)f)(x) = flz+&)— f(x).

Our first task is to check that fis well defined. Obviously, the a;’s are determined
by y so we have only to check that the definition does not depend on o, if there
is more than one for the same y. That happens only when a; = «;41 for some
1=0,...,d—1 (where ag := 1 by convention). Then (3.18) holds also for ¢ replaced
by permutation ¢’ which agrees with o except at indices i,i+ 1 where /(i) :== o(i+1)
and o'(i 4+ 1) := o(i). Abbreviating z := x 4 é,(1) + - + &,(;—1), the two possible

expressions for f(y) will agree if and only if

(3.20) (Vo) F)(2) + (Vo(irn) ) (2 + €53))

= (Vo(i+1) )(2) + (Vo(i) /)2 + &5(it1))-
As is readily verified, both of these are equal to f(z+&,(;) +&,(i+1)) — f(2). Hence, ]7
is consistent. The map f +— fis obviously linear, thus proving (1).

We now move to checking continuity of f. First note that (3.19) extends to all
points in the closed “cube” C(x) := xe + [0,€]%. In light of uniform continuity of f
on the open “cube,” the extension is continuous, and thus independent of o (if more
than one o corresponds to the same boundary point). Now pick y € C(x) NC(z + &;).
As f(x) + ng)f(a:) = f(z + &), taking (3.19) on C(z) with o(1) := i and a1 := 1
has the same value as (3.19) on C(x + &;) with o(d) := i and a4 := 0. Hence, the
expressions for f on C(z) and C(x -+ &;) agree on the common “side” C(z) NC(z +&;),
and fis thus continuous on RY. Conclusion (2) is readily checked.

It remains to prove the stated bounds. For that we first note that (3.19) can be
recast as

d

(3.21) F@) = (o — aip)) f (& + o) + -+ E0(i))
1=0

where oy := 1 and agy; := 0. Using that a; — o;41 are nonnegative and sum up
to one, we get (3.13). This immediately yields (3.15). Similarly, (3.19) and the
fact that |o;| < 1 directly show (3.14). To get (3.16) from this, abbreviate h(y) :=

f()—f(ly/e]). Squaring (3.14), bounding the maximum (of squares) by a sum, and
integrating over y € R? yields

(3.22) 7]l 2y < C@NVD o
But the L?mnorm of y — f(|y/e]) is ||f|lc.2, and so we get (3.16) by the triangle
inequality.

Concerning (3.17), define W, := |J,cgaler +2: 2 € [0, €)%, Zo(1) > > Zo(d)}
and note that f is piecewise linear on W, with

(323) Vo fw) = (VLN (w/el + oy + o +e0in)s Y E W
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This implies
(3.24) /|Vf )P dy
We

d
=) > | vffg (x)|2/1{12a1>...>ad20}da1...dad.

=1 gezd
The integral on the right equals (d!)~!, so we get (3.17) by summing over all admis-
sible o and using that W,’s cover R? up to a set of zero Lebesgue measure. a

Our next item of concern is an approximation of functions on the lattice by
piecewise constant modifications. For each L > 1 and any f: Z¢ — R, denote

(3.25) fu(x) == f(L|z/L]).

Then we have the following lemma.

LEMMA 3.4. There exists a constant C(d) < oo such that, for any L > 1 and any
f: 7% - R,
(3.26) If = fully < C@L VOS]

Proof. Consider the box By := 29+ {0, ..., k—1}%. The triangle inequality shows

(3.27) > @) = flzo)]

rEBr~\Br_1

D (IO i L))

rzEBr_1~Bi_2 ZG{O l}d =1

This implies

(3.28) 3 (@)~ flao)| <20VAL Y (VO f)(a)].

rEBL, reB,

The claim follows by summing over zg € (LZ)%. O

3.4. Convergence of eigenfunctions/eigenvalues. We will now proceed to
tackle convergence statements. We will employ a standard trick: Instead of individual
eigenvalues, we will work with their sums

k k

(3.29) A€ =AY . and A=) AR

i=1 i=1

These quantities are better suited for dealing with degeneracy because they are con-
cave in ¢ and, in fact, admit a variational characterization (sometimes dubbed the Ky
Fan Maximum Principle [23]) of the form

k

(3.30) §(€) = inf (VO3 + (& k)

ONS =1
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and

k

(3.31) Ay = i{l.fw D IVl gy + (U d7) 2y
N

g =1

Here the acronym “ONS” indicates that the k-tuple of functions forms an orthonormal
system in the subspace corresponding to Dirichlet boundary conditions (and, in the
latter case, also tacitly assumes that the functions are in the domain of the gradient).
Substituting actual eigenfunctions shows that the sums of eigenvalues are no smaller
than the infima, but the complementary bound requires a bit of work. The argument
actually yields a quantitative form of the Ky Fan Maximum Principle which will be
quite suitable for our later needs.

LEMMA 3.5. Consider a separable Hilbert space H and a self-adjoint linear oper-
ator H on H which is bounded from below and has compact resolvent. Let {p;: 1 > 1}
be an orthonormal basis of eigenfunctions of H corresponding to eigenvalues \; that
we assume obey Air1 > N\; for alli > 1. Let 11, denote the orthogonal projection onto
{©1,..., 01} . Then for any ONS 9, ..., 4y that lies in the domain of H,

k

k
(3.32) D i Hbi) = (-4 M) > Qg — M) D [T

=1 i=1

Proof. We provide a proof as it is very short. The argument parallels the deriva-
tion of Lemma 3.2 in Barekat [6]. Since t1,...,%¢; is an ONS and H is separa-
ble, we may extend it into an orthonormal (countable) basis {t;: i > 1}. Denoting
a;j := (i, ¢;), the Parseval identity yields

(3.33) = Z|aw| <D layl? = (s, 05) = 1.

i>1

Since Y7,-, by = k, we have Y., b; = >_5_; (1 —b;), and it thus follows that

Z @[’uHQ/% Zz)‘ |aU| ij)‘j
=1

i= 1]>1 j>1
> Z Ajbj 4+ Aks1 b
(3.34) -t
=M At Y kg — A1 —by)
j=1
k
> A4 et Qe — M) D (1= by).
j=1
Writing the last sum as )., b;, we easily see that it equals Zle (11T 1. 0

Our next goal, formulated in Propositions 3.6 and 3.7 below, is to establish con-
vergence A (§) — Ay in probability. Throughout we assume the setting in Assump-
tion 1.1.
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PROPOSITION 3.6. For any 6 > 0,
(3.35) liJI})l Pe(A5,(§) > A +6) = 0.

Proof. Consider (a choice of) an ONS of the first k eigenfunctions %), ..., %

of —A+ U. By Lemma 3.1 all of these are C1**. Now define

(3.36) Filz) = {@}’9 (e) if z € D,

0 otherwise.
Thanks to uniform continuity of the eigenfunctions, we then have
(3.37) (fis fidez 3 (@D 9D ) 12(p) = ij

and so for € small the functions fi,..., fr are nearly mutually orthogonal. Apply-
ing the Gram—Schmidt orthogonalization procedure, we see that there are functions
{h$}r_ | and coefficients {a;;(€)}1<q j<k such that

k
(338) hi = Z((Sij —l—aij(e))fj, i=1,...,k,
j=1
with
(339) <hf, h§>6)2 = 5@' and Irzgfaqx|aij(e)| 3 0.

Moreover, the definition of f; and the C1:*-regularity of the eigenfunctions imply

(3.40) sup  |VeR(y) — e (VY L) (ly/el)| — 0,
yeD el0

distoo (y,D¢)>2¢
and the same continues to hold for i{ in place of f; as well. Hereby we get

(3.41) NVOR ez — 19605 s,

and, by continuity of U, also

(342) <U(6)7 (hle')2>€)2 ﬁ <Ua (p(Di)>L2(Rd)-
Once the two sides in each of these limit statements (for all i = 1,...,k) are within

some § € (0,1) of each other, the variational characterization (3.30) yields

k

(3.43) AL(E) S Ak +2k6 4+ (E=U(e), (h))?), o
=1
Invoking a union bound, we obtain
k
(3.44) P.(AS(€) > Ay + 3k0) < Z]P’e(@ —U(e), (), > 5).

=1
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The Chebyshev inequality now shows

(3.45) P((€ = Ue), (h)?),, 2 6) < 592 3 ng(a)

x€D,

where C' is a uniform bound on Var(¢(z)). But the hS’s are bounded, and since
|hS|le.2 = 1, the right-hand side is proportional to €?. As § was arbitrary, the claim
follows. o

PRroposITION 3.7. For any 6 > 0,

(3.46) lim P (A7) < Ak~ 8) =0.
€
Proof. Let ggi £ ,g(Dkz)f be (a choice of) an ONS of the first &k eigenfunctions
of Hp_¢, and let gy R ,§,§75 denote the continuum interpolations of the functions
2D o€ e=d/2gtk )5, respectively, as described in Lemma 3.3. The uniform

bound (3 4) on the elgenvalues ensures

(3.47) sup  sup e 1|V @g® L ell2 < oo,
éeQab 0<e<1

and so, in light of Lemma 3.3(4),

3.48 e G5 — ;5| — 0.
( ) 52}1231) <gz,§7 gj)§>L2(Rd) Y el0
Invoking the Gram—Schmidt orthogonalization, we can thus find functions 7L§ - Aﬁ; €

and coefficients a;;(&, €) such that

k
(3.49) Ce= (0 +ai(&0)de  i=1...k
j=1
for which
(3.50) <ﬁ§7€’ﬁ§75>L2(Rd) = 04§ and max sup |a1j (&, )‘ — 0.
N3] a,b 0

Thanks to the definition of D, both the g gi¢'s and hE s are supported in D.
Lemma 3.3(5), (3.47), and (3.49)—(3. 50) guarantee

3.51 RE 122 e — 2| V@ gt 2‘ 0,
( ) glslng z,§||L2(]Rd) e 9D€,§||2 0

while (3.14) ensures that

(3.52) sup
£€Qap

<U7 (E§7€)2>L2(Rd) - <U(6')’ (g(g’)e’f)2> 3 >

Once both suprema on the left are less than some § > 0, using the 715)5 in place of the
;’s in (3.31) and noting that the g(f,)e)f’s achieve the infimum in (3.30) yields

(3.53) A < AL(E) + 2k6 + Z & (g5 &)%)
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Now consider the piecewise constant approximation fr(x) = f(L|z/L]) to the func-
tion f(z) := (g, ¢(2))*. Since [V (g)[ly < C(d)|gll2[|VVgll2, Lemma 3.4, (3.47),
and the boundedness of U — £ give

(3.54) (Ule) =& (g5, £)*) < (Ule) = & (9, ¢)*)L) + CLe

for some C independent of £&. Setting By (z) := Lz + {0,..., L — 1}%, in the event

(3.55) Fro= () {5: ‘ 3 Uze) —5(2)‘ < 5Ld}
ze(LZ)? zE€BL ()
Br(z)ND#£D

we in turn have

(3.56) (Ule) = & (95 £)*)) < 6(1+ CLe),
again by Lemma 3.4. Assuming that C'Le < §, we thus get
(3.57) P(Ar > AL (€) + 5kd) < P(FF ).

A standard large-deviation estimate bounds P¢(Ff ) < c(eL)—de—ch, Choosing, e.g.,
L = ¢d/e for some c sufficiently small, the claim follows. 0

We are now ready to conclude.

Proof of Theorem 1.2. By Propositions 3.6 and 3.7 we have

(3.58) A o A R
€
Then
P ‘
(3.59) Apy e = N(6) = AL (6) oo M= AP
for all £ > 1 as well. 0

The proof of Proposition 3.7 gives us the following additional fact.

COROLLARY 3.8. Given any choice of & — gng, . ,gg;g, let g e, g5 de-
note the continuum interpolations of the functions e_d/zg%i £ e_d/Qggi’f as con-
structed in Lemma 3.3. Assume N5 > X5 and let Ty denote the orthogonal
projection on {p\), ..., 0%} . Then, for any §' > 0, there is an event Ej s such
that

k
(3.60) {51 Z TGl 2Ry > 5'} C Ekesr and lelfg Pc(Ek,c,s5:) = 0.
=1

Proof. An inspection of the proof of Proposition 3.7 reveals that

k
(3.61) {f : Z(|\Vh§7g”i2(ﬂw) +(U, (h§7§)2>L2(Rd)) > A — 5/}
i=1
is a subset of the event Ej 5 := Ff o where Fp, . is the event in (3.55) with proper

choices of § and L. Thanks to Lemma 3.5, the inclusion in (3.60) thus holds for Efg
in place of g.. Adjusting ¢ slightly, the identities (3.49)—(3.50) then yield the same
for the g;’s. 0
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Remark 3.9. Note that under the assumption A5 > A% the orthogonal com-
plement {(p(Ll,), .. .,(p([’;)}J-, and thus also the projection II;, are independent of the
choice of the eigenfunction basis. The formulation (3.60) avoids having to deal with
questions about the measurability of eigenfunctions and/or the Hilbert-space projec-
tions.

4. Concentration estimate. We now move to the proof of a concentration
estimate for eigenfunctions around their mean. The proof actually boils down to
a well-known concentration inequality due to Talagrand that we recast in a form
adapted to our needs.

THEOREM 4.1 (Theorem 6.6 of [34]). Let N € N, and let |-|2 denote the Euclidean
norm on RYN. Let f: [-1,1]Y — R be concave and Lipschitz continuous with

(4.1) L:= sup 1£(6) = £l < 00.

&nel—-1,1]N 1€ —nl2

Then for any product probability measure P on [—1,1]N and any t > 0,

(4.2) P(|f — med(f)| > t) §46XP{—ﬁ}’

where med(f) denotes the median of f.

Proof of Theorem 1.3. We will first prove concentration for the quantity Af(€)
and then extract the desired statement from it. In light of Theorem 4.1, it suffices
to derive a good bound on the Lipschitz constant for f(§) := Af,(£). Fix &, and let
{Q(Li)l,g: i=1,...,k} be a set of eigenfunctions satisfying (1.12) that achieve the cor-

responding eigenvalues {\j) .:i=1,...,k}, respectively. For any 7, the variational
characterization (3.30) of Aj, f&) yields

k
(4.3) ALE) — Apm) < Y (@) — () S |9y, (@)
j=1

x€D,

Peeling off the sum over j and applying the Cauchy—Schwarz inequality, we obtain

k 1/2
(4.4) AL — A <61l 3 ( 3 \gg;n(a:)r‘) |

7j=1 zeD.

But Lemma 3.2 ensures that |g(5)€ n(x)| < ce?/?) and the normalization convention
(1.12) then gives

(4.5) AL(E) = Af(n) < kee? [€ =],

Since this is valid for all n, £, the same estimate applies to |AL(§) — AL(n)| as well.
Now fix ¢t > 0. Talagrand’s inequality readily yields

(4.6) P.(JAf — med(Af)| > t) < dexp{—ct?e ¢}

But that implies the same bound also for med(A{,) replaced by EAS. Since A§ (&) is
the sum of the first k£ eigenvalues, the desired inequality for a single eigenvalue follows
by considering the differences Af, (&) — Aj,_(€). O
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Remark 4.2. We note that, thanks to pointwise boundedness of the support of £
and the Lipschitz property of the eigenfunction, the proof could equally well be based
on Azuma’s inequality.

For later purposes we restate the concentration bound in a slightly different form.

LEMMA 4.3. Let k > 1. There is a constant ¢ > 0 such that for any t > 0,

. (k) y\(®) 42 —d
(4.7) g?é%}i P, <§(zb)lé%b]|)\De’E Ab | > t) < 4eXp{ cte }

holds for all sufficiently small €.

Proof. Let t > 0 be fixed. From Theorem 1.3 we know that A} . — A% in
probability. Since the eigenvalues are uniformly bounded, this implies

2
(4.8) [EAS) c = Ap)| < 3!
for € > 0 sufficiently small. Moreover, (4.5) gives

1
(4.9) sup |)‘(Dki7§ — )‘(Dkim| < el < 3 t,
&)=n(y)

Yy#x
once ¢ is sufficiently small. Hence, the probability in (4.7) is bounded by the prob-
ability that A}’ . deviates from its mean by more than ¢/3. This is estimated using
Theorem 1.3. o

5. Gaussian limit law. We are now finally ready to address the main aspect
of this work, which is the limit theorem for fluctuations of asymptotically nondegen-
erate eigenvalues. The main idea is quite simple and is inspired by the recent work
on fluctuations of effective conductivity in the random conductance model (Biskup,
Salvi, and Wolff [10]). Consider an ordering of the vertices in D, into a sequence
r1,...,2|p,|, and let Fp, := o (&(x1),...,&(2m)). Then

|De|
(5.1) N e ~ENS e = 3 (BN el Fn) — B, | Fn))

m=1

represents the fluctuation of the kth eigenvalue as a martingale. We may then apply
the Martingale CLT due to Brown [11] which asserts that a family

(5.2) {(M,, Fr): m=0,...,n(e)}
of square-integrable R”-valued martingales such that

(0) M§=0and n(e) — oo as e 0,
(1) there is a finite v-dimensional square matrix o> = {o7;} for which

n(e)
(5.3) efdmZ:lE((an_ <)M, — fml)T‘]:m*l) ij) 027

(2) for each § > 0,

n(e)

(54) ey B(IMy, — My P Larg s, sseirzy | Fnot) % 0
m=1
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satisfies

—d/2 € law
(55) M n(e) 0 N(O g )
The proof of Theorem 1.4 thus reduces to verification of the premises (0)—(2) of this
result for

(5.6) M= 3 (B ¢ Fn) ~EOG) ([ Fna))
m=1

and n(e) := | D|.

The condition (0) is checked immediately, but the control of the limits in (1) and
(2) will require a more explicit expression for the martingale differences. Here we note
that, for any function f = f(&1,...,&,) on R™ that is absolutely continuous in each
variable and for any collection &1, ...,&, of bounded independent random variables
we have, for F, :=0(&1,...,&m),

&m
60 B - EAFa) =B [ 2

m

(515- .. afm—lvéagm-i-lv" aé\n)dév

where the expectation is over the collection of random variables 2, which are copies
of ¢ independent of . The integral is in the sense of Riemann, and we use the
corresponding notation to explicate the sign change upon exchanging the limits of
integration. To validate the condition of absolute continuity (and justify the use of
the Fundamental Theorem of Calculus), we prove the following lemma.

LEMMA 5.1. The function & — /\“‘) ¢ s everywhere right and left differentiable
with respect to each §(x). The set of pomts where the two derivatives disagree is at
most countably infinite; else the derivative exists and is continuous in §(x). The partial
derivatives ﬁ/\%if are bounded and, except at countably many values of £(x),

a k k
(58) gt bl = lobLe@)

for any possible choice of gg;g (i.e., all choices give the same result).

Proof. Note that Ay . = A5 (&) — Aj_(€). Since & — Af(€) is concave—being
the infimum of a family of linear functions—it is right and left differentiable in £(x)
at all values. The derivatives are nonincreasing and ordered, so there are at most

countably many points where they disagree. Moreover, at differentiability points of
A§, (4.3) yields

(5.9) 5 TARE Z\gﬁsgg

for any choice of eigenfunctions g!) E e ,g(Dk) ¢ At common differentiability points

of both A (§) and A§,_,(§), we then get (5.8). O

The upshot of Lemma 5.1 is that we are permitted to use (5.8) in (5.7) with
no provisos on eigenvalue degeneracy. Our goal is to replace the modulus-squared of
g(Dk) € by that pertaining to the corresponding eigenfunction in the continuum problem.
However,jhere is a subtle issue arising from the integration with respect to the dummy
variable £ in (5.7). Indeed, with this variable in place of £(z), the configuration £ may

not even be in the support of P.. We handle this with the help of the following lemma.



2694 M. BISKUP, R. FUKUSHIMA, AND W. KONIG

LEMMA 5.2. Given k > 1 and a configuration &, suppose that )\(k) remains sim-
ple as &(x) varies through an interval [a,b]. Then for any & satzsfymg y) =¢&(y)

for y # x and for any &(x),& (x) € [a,b],
¢ (z) o
(5.10) ‘g(Dkz)f,(x)‘ = ‘gg)f(x)‘ exp{/ﬁ( : G([’;i (x,z;€) dé(x)},

where € is the configuration that agrees with & (and &) outside x where it equals &(z)
and

(511) G([l;i ((E, y»&) = <5wa (HDe@ - )‘([,;i,g)il(l - ﬁk)6y>g2(zd)

with Py denoting the orthogonal projection on Ker(/\%L5 —Hp_¢) and Hp_¢ — /\%1)5
now regarded as an operator acting on Ker()\%z’5 — Hp_¢)*

Proof. To make notation brief, let us write A, respectively, g, for the relevant
eigenvalue, respectively, eigenfunction. Since the eigenvalue is simple, Rayleigh’s per-
turbation theory ensures that the eigenfunction is unique up to normalization and
overall sign. In particular, (5.8) holds. Moreover, also the eigenfunction g—with the
sign fixed at z, for instance—is differentiable in £(z). Taking the derivative of the
eigenvalue equation, we get

99 _
()

Note that we have (g, %(gz)) = 0 by differentiating ||g||2 = 1. Interpreting the right-

(5.12) (A—Hp,¢) 9(@) 1y — (@) g.

hand side as (1 — ﬁk)(g(x)l{z}), we can now invert A — Hp_¢ to obtain

0
1 ——g(y) = G (y, ; .
Evaluating at x, we get an autonomous ODE for g(z). Solving yields (5.10). d

Our next aim will be to show that, whenever A%} is simple, the term in the
exponent of (5.10) actually tends to zero as € ] 0.

LEMMA 5.3. Fork > 1 let § be such that 0 < § < £ min{A% =A%~V A% =A%},
and set

(5.14) =N {g s X ¢ — —1,k,k+1}.
xeD, €oclab]
Then
(5.15) max sup sup ’/ GP) (x,x; 6)dé,| — 0.
€D, € €la,b] E€EAL,c 0

Proof. Take k such that A} is simple, and note that, for £ € Ay, the eigen-
value )‘(Di ¢ remains simple for all values of £(x). Then

1 ; 2
(5.16) SACETIEDY 3T aw |95, ¢ @)]"
l;i D¢,¢ D.,§
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Thanks to (3.4) and the fact that the eigenvalues of —e 2A(4) are close to those of
the continuum problem, for each R > 0 there is K > k such that, for any sufficiently
small € > 0,

(5.17) i>K = A) >A) . +R

uniformly in £ € Qg . The corresponding part of the above sum is then bounded by

i v 1
(5.18) o<y T A(k) 9D, ¢ () Z l95.¢@)]" < 5
i>K "'De.é 1>K

where we used the Plancherel formula to bound the second sum by (8, d,)2 = 1. This
reduces an estimate of G(k) (z,z;€) to a finite number of terms.
On Ag,. (5.8) and Lemma 3.2 show, for all € sufficiently small,

) B)
(5.19) V€€ Ape,Vi=k—1,k+1: sup |AD =P [>5 —cellb—al > -
£(r)€lab] o3 4

The sum of the first K terms in (5.16) can thus be bounded by c¢Kd§~'e?, uniformly
on Ay . This permits us to take R — oo simultaneously with € | 0 and conclude the
claim. 0

Given € > 0, consider now an ordering z1,...,z|p,| of vertices of D, and given
£,€ € Qg p, denote by £0m) the configuration

m) () — é(fi) if i <m,
(5.20) & (x4) {f(xi) i

Hereafter, we regard f as an 1ndependent copy of &, and denote the corresponding
expectation by E. Let F, o(&(x1),...,&(xm)). The martingale difference can then
be written with the help of Lemma 5.1 as

Zi =ED. [ Fm) = EQp e[ Fn)

_ O] @

(5.21) N E(/\ Degtm A, Elm= 1))
,\( g(wm)‘ - ( )‘2 ~
=L / g ‘ Zim Tm df),
g(wm) De’f( :

where §<m> is the configuration that equals £ on {x1,...,z,n_1}, takes value é at T,
and coincides with § on {2y, 11,...,2p_|}. Notice that Lemma 3.2 immediately gives
(5.22) |Z

for some constant ¢ < co. In particular, condition (2) in the above-mentioned Mar-
tingale CLT holds trivially. For condition (1), we will proceed, as mentioned before,
by replacing the square of the discrete eigenfunction by its corresponding continuum
counterpart. The key estimate is stated in the following proposition.



2696 M. BISKUP, R. FUKUSHIMA, AND W. KONIG

PROPOSITION 5.4. Suppose \) and AP are simple. Abbreviate Be(z) = ex +
[0,€)?. Then we have

| D]

> (B2 20) | Fc)

m=1
_/ dy V |<p(t) | ‘(p(.]) ‘ >
Be(zm)

The proof of this proposition will be done in several steps. Recall the definition
of event Ay, and note that on Ay the eigenfunction g 5 is unique up to a sign,

(5.23) E

— 0.
el0

and, in particular, there is a unique measurable version of 5 = |gp, ¢ (x)|? for each .
In light of the concentration bound in Lemma 4.3 we have

(5.24) /\%) simple = P, (Ak,e) m) 1.
Our first replacement step is the content of the following lemma.

LEMMA 5.5. Suppose )\(5) is simple. Then

|De|
(5.25) *dZ EOZ““ (Em) = Ulern))E( |95 (o) 1.

Fn) D 0

Proof. Inserting the indicator of §<m> € Ap. and/or its complement into the
third line of (5.21) and applying the boundedness of the discrete eigenfunctions from
Lemma 3.2 shows that

&(xm)
. = 2.7
(5.26) Zy’ _]E<l{5<M>eAk,e} /g( ) |ggi,a§<m> ()] df)

< ce’E(lac |Fm),

where, we recall, the expectation E affects only gand S0 E(l{g(m) ¢ Ay E}) =E(lac _|Fm).
Abbreviate temporarily

. ¢ -
(5.27) Fn(€) = exp{2/ G (xm,xm;g’)df’}.
&(@m)
In the event {€(™) € Ak}, Lemmas 5.1 and 5.2 along with ) (2,,) = E(2m) yield

&(xm) &) 2~ ~ ) 2
o 1 o )" (eCom) )l o)

&(@m) ) 2 ) ~
(5.28) :/E ) (gD o @m)|” = 9 iy (2m)| )d§

&(xm)

k 2 ~ ~
= |95, gom (@) /azm) (Fm(€) — 1)dé.

Lemma 5.3 then bounds the difference Fp,(€) — 1 uniformly by e?(©) — 1 for some
d(e) > 0 that tends to zero as € | 0. Thanks to the uniform boundedness of the
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eigenfunctions, this and (5.26) yield

o~

Z0 — ﬁ(l{g(m)eAkye}(f(xm) = &@m))|9)) zm (xm)|2)

< ce E(lA; €|]-'m) + ced(e‘s(e) — 1).

(5.29)

The configuration €™ does not depend on & (zm), and so we may take expectation
with respect to &(x,,) and effectively replace it by U(ex). Recasting E as conditional
expectation given F,,, and using that £(x,,) is F,-measurable, we thus conclude that

(5.30) 24 = (&lwm) = Ulewn)E( |95 ¢(om)[* 1a,.. | Fn)

< cel E(Lag |Fm)+ ced(e‘s(e) —1).

Squaring this and taking another expectation shows that the left-hand side of (5.25)
is bounded by ce?|D,| times Pe(A; ) + (e?(9) —1). By (5.24), this tends to zero as
claimed. a

Next we note the following.

LEMMA 5.6. Suppose )\%” is simple. Then

|De|

5.31 / dy E D" — e g (@m)]| 1a ) — 0.
(5:31) ZB(rm)y (W) I’ 95 an) | L. clo

Proof. Recall the setting of Corollary 3.8, and, in particular, given the scaled
discrete eigenfunctions e~ %2¢g (” L g e_d/Qgg) & let '§f’§, e ,§,§,E denote their con-

tinuum interpolations. As )\(5) is simple, Corollary 3.8 guarantees that these functions

project almost entirely onto the closed linear span of {¢%, ..., '3} for both £ = k—1

and £ = k. As these functions are also nearly orthogonal, we get
(532) Pe(Ak,e & H |§k §| - |<p(k)| HLQ(D) > 5) ﬂ 0

for any § > 0. As both [gg .| and l¢%’| are uniformly bounded, this implies

>—>0
el0

~e 2
(5.33) /R dy E( ‘ o5 W = (a5 W) 1a,..
with the help of (5.24). But (3.14) gives

| De|

2
30 3 [ aye([atew - e 1)
< C@E(IV Vg 314, ),

which tends to zero proportionally to €2, due to boundedness of the kinetic energy.
Combining (5.33)-(5.34), we get the claim. O
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Proof of Proposition 5.4. Combining Lemmas 5.5 and 5.6, and using that the
conditional expectation is a contraction in L2, we get

| D]

(5.35) Z/B( )dy IE< *dZ$>_(§(a:m)—U(exm )% (y |‘> —

for both £ =4, j. The claim now reduces to

|Dc|
(5.36) > /B R AORCEREH Plegwl — o

which follows by uniform continuity of y — V(y) and the boundedness of the eigen-
functions. |

Proof of Theorem 1.4. Thanks to Proposition 5.4 and the fact that |B.(z,,)| = €,

|De|
—d (k) r7(Fg) (k; ) (kj ) 2
a1 YR ) [ VOIS 0] e Wl d

in L!(P.) and thus in probability. This verifies the (last, yet unproved) condition (1)
of the Martingale CLT, and so the result follows. d

Proof of Theorem 1.6. The relation (1.16) is a direct consequence of Lemma 5.6
and the boundedness of eigenfunctions. For (1.15) we again drop the suffixes on all
quantities and write, on Ay,

(5.38)  T® —E(T™ 14,.)
= AP —EQA® 14, )= Y (E() — Ulze)) |g™ ()]

z€D,
(@)]° - E(€@)s® @) 1a,.))-

+Z(

zeD.

Lemma 5.6 and the boundedness of eigenfunctions now allow us to replace the square
of the discrete eigenfunction by €4|} (z€)|? up to an error that is negligible at overall
scale €?. Using Z,, := E(A\®|F,,) — E(A®|F,,_1), we thus get

(5.39) e Y2(TW —E(T™ 14,.))
|D|

D4 3 (€~ (Ewm) — Ulern) | (cn)]”).

where o(1) represents a random variable whose variance vanishes as € goes to zero.
The sum on the right is a martingale, and so its variance is estimated by the sum of
variances of individual terms. Using a slight modification of (5.35), the result tends
to zero as € | 0. a
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