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Abstract

We consider the parabolic Anderson model (PAM) 0,u = %Au + £u in R? with a Gaus-
sian (space) white-noise potential £. We prove that the almost-sure large-time asymptotic
behaviour of the total mass at time ¢, written U (¢), is given by log U (t) ~ xtlog ¢, with the
deterministic constant y identified in terms of a variational formula. In earlier work of one
of the authors this constant was used to describe the asymptotic behaviour of the principal
eigenvalue A1 (Q;) of the Anderson operator with Dirichlet boundary conditions on the box

Qi =[5, 512 by A1 (Q4) ~ xlogt.
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1 Introduction and main results

In this paper, we continue the programme of proving intermittency properties of the parabolic
Anderson model in two dimensions with Gaussian white-noise potential. In Section [I.1] we
introduce the model and its solution, in Section [I.2] we describe the difficulties and our strategy
to resolve them, in Section [I.3] we formulate our main results, and in Section [[.4] we relate our
findings to analogous earlier results that consider more regular random potentials.

1.1 The parabolic Anderson model and intermittency

We consider the solution to the (Cauchy problem for the) heat equation with random potential,
formally defined by

du(t,z) = Au(t, z) + £(x)u(t, z), (t,x) € (0,00) x R?,

u(0, -) = do, M

This equation is called the parabolic Anderson model (PAM), the random Schrodinger operator
%A + £ on the right-hand side is called the Anderson Hamiltonian. In our case, the potential £
is a Gaussian white noise in two dimensions, i.e., a distribution rather than a function. Here, the
solution u(t, -) needs to be constructed via a renormalization procedure. Indeed, ¢ is replaced by
a mollified version £. minus a correction ¢ ~ % log € and it is proved that the solution u. of the
PAM with potential & — ¢ has a limit as e — 0. This is the solution u: [0, 00) x R? — [0, c0)
that we will consider here. It was first constructed — on the torus T? instead of R? — by Hairer [17]
and by Gubinelli, Imkeller and Perkowski [17,[14], using the framework of regularity structures
and the one of paracontrolled distributions, respectively. A construction on the entire R? is due to
Hairer and Labbé [18]] who realized that with a partial Cole-Hopf transform one can avoid using
paracontrolled distributions or regularity structures.

As has been proved for certain choices of random potentials, the PAM displays an interest-
ing intermittency effect. This means that it admits a highly pronounced concentration property
on large space-time scales, which distinguishes it clearly from models that show a diffusive be-
haviour in the vicinity of the (functional) central limit theorem. Indeed, earlier investigations



of the PAM on Z¢ with i.i.d. potential, and on R? with regular potential, have revealed that the
function (¢, -) is highly concentrated on few small islands that are far from each other and carry
most of the fotal mass of the solution,

U(t) = /R2 u(t, x) dz. )

The main source of conjectures and proofs has been — under the assumption of sufficient regular-
ity — the Fourier expansion in terms of the eigenvalues A\; > A2 > A3 > ... and corresponding
L?-orthonormal basis of eigenfunctions ey, e, e3... of %A + ¢,

u(t,z) = Z e, (1)en (0). 3)

Indeed, according to the phenomenon of Anderson localization, the leading eigenfunctions ey, ea, . . .

are supposed to be concentrated in such islands. A proper proof of this concentration and the one
of u(t,-) in the same islands has been given in terms of a kind of spatial extreme-value picture
in large centred boxes in some few cases, for example for ¢ an i.i.d. potential on Z¢ with double-
exponential tails by Biskup, Konig and dos Santos [5]. See Konig [21] and Astrauskas [2] for
two extensive surveys of the mathematical treatment of the PAM until 2016.

1.2 Our main purpose and strategy

The present paper is a contribution to the development of methods for proper formulation and
proofs of intermittency for the PAM in the case of a Gaussian white-noise potential in two di-
mensions. This problem makes sense for dimensions d = 1, 2, 3. For d > 4 the PAM with white-
noise potential is scaling-critical respectively scaling-supercritical in the sense of Hairer [[17] and
there is no known solution theory. The cases d = 2,3 are conceptually similar to each other
and most arguments developed for dimension 2 are expected to extend to dimension 3, but to
require more technicalities. On the other hand, the one-dimensional case is simpler for several
reasons, and there already exist very good localization results for the leading eigenfunctions of
the Anderson Hamiltonian by Dumaz and Labbé [[11].

The main purpose of the present paper is to identify the almost-sure large-t asymptotics of
the total mass, U (t), of the solution to (I)). Based on earlier treatment of this question for more
regular random fields, it is easy to guess what the answer should be. Indeed, in case £ is a
more regular potential, then the total mass of the solution to the PAM admits a Feynman—Kac
representation, informally written as

U(t) = B0 [elo €(Bs)ds] )

for a standard Brownian motion B in R? starting from 0. From this one reads that it is probabilis-
tically very costly for the Brownian motion starting from the origin, to reach a remote site of dis-
tance ¢ from the starting site. This should imply the asymptotic behaviour log U (t) ~ log U(t),
where Uy(t) is the total mass of the solution w(¢,-) to (I) in the centred box Q; = [5, 2] of
diameter ¢ with Dirichlet boundary condition. Using the expansion (3) in that box, we guess that
log Uy(t) ~ tA1(Q¢), where A1(Q;) is the corresponding principal eigenvalue of the Anderson



Hamiltonian %A + ¢ (after renormalization): See Allez and Chouk [1]] and also Gubinelli, Ugur-
can and Zachhuber [16] and Labbé [22] for the derivation of the spectrum and Rayleigh-Ritz
representations for the eigenvalues of the Anderson Hamiltonian on boxes. The asymptotics of
the eigenvalues as the size of the box diverges have been described by Chouk and van Zuijlen [8]],
who show that almost surely A1 (Q;) ~ xlogt ast — oo, where x > 0 is a deterministic con-
stant given by the variation formula (5). Summarizing, we expect that the large-t asymptotics
of U(t) are given as log U(t) ~ xtlogt. Such a line of arguments has been made rigorous for
various types of regular or i.i.d. random potentials in R¢ and in Z¢ as the ambient space; see [21]]
and [2].

However, in the present case of u being a renormalized solution for a Gaussian white-noise
potential, it presents a formidable task to carry through this programme. The difficulty lies in the
fact that the Feynman—Kac representation () is only formal notation and meaningless. We could
interpret it rigorously with the help of the random polymer measure in the work by Cannizzaro
and Chouk [6]], but that does not seem very helpful because the construction of the polymer
measure actually involves the total mass. Also, under the polymer measure the coordinate process
roughly speaking solves the SDE dX; = Vlogu(t — s, Xs)ds + dBs, so to analyze X we
already need information about u. Hence, we cannot rely on the results of [6] and will therefore
go via another route; we explain this now.

The main difficulty to justify the above heuristic steps is to prove the assertion log U (t) ~
log U.(t). To derive a proof we use a slight modification of the following procedure, which is
often used for sufficiently well-behaved random potential £&. We decompose the Feynman—Kac
representation for U(t) — U;(t) into the sum over k& € N of the contributions to expectation

of elo &(Bs)ds coming from Brownian paths (Bs),c[ that leave the box Qyx, but not the box
Q++1. The k-th contribution then is estimated in terms of the maximum of the potential £ within
Q.+ (using extreme-value analysis, say) times the probability that the Brownian motion leaves
Q@+ (using the reflection principle, say). In order to implement this strategy in our setting, we
use a “partial Girsanov transformation”, an idea that was introduced in the setting of the KPZ
equation by Gubinelli and Perkowski [[15]. (We drop the mollification and renormalization and
the dependence on the box from the notation.) Denote by Z = (1 — %A)*lg the resolvent of the
random potential and by Y the solution to

(n—3A)Y =L1vZ?+ VY - VvZ,

which exists and is unique for sufficiently large 7 > 0. Now put b = V(Z 4 Y') and consider the
solution X to the SDE dX; = b(X}) dt + dB; for some Brownian motion B. Then it turns out
that

U(t) = E[elo ZHn=Y+3VY ) (Xs) ds o(Y+2)(Xo)=(Y+2)(X0) |

While this Feynman—Kac-type representation looks more complicated than (@), it has the ad-
vantage that it also works for the white-noise potential. To carry out the general proof strategy
outlined above we then need to understand how Y, Z grow with the box size, and we need bounds
on the probability of X leaving the box ;. Since we do not need very precise bounds on Y, Z,
the first part is quite easy and essentially follows from Gaussian hypercontractivity. From this we



obtain that both Y and Z grow at most logarithmically with respect to the box size. The estimate
on the probability of X leaving the box (), is shown in [28] Corollary 1.2] and is a consequence
of heat kernel estimates for the transition kernel of the diffusion X.

1.3 Main results

Let us precisely formulate our main results. For a smooth potential V', we denote by A, (Qy, V)
the n-th largest (counted with multiplicity) Dirichlet eigenvalue of the operator %A + V in a box
Q: = [—%,L]* and we write A\(Q¢, V) = A(Qy, V) for the principal one. We introduce the
following variational formula:

x=8 sup kué—/w?- 5)
PeC(R2):
l]| 2=1

X is finite and §x equals the smallest C' > 0 such that || f||1, < C||[Vf|2,[/f|2. forall f €
H'(R?) (this is Ladyzhenskaya’s inequality, which is a special case of the Gagliardo-Nirenberg
inequality), see [|8, Theorem 2.6].

The following theorem is our main result. For A C R we write

3 2 . (13 M at 2
ag ~by, te€At— instead of 1112 b—zl .
te
t—o00 t

Theorem 1.1.  (a) [Asymptotics of the total mass] Almost surely,

logU(t) ~ xtlogt teQ,t— oo.

(b) [Asymptotics of the min and max] For all a € (0, 1), almost surely

log < min u(t,x)) ~ log <sup u(t,x)) ~ xtlogt teQ,t— oo
r€Qa zER2

Theorem [I.1][(b)] means that on the level of the logarithmic asymptotics we see no intermit-
tency effect, the L°°-norm of the solution to the PAM almost surely has the same logarithmic
asymptotics as the L'-norm.

Theorem[I.T|(a)|is an immediate consequence of the following three main results, Proposition
and

The first main step is a ‘compactification’, a reduction of the solution to some (¢-dependent)
box with Dirichlet boundary condition. We write Uy, for the total mass of the solution of the
parabolic Anderson model on the box (), with Dirichlet boundary conditions.

Proposition 1.2 (Reduction to a box). Almost surely,
log U(t) ~ log Uy(t) ast — oo.

The following is a strengthening of the main result of [8], in that we develop and use a
renormalization technique here that does not depend on the box considered. Recall our notation
of eigenvalues from the beginning of this section.



Theorem 1.3 (Eigenvalue asymptotics: renormalization and large boxes). Let £ = 1. * £ be a
mollification of the white noise for a mollifying function v (see Section|2)) for € > 0. There exists
a C'in R that only depends on 1) such that with c. := % log % + C, we have for all L € [1,00)
and n € N, in probability

lim A (Qr, &) — ez = An(Q0),

where A\, (Q1) is the n-th largest eigenvalue (counting multiplicities) of the Anderson Hamilto-
nian defined by the enhanced white-noise potential (see (2.10)). Moreover, for all n € N and for
any countable unbounded set 1 C (e, 00), almost surely,

1; )\n (QL) -
111 =
Lel,L—soo log L

The last step is to use the eigenvalue expansion in (3)) in a suitable way to derive that the large-
t exponential rate of the total mass in a large box is asymptotically equivalent to the principal
eigenvalue:

Theorem 1.4. Almost surely
2logU(t) ~ A(Qr)  t€Q,t— oo

Combining Proposition [I.2] with the second assertion of Theorem [I.3]and Theorem [T.4]im-
plies Theorem|1.1

1.4 Remarks on more regular Gaussian potentials

It is interesting to note that an interchange of the two limits ¢ — oo and € — 0 (the mollifica-
tion parameter) does not even phenemonologically or heuristically explain our main result; the
asymptotics of Theorem lie much deeper. Indeed, if we use for example the mollification
& = pe x & (with p. the Gaussian kernel with variance ¢), then we obtain a smooth centered
Gaussian field with covariance function ps., using the convolution property of the Gaussian ker-
nel. The almost-sure large-t asymptotics of the total mass U, () of the solution wu.(¢,-) of (I)
with potential & — c. are given in Gértner, Konig and Molchanov [13] by

(logt)i(1+o0(1)), t— oo. (6)

%log Us(t) = —ce + \/%(logt)% — \/21?5
While the first term, c., comes simply from subtracting it from the potential &, the other two
terms are the asymptotics of A(Qr,,&:) (we used that log L; ~ logt). Indeed, they come from
a second-order extreme-value analysis of the Gaussian potential in ()r,: its absolute height is of
order (logt) 2, due to Gaussian tails, and the last term comes from its geometry in the local peak
in an island of diameter < (log t)_% in which the potential approaches an explicit parabola. In
contrast, the asymptotics of the principal eigenvalue of the limiting (enhanced) potential, A(Q 71, ),

are actually of order logt, due to exponential tails of A(Qr,) instead of the Gaussian tails of
MQr,, &), see [8l Theorem 2.7].



A closely related work to ours is Chen [7]], where the Gaussian potential & in R? was assumed
to (be centred and stationary and) have a covariance matrix B that behaves like B(z) = o?|z|~®
as * — 0 with 02 € (0,00) and @ € (0, min{2,d}). Note that ¢ is not a function, although it
is still more regular than the white noise in d = 2. Then the almost-sure asymptotics of the total
mass are identified as

tim —2BY0 o402y, (7)
= t(logt)i—=

where (see [[7, Lemma A.4])

9*(2)g*(y) I SR
o= s [( L dwdy)’ - Vel
geH (RY): [gl| 2=1 L\ JRE SR |2 — ]

Like in Theorem|[I.1] the asymptotic behavior is given by an interesting variational formula, and
the powers of the logarithm coincide for the boundary case o = 2 in d = 2, although in that case
X2 = 0o (contrary to our situation where Y is finite).

In the recent work by Lamarre [23]], a ¢-dependent Gaussian regularization of the eigenvalues
in the box (—t,t)? and of the total mass of the PAM at time ¢ is asymptotically analysed in
dimensions d € {1,2,3} for t — oo. A critical scale for the size of the vanishing regularization
parameter is identified: If it vanishes less fast than this scale, then the first-order asymptotics are
identical to the ones for a fixed regular Gaussian field, and if it vanishes faster than this scale, then
this asymptotics is the same as the ones for the unregularized Gaussian white noise in d € {1, 2}
(proved in [[11]] in d = 1, in [8] and the present paper, respectively, in d = 2), with an analogous
result in d = 3. The techniques of 23] do not allow for the investigation of the unregularized
white-noise case, which we consider in the present paper. Our main result appears there as [23]
Conjecture 1.19].

1.5 Outline of the paper

The rest of the paper is built up as follows. In Section [2] we introduce fundamental notation
and auxiliary material involving representations of the solution of the (Cauchy problem for the)
heat equation with general potential on a box, in particular both the spectral representation and
a Feynman—Kac-type representation. In Section |3| we prove Theorem 1.4, that is, we derive the
asymptotic behavior of the total mass of the solution with white-noise potential on a large box. In
Section 4] we prove Proposition that is, we show that the logarithm of the total mass at time ¢
is asymptotically the same as the one of the restriction to a box with diameter ¢. In Section 5| we
prove Theorem Section [0]is dedicated to proving that the enhanced noise that we obtain
here via mollification on the entire R?, after projection to a box, is the same as in the setting of
[8] where a box-dependent approximation is carried out.

1.6 Notation

We write N ={1,2,...},Ng = {0} UNand N_; = {—1} U Ny. For families (a;);cr1, (;)icr in
R for an index set I, we write a; < b; to denote the existence of a C' > 0 such that a; < Cb; for
all7 € L.



2 Two representations for the heat equation with potential on a box

In this section we present two different representations of solutions to the heat equation with a
(deterministic) irregular potential on a box with Dirichlet boundary conditions. First, in Sec-
tion we use the Anderson Hamiltonian with Dirichlet boundary conditions for irregular po-
tentials constructed in [8]] to obtain a spectral representation. Then we present a new Feynman—
Kac-type representation, as explained in Section Due to the irregularity of the potential the
classical Feynman—Kac representation does not make sense. We are however able to adapt to
irregular potentials using a trick which is inspired by the ‘partial Girsanov transform’ of [15].
We do this for a deterministic potential in Section [2.2]and apply it to the white noise potential in
Section2.3]

First we introduce the heat equation with smooth potentials and for enhanced potentials, see
and

In this section, for ¢ > 0, 6. is a smooth function on R? and c. € R. More assumptions
will be made in[2.3]and in2.16]

2.1 (Heat equation with smooth potential). We write Q; = [—%, %]2 for L € (0,00) and
Qoo = R2. For L € (0,00] and € > 0 we let u‘z . be the solution to the heat equation with
potential . — c. and Dirichlet boundary conditions on the box )7, with initial condition ¢:

{&guge = %Au%a + (0 — cg)uzs on (0,00) X Qr, ®

ug (0,) = ¢, and  u} Jog, (t.-) =0.

(ufo,ngoo = 0 is interpreted as an empty condition.)

In the case that 6. represents mollified white noise and ¢, = %log % we know that u‘fq8
converges locally uniformly in probability as € — 0 to u&,, the solution to the continuous heat
equation with renormalised potential and initial condition ¢; see [18, Theorem 4.1]. To derive
an analogous result for ui .» we use the approach to paracontrolled distributions with Dirichlet
boundary conditions from 7[8].

2.2 (Notation). For a function f: [0, L]> — R we write f : R? — R for the even extension of f
with period 2L. This means f(q121, qoz2) = f (21, 22) for q1,q2 € {—1,1} and 21, 25 € [0, L]
and f(x) = f(x + 2Lk) forz € [-L, L)? and k € Z>.

If g is a function on Q1,, which is a translation of the set [0, L]? by y = (%, %), we write g
for g(- — y)(- + y) and also call this the even extension of g.

The following notation we borrow from [8, Section 4], see that reference for more details.
We write .%,(Qr,) for the space of all f: Q@ — R such that f € C>°(R?). Let Bpg(Qr) be
the Neumann Besov space defined as in [8, Section 4]. We abbreviate ¢, = Bg‘fm. We write
(k1) keNZ for the Neumann basis of L2(Q,) and, slightly abusing notation, we also write “ng.n”

for the extension of ny, 7, to R? that equals 0 outside Q7. We write 1y, 7, for the even extension
of ng 1. For an even function o : R? — Rand f € .7/(Qr) we write o(D) f for the Fourier



multiplier

D)f =Y o(£){f,nkL)nL-

keN3

2.3 (Notation). We write u © v for the paraproduct between v and v (with the low frequencies
of u and the high frequencies of v), and u© ® v for the resonance product; we adopt the notation
from [25]] and refer to [3]] for background material.

Definition 2.4. Let L > 0 and o(z) = (1 + 72|z[>)~L. For 8 € R, we define the space of

enhanced Neumann potentials, written “%f (Qr)” or just “%E ”. as the closure in ‘@”f x €2 BH2 of
the set {(¢,( ® a(D)( —¢) : ¢ € S, c € R}, equipped with the relative topology with respect
to €5 x €0

Let

Ore =Y (0= L)0L, sothat  Opc= Y (6,0 L)L €))
keNg keN3

Since 0. is almost everywhere equal to 6, . and thus to 67, . on ()1, the solution u% . to also

solves the same equation with “6.” replaced by “0r, .” or “0r .”.

2.5. For the rest of this section we assume that for all L > 0 there exists a 6, ¢ [ . _; X{
and c. € R (not depending on L) for £ > 0 such that the following convergence holds in X¢
forall < —1

0
(One,00: © (D)L — ) =5 0, (10)

2.6 (Heat equation with enhanced potentials). We write € # (Qr) = B;jgo(Q L), where the
latter is the Dirichlet Besov space defined as in [} Section 4], and €°*(Qr) = ¢x"(Qr). B

taking an odd extension of u? Le and an even extension of the noise (as in [8]) we obtam a perlodlc
solution on the torus of length 2L. Therefore the convergence shown in [14, Theorem 5.4] implies
the following. For 8 € (2,1) and for all T > 0 and ¢ € €°#(Q1) the solution u% . converges

(in C([0,T],€>?(Qy1)) and therefore) uniformly on [0, T] x @7, in probability to qus’ where u%
solves

{3tUL_ 1AuL—|—0L<>u% on (0,00) X Qr, (an

uL( ) = ¢, and u(z,a =0,

interpreted in the sense of paracontrolled distributions (i.e., as in [14, Section 5]). Let us point
out that we have some differences, namely, we have a factor % in front of the Laplacian, which
is also the reason why our renormalisation constant differs by a factor 2 (we explain this in the
proof of Theorem [6.1]).

Combining arguments as in [28|, Proposition 2.4] with arguments as in [[15 Section 6] in the
context of singular initial conditions, we can extend this result to more general initial conditions,
and also we get the continuous dependence of the solution on the initial condition.



2.7 (Notation). In the next lemma we write “ui o for “u%”, where u% is as in (T1]) and we write

uf . for the solution of (8).

Lemma 2.8. Let o € (—3,—1) and v € (—1,2+ ), p € [1,00] and L > 0. The solution
map [0,00) X €27 (Qr) — C([0,00), €57 (Q1)) given by (,¢) — u’ _ is continuous, where
u%o = u% Moreover, forall B < 2+a,t >0, L < coand e € [0, 00) we have ur, . (t,-) € €°"
and the map [0, 00) x €57 (Qr) — €°P(QL) given by (g, ¢) — qus .(t,-) is continuous.

Proof. The continuity is shown similarly to the continuity statement in [28, Proposition 2.4].

Also the better integrability, i.e., that uy, . (t,-) € € and not just uy . (¢, ) € %7, can be shown
by a bootstrap argument similar to [28, Proposition 2.4]. O

2.1 The spectral representation

Here we give a representation of uy, in terms of the eigenfunctions of the Anderson Hamiltonian
from [8]]. Later we will use this representation to study the logarithmic asymptotics of the total
mass of the PAM on the box Qy..

Theorem 2.9. [8, Theorem 5.4] Let o € (—%, —1), L > 0 and 0 € X%(Qr). There exists a

domain Dy C L*(Qr) such that # defined on DY by
Flpu = %Au +0ou

is a closed and self-adjoint operator with values in L*(Qr). g has a pure point spectrum
o () consisting of eigenvalues \1(Qr,0) > X2(Qr,0) > \3(Qr,0) > - - (counting multi-

plicities) with limy, o0 A\ (Qr,0) = —o0, and such that
Dy = @ ker(\ — 7).
A€o (Hp)

Moreover, the map 0 — A\, (Qr, 0) is (locally Lipschitz) continuous and DY is dense in L*(Q1).

2.10. For abbreviation, we write “.77” and “\,, ,” for “J%p,” and “\,(Qpr,01)”. We let
(Un,1.)nen be an orthonormal basis of L?(Q,), such that vy, 1, is an eigenvector with eigenvalue
AnL-

By the properties of the semigroup of the Anderson Hamiltonian, we obtain the following
representation for the solution to (TT)) with initial condition ¢ € L?(Qp).

Lemma 2.11. For L,t > 0,y € Qr, and ¢ € L*(Qr)

uf(t,y) = [ g)(y) =D e (v 1, 8) 20,1 (1) (12)
neN

Proof. For ¢ € Dy, the identity holds since the semigroup S(t) = et satisfies 0,S(t)¢p =
H1,S(t)¢, see [27, Theorem 2.4]. As Dy, is dense in L?(Q)1) and convergence in L*(Qr)

implies convergence in (520 —h (Qr) for all B > 0 (combine for example [3, Theorem 2.71] with
[8, Theorem 4.71), Lemma 2.8|shows that (T2) holds for all ¢ € L2(Qy,). O
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In particular, Lemma yields vy, ;, = e Pnru" " (¢,) € €%P(Qy) forall B < 2 + a.

Theorem 2.12. Let L > 0. For z,y € Qr, and ¢ = §, the solution to (T1)) is given by

ul (t,y) = [0, (y) = Y e lvn, L (@)vn,L(y). (13)
neN

Proof. Let ¢y € C2° be such that [ = 1 and ¢Z(y) := (2%). Then ¢? * f — f in L for
f € LP (see [19] Proposition 1.2.32]). Therefore ¥ — d, in Bioo for all v < 0. We have for
alle > 0:

upr (ty) = Y erntoy (@)on p(y)] < [ug (ty) = D e (vn, 1, 02 (vn, 1, 1Y)
neN neN
+ ) (v, ¥ = ) (U, 0] (14)
neN
+ ) Mo, 60) (0,1, Y — 8.
neN

The first term on the right-hand side equals |u5Lz (t,y) — <usz§ (t,-),%?)|, and since u L‘? (t,-) con-
verges uniformly to uéLx (t,-) by Lemma it vanishes as € | 0. The second and third term
on the right-hand side of (14) are similar, so we only argue for the last term. We saw that
Vin € €™P(QL), so in particular v L,n is continuous and we have by Fatou’s lemma:

Z e (o, 1, 62) (Un,1, WY — 6y)| < hn}i? Z ek (o, 1, Y5 (U1, Y — P2
neN c neN
1

. . dj(:/ €T = d)g*w;’/ Yy Yy 1

< liminf | (up” (¢, ), 2 (g7 (8), 0¥ = ¥2)2
b 1o, p¥=6 1
= ug (& 2)[2[{uy” 7 (t,-), ¥ = by)|2.

Now another application of Lemma [2.8| shows that the right-hand side vanishes for ¢ | 0. O

2.2 A Feynman-Kac-type representation

Here we give a Feynman—Kac-type representation for ui with continuous initial condition ¢ and

enhanced potential as introduced in The technique behind this representation is inspired by
the partial Girsanov transform of [[15], for a heuristic explanation see @}

Let us start by recalling the classical Feynman—Kac representation. We write P* and E*
for the probability and expectation on C([0, 00), R?) such that the coordinate process X =
(Xt)te[0,00) 18 @ Brownian motion with Xo = = for z € R2. Later, by an application of the
Girsanov transform, we will consider a different measure, under which X is a diffusion with
non-trivial drift. For a probability measure Q on C'([0, 00), R?) we write Eq for the expectation
with respect to Q.

In this section we often abbreviate ¢, " (Qr) by €, ' and €~ (R?) by €.
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Lemma 2.13 (Feynman—Kac representation). Let L € (0, 0o] and Qo = R2. For ¢ € Cy,(Qy),
e>0and (t,y) € [0,00) X Qr, we have

t
i () =5 oxp ([ 6 - () 45) (X011 | (1s)

where Xy = {Xs: s €[0,1]}.

Proof. See for example [[12} 20, 30]. ]

For the application we have in mind, namely 6. being a mollification of a typical realisation
of the white noise, the limit is a distribution and c. diverges. Hence one cannot naively take the
limit € | O in the right-hand side of as the limit does not make sense. In the next observation
we reformulate the Feynman—Kac formula in terms of 67, ., on which we imposed assumptions
on its limit as ¢ | 0 (see[2.5)).

2.14. Let L € (0,00). As 6. = 07, (see (@) almost everywhere in Q1,, we also have

t
ug (t,y) = B {exp ( / (Oro(X) - <) ds)sb(Xtmxm,ﬂcQL]} - (16)

Let 00 € (o1 €y be the first component of 6y, ie., 19 = lim.o0r .. Then 07y =
lim, o 0r ., see Lemma
We will use to obtain our Feynman—Kac representation for u? = “i,o in Theoremm

2.15 (Heuristic idea). Let us first heuristically derive the Feynman—Kac-type representation for
an irregular potential, which we will rigorously prove in Theorem For this, we neglect the
renormalisation by e, consider L = oo for simplicity and do formal calculations. As mentioned,
the integral fo s) ds makes no sense as 6 is of regularity —1— (meaning: of regularity —1 —§
for all § > 0), therefore we want to replace it by something that does make sense. We do this by
a trick introduced in [15] that uses the Itd formula. When we define Z = (1 — %A)_IQ, which
has regularity 1—, then we have by the Itd formula

t
Z(Xy) — Z(Xo) = /VZ - dXs — / d5+/ Z(Xs)ds.
0
So that

EY [exp (/Ot 0(X,) d3>¢(Xt)]

—EY [exp (Z(XO) ~Z(X) + /Ot Z(X,)ds + /Ot VZ(X,)- dXs) ¢(Xt)} NGL))

Now Girsanov’s theorem tells us that Bt fot VZ(Xs) ds is a Brownian motion under the
probablhty measure QY = exp([] VZ(X, — [ 1VZ(X,)[? ds) dPY. Hence we can
rewrite (T7) by

Eqy [exp (Z(XO) ~Z(X) + /Ot Z(X,)ds + /Ot LvZ(X,) ds)qﬁ(Xt)] :

12



where the coordinate process X under Q% solves the SDE dX; = VZ(X;) dt+ dBt. This is an
improvement, since V Z has regularity 0— whereas 6 has regularity —1—. However, the integral
fot |VZ(X)|? ds does not yet make sense, because VZ is not a function but a distribution of
regularity 0— and so, heuristically, |V Z|? is also of regularity 0—. Therefore we introduce
another function Y with regularity 2— and apply the Girsanov transformation to Z + Y instead
of Z, such that the transformed expectation has functions instead of distributions in the exponent
and therefore makes sense. Let Y be the solution of

(n—3iA)Y =3|VZ]*+VY - VZ,
where 7 € R is chosen large enough so that Y™ actually exists (Proposition[B.2). Then we have
0=1-1IMZ=Z+ny —AZ+Y)-LV(Z+Y)? +LVY

Then the 1t6 formula applied to Z + Y gives
t t
Joxods= [z ay + VYR s+ (24 Y)(X) - (24 Y)(X)
0 0
t 1 t
+/ V(Z+Y)(X,)  dX, — 2/ IV(Z +Y)(X,)|? ds.
0 0

So that, similarly to what we have done above, we can rewrite (17)) by

Egy.,, [exp (/Ot(z Y + JVYP)(X,) ds + (Z + Y)(Xo) — (Z + Y)(Xt))¢(xt)} .

As Y is of regularity 2— and Z of regularity 1— all the terms in the exponential now do make
sense, that is, Z,Y and VY are nice functions, and X under % iy solves the SDE dX; =

V(Z +Y)(X:)dt + dBy, where B, = X; — fg V(Z +Y)(Xs)ds is a Brownian motion under

Yy
Z+Y"
The above heuristics cannot be carried out as such for L. = oo. Instead we do this for each L

separately, and will need a control on the norms of Zy, and Yy, which diverge as . — oo (hence
L = oo cannot be done immediately). And in order to extend the representation (I3) for ¢ = 0,
we first rewrite it for € > 0.

2.16. For the rest of this section we fix « € (—3,—1) and L > 0.

For ¢ € [0, 00) we define

Zie=0D)0.=(1-3A)7"0..
Observe that Z, . is at least C? as 0, . is continuous. To rewrite the Feynman—Kac representation
for the solution to the heat equation on ()7, with potential 6. — 2¢. we will need to solve the
equation (1 — %A)Y = %|VZL76|2 —c. + VY -VZp ., where n > 0 is sufficiently large. For
that purpose we need bounds on VZy, . and %\VZ L7€|2 — ¢, that are uniform in &, and those can
be obtained from bounds for the enhanced Neumann potential, see Lemma|2.17

13



Lemma 2.17. Let o be as in Definition There exists a C' > 0 (independent of L) such that
foralle >0

131V ZLel? = celligrare + IV ZLellgans
< C[|0Lelleg + [10L. (26,? + 0L ©(D)0Lc — CEHsg,?aJr?)- (18)

Moreover, with Oy, the second component of 0, and by using the notation
HVZL | =VZ,eVZ, - (1-1A)(ZL 0 ZL) + Oy,
we have
(VZ1e 5|V ZLel? = cc) = (VZ1, 5|V ZL|™). (19)

Proof. To shorten notation we write Z = Zy ., 0 = 0., 0 = E and ¢ = c.. By Lemma
we have [|0]] .~ = [|0]|5— and |0 © (D)0 — |- = [[§ © 7(D)f — ¢l

We have %|VZ ?=VZeVZ+ %VZ ® VZ, where the para- and resonant product are
combined with the inner product on R?, e.g. VZ @ VZ = 01Z @ 01Z + 02Z @ 02 Z. For the
resonant product we use that (1 — %A)Z = 0 and apply Leibniz’s rule to obtain:

IWVZoVZ=31AZ02)-(3A2)0Z
=—(1-1A)(Z®Z)+006 (D).

Then the claim follows since by the Hormander-Mikhlin bound, Bernstein’s inequality and
the Bony estimates for the paraproduct and resonance product [3, Lemma 2.1, Lemma 2.2, The-
orem 2.82 and Lemma 2.85] we have [VZ © VZ| 2042 S |[VZ|20is S 1 Z]1202 S 16
I(1 = 3A)(Z © Z)|lg2av2 S 12 © Z]grars S 1 Z]ase S 1070, 1 Zllga+z S [|0]lgo and
IVZ||ga+1 S || Z]|ga+2. (19) then follows from the convergence of (10). O

2
€

We show in Lemma in the appendix that there exists a C' > 0 such that for all M > 0 for
all f € €?*2 and g € €T with || f||g2at2, [|gllgats < M, forall B € (—a,2a + 4) and for
2

all p > C(1 + M)Za+1-7 there exists a unique solution v € €”?(R?) to

(n—%A)v:f—l-Vv‘g,

such that ||v||4s < M, and that v depends continuously on f and g.
Fix 8 € (—a,2a +4). Let

My, = maux{”%\VZLA2 — 2¢;
My, = max{||3|VZ,|*?

g2a+2, V2L el gat1}, (20)
g20+2, [[VZL||ga+1}. (21)

2
By (I9) we have M. — M. For e > 0 we define 1. := C(1 + My )2+4-F and
2
nr, := C(1 + Mp,)2e+4-5 . Therefore there exists a solution Y7, . to

(Nie — 3A)Y1e = 31V Zc|? — e+ VYL - Vi, (22)
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with ||Y7 . ||¢s < M|, . Moreover, in %P we have Y. — Yr ase | 0, where Y7, solves
(nr — 3A)Yy = 3|V ZL |2 + VYL - VZ, (23)

and || Y7 |lgs < M. We will also write “Zy, o, My, 0,110, Y10 for “Zp,, My, nr, Y1,”.

Let us now discuss how uf . can be described in terms of Z, . and Y .. For 0 < r < ¢ and

e € [0, 00) we write

D (1) 1= I 2NV +EIVYR)(X) s (Z4Y) (X0) (247 )(X0), 24)

where we have abbreviated “Z, ., nr ¢, Y1 .7 by “Z,n, Y.

Lemma 2.18. Let ¢ > 0 and y € R? and let QY _ be the probability measure on C([0, 00),R?)
such that the coordinate process satisfies Q% c-almost surely

t
X, —y+ / V(Zh. + Y0 )(Xo)ds + By, £>0,
0

for a Brownian motion By. Then we have for all € > 0 and for any measurable and bounded (or
positive) functional F: C([0,t],R?) — R

‘—
EY efo (eL’E(XS)_cg)dsF(X“O,t])]]‘[X[O’t]CQL]:| = EQ%@ [9L76(07t)F(X‘[O,t])]]'[X[O’t]CQL] .

In particular, uza(t,y) = E@%E [.@L@(O,t)gb(Xt)Il[X[oyt]CQL]}.

Proof. To shorten notation we write Z = Z, ., Y = Y[, 0 = 01, and ¢ = c. in this proof. By
definition of Z and Y, we have 0 = Z — %AZ and

—c=nY — LAY - 3|VZ]? VY -VZ =nY — LAY - 3|V(Z+Y)|? + L|VY)?,
so that
0—c=Z+nY —IAZ+Y)-3V(Z+Y)?+LVY R

Hence, on [X|g 4 C Q1], by using Itd’s formula to rewrite ft LA(Z +Y)(X,)ds we have
t t
[ o0x) —cds = [[(Z 4y + JRYP)X) s+ (24 Y)(Xo) - (24 Y)(X)
0 0
t 1 t
+/ V(Z+Y)(X,) - dX, — 2/ IV(Z +Y)(X,)|? ds.
0 0
Since
t 1 t
Giimep( [ V(Z+Y)(X)- dX,— 5 [ [9(Z+Y)(X.)Pds) 25)
0 0

is a Radon-Nikodym density, the claim follows from Girsanov’s theorem (see e.g. Le Gall [24,
§5.6 Page 138]). The formula for u(z . then follows from (16)). O

15



Theorem 2.19. Let y € Q5. There exists a unique probability measure QY on C([0,00),R?)
under which the coordinate process X satisfies Xg = y almost surely, and X solves the mar-
tingale problem for the following SDE with distributional drift (see for example [28| Definition
2.1])

dX, = V(Z, + Y1)(X,) dt + dB, (26)

where B is a Brownian motion. Moreover, with 91, = 91, (see (24)), with ¢ € C(QL), and
with A = [X0q ¢ S, X4 C Qr]for S=0orS = Q. forr € (0, L), we have

BY [l 06700531 | 25 By [200,6)6(X) 1] @7)

In particular, uf(t,y) =Eqv [.@L(O,t)gb(Xt)]l[X[oyt]CQL]}

Proof. The existence and uniqueness of the solution QY to the martingale problem follows from
[6, Theorem 1.2]. It is not mentioned in that theorem, but from the proof of [6, Theorem 4.3]
one can extract that the martingale depends continuously on the drift (in the space €~ (R¢, R%).
Therefore, as V(Zy, . + Y1, ) converges to V(Zy, + Y7,), we have that QZAE converges weakly to
QY (where C([0, ), R?) is equipped with the topology of uniform convergence on compacts).

By Lemma[2.1§|
Ey [efo‘(as(xs)fcs)dS¢(Xt)ﬂA:| = EQ%’E [‘@L,E(Oa t)¢(Xt)1A] .
Since Z1, . — Z and Y, . — Y7, uniformly, we get

limBgy | [7.:(0.)6(X0)14] = limEqy [Z0(0.)$(X:)La].
By the Portmanteau theorem [4, Theorem 2.1], the convergence in follows once we show
that A is a QY continuity set, i.e., QY [0A] = 0. We treat the case S = (), the case S = Q,
follows from very similar but slightly more tedious arguments. The set A consists of paths that
stay inside the closed box @, until time ¢, so 0A = [X|o 4 ¢ QF, X0y C QL]. To prove that
this set has probability zero we show that “almost surely X leaves the box right after it hits the
boundary”.

Solet 7 = inf{s € [0,?] : X5 € 0QL}, with which we have A = [1 < ¢, X|o ) C QL]
First note that QY [t = t] < QY[X; € 9Qr] = 0, since the law of X; under Q? is absolutely
continuous to the Lebesgue measure by [28, Proposition 2.9]. So it remains to show that Q% [T <
t, X0, CQ 1] = 0. By the strong Markov property, we have

Qflr <t,Xpy C Qr] < Eg [1-<,Qx,[3e > 0: X[0,¢] C Qr]]-

Similar arguments as in [9, Theorem 13, estimate (48)] show that X — B is Qx -almost surely
2_%5‘_5—H(51der continuous for all £ > 0. We can choose € > 0 small enough such that % >
%. Therefore, by the law of the iterated logarithm for B (by the strong Markov property B is a
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Brownian motion under Qx_) it follows that that Q x_-almost surely there is a sequence of times
(tn)nen such that ¢, | 0,
2—a—¢

X:, —Xo— B tn 2
Jim 1Ktn = X0 t”|<limn—:O,

n—00 ‘Btn’ ~ n—oo /2tn log IOg %

and also X + B, ¢ Q for all n. Therefore,

By, Xy, — Xo— By,
th:X0+|Btn|<|Bz|+ : |Bt| t)%QL

for all sufficiently large n. This concludes the proof. Ul

2.3 The Feynman-Kac-type representation for the PAM

In this section we show how the above representation techniques can be applied to the PAM
with white-noise potential. We give the Feynman—Kac-type representation for the PAM in The-
orem [2.23] and state estimates which are important for the next sections in Lemma[2.26]

Definition 2.20. A white noise on R is a random variable £ on a probability space (£2, P) with
values in .#/(R%) such that for all f € .7 the random variable (&, f) is a centered Gaussian

random with E[<£7 f> <§7 g>] = <f7 g>L2(Rd) for fa g e .

Like in Section [2.2] we will have the Brownian motion as another source of randomness,
besides the noise term ¢ as the potential of the PAM. These two are independent sources of
randomness, therefore we write “P” and “E” for the probability and expectation with respect
to &, contrary to the notation “P” and “IE” that we use for the probability and expectation with
respect to the Brownian motion B (as in Section [2.2).

2.21. Lety € C°(R?) be given by ¢(x) = ¢(z1)¢(z2) for an even function p € C°(R, [0, 00))
with supp p C [—%, %] and fR o(z)dz = 1. We write ¢ (z) = E%w(%) and p.(x) = %gp(%)
Let & be a white noise on R? and let &, = 1. * £ be its mollification.

2.22. Let
§Le= Z (e, g, L) L (28)
nGN(Q)

Now we want to apply the deterministic results of Section[2.2]to the white-noise potential, in the
sense that we apply the above for 67, . being a typical realisation of £} .. In order to do so, we will
need to have a convergence for £} _ as we had assumed for 67, . in We show in Theorem
that there exists a C' € R such that for

c: =1logl+C,

there exists a §; = ({1,Z1) € [)o<_1 Xy such that the following convergence holds in X for
all o < —1:

(€ .. €8 _oa(D)Er . —c.) % £ (29)
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Analogously to the notation in Section we leta € (—%, —1) and § € (—a, 2a + 4); for
L > 0and e > 0 we write Z, . and Z, to be the (random) functions given by

Zre=0D)E . =(1-50)7€ ., Zr=0(D)éro=(1-3A) Lo,

where £7, o is the first component of ;5 M, . is as in 20); My, as in @2I); nr. == C(1 +

2 2
My, o) 2e+4=B g, = C(1+4 Mp,)2e+4=5; Y], . is the solution to (22); and, Y7, the solution to (23)).
Again, we will also write “ZL,O7 ML,Oa nL,0, YL’()” for “ZL, ML, nr, YL”. For L > O and ¢ Z 0
we let 71, . be as in and write “2,” for “Zr,¢”.

Theorem 2.23. We have

P jo P jo
Zre —>2Zn, Mpe— My, nre—nr, Yo — Y.
el0 el0 el0 el0
Furthermore, for A = [ X0y ¢ S, X[oq C Qr] with S = 0 or S = Q.. for r € (0, L), we have

o [efot(is(Xs)*cs)dsg{)( X)1 A] % gy [21(0,1)¢(X:)14], (30)

in particular u% =Eqy [.@L(O, t)qb(Xt)Il[X[o’t]CQL]}.

Proof. These convergences follow from the deterministic convergences of Section and by
using the fact that a sequence converges in probability to a random variable if and only if each
subsequence has a further subsequence that converges almost surely to that random variable. [

In the following section, we will use some estimates that we present below in Lemma [2.26
We could estimate the right-hand side of by estimating the Z1 ., 1L ¢, Y7 ¢ in terms of M, ..
We will need a control on the growth of M, ., which is provided in the following lemma.

Lemma 2.24. For € > 0 the following random variable is almost surely finite

My, .

a. :=1V sup , (31)
LeN,L>e log L
and there exists an ho > 0 such that sup,~ E[e"*] < oo for all h € [0, ho).
Proof. By Lemma[2.17]we can bound for ¢ > 0
Mpe < C(lérellee + €rellze + 160 © 9(D)ére — cellg2ar2),
and similarly for My, . So the claim follows from Lemmabelow. Ul

2.25. Sofara € (—%, —1) and 8 € (—a, 20 + 4) were arbitrary. But we can and do from now
assume that « “is close enough to —1” and 3 “is close enough to —a” so that

2

Satd—pF =" G2
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Note that with this assumption, Lemma implies for all e > 0 and L > e (so that a. log L >
b,

| Z1ellga+2 < aclog L, |Yrelles < aclogL, nre < 2C(aglog L)4.

As [IVYLellgo-1 < || YLe H?gﬁ we can estimate all terms under the integral in the definition of
D1 @ as | - ||zee S| - |ls for & > 0. The estimate we obtain from this for Z;, . and another
estimate will be presented in the following lemma. This lemma will play a key role in Section {]

Lemma 2.26. Ler QY . be the probability measures from Lemma and let us write QY o for
the probability measure Q% from Theorem Let ac be as in (31). There exists a C > 1 such
that forall L € Nwith L > e,¢ > 0,7 € (0,L) andt > 1:

_ 5 5 5 s
o—Calt(log L) Uixy qcQr) < ‘@L»E(O’t)]l{X[o,t] coy < ¢Caltllog L)® (33)
2
Q) o[ Xppg & Qr] < CeCoctlionl’ (34)
CaSt(log L)5— 12
EQ%,E @L»E(O’t)]]-[X[O,t]gZQT,X[O’t]CQL}] < Ce*~% (log L) Ci. (35)

Proof. (33) follows immediately from the definition of &, (0, t) in (24) together with Observa-
tion

By [28, Corollary 1.2], where we take b = V(Z, . + Y7 .) of regularity o + 1, 6 > 0 and
use that

2
1A= 1b][7o + | A00] ;ﬁia‘sa S 1+l Qﬁiifa S+ bl

we have

_2 7a2
Q1 [Xjo & Q] < Cexp (Ct(l IV (Zee + Yo IZET) — Ct)

Since o > —g we can choose § > 0 small enough so that + 5 < 4. Then (34) follows from
another application of Observation[2.25] Finally, (35) follows from (33) and (34). O

3 Asymptotic behaviour of the mass on a box: Proof of Theorem 1.4

In this section we prove Theorem|[I.4] We separate the proof in two parts by showing that almost
i6

surely lim sup;_, . &53 <1 (Lemma and lim inf/c@ ¢t— o0 t;\gt) >1 (Lemma

We use the notation 4] = “51: and U} (t) = fQL u? (t,y) dy. Welet TE(x, -) be the transition
probability kernel of X; under Q7. We will rely on the following estimates which follow from
Lemma Lemma and [28 Theorem 1.1 and Corollary 1.2]: There exists a random
variable C' (depending on &, not on X) with values > 1 such that for L € N with L > e, for
s,t € [0,00) withs < tandt—s > 1

—C(t—s)(log L)® —s)(log L)?
e—C(t—s)(log L) :H'[X[s,t]CQL] < @L(SJ)IL[XW]CQL] < Ct=s)(log L) , (36)
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aswellasfor L, e Nwith L > r >eandt > 1,

r2
Ff(x7y) Z %efCt(IOgL)57a7 I;y 6 Q’r‘a (37)
FtL(x7 y) < CeCt(log L)5’ o,y € RQ, (38)
L2
QY[ Xy ¢ Q1) < CeCtlosl)’~ ¢z, 39)

3.1. We use the notation as in Lemma and write ufo for the solution of the PAM with white-
noise potential on R?2 with initial condition ¢ as in [18]].

By Theorem [2.12], Lemma [2.11| and Lemma we have for all L € (0,00], ¢ > 0 and
z,y € R?

upe(ty) = uy (4, 2), (40)
[l dy = (0 (8, D) gy = i (t.0)
t
=FE* {exp </ (€e(Xs) — ce) ds) H[X[O,z]CQL}] . (41)
0

By the continuity in ¢, see Lemma[2.8] for L > 0
UE(t) = / (b, ) dy = ub(t,2) = Bz [20(0,)1x, o)) 42)
L

We also write “Uy(t)” for “U?(t)”.

Before we turn to the upper bound, we prove the following lemma that will be used for both
the upper and the lower bound.

Lemma 3.2. Forallr € Nwithr > e, t > 1,6 € (1,t) and x,y € Q, we have with C as above

ud(t,x) = u¥(t,y) < Ce2C0eer )’y (¢t — 5). (43)
Proof. The first equality in (@3) follows from @0). We have v (t,z) = lim.o ul* (t,x) by
Lemma2.8] where ¢ (z) = ¢ (2—y). By definition we have Z,(0,t) = 2,(0,t—0)Z,(t—6, ).

By using subsequently (36) and the tower-property; the definition of I';, (38) and [ ¢¢ = 1, and
finally (42) we obtain

ul(t,2) < lim e“0E B, L [2,(0.1 = 0)Lx, g co. B [ (X0) Xis)

= lglfol eCd(logr)5EQr’x [@r(O, t— 5)1[X[0,t—6]CQ1"] /IR2 Fg(Xt_(;, z)wg(z) dz]

< CeC(S(logr)5+C(5(logr)5EQr’x [.@T(O, t— 6)H[X[O,t—5]CQﬂ"}i|

< CeQCé(logr)sUg:(t - 5)
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3.1 Upper bound

We will use the spectral representation given in Theorem Observe that for L,¢ > 0 and
¢ € C(Qr), we have by Lemma

/Q Wl (t 2y de = 3 P (o, G (0 1, Loy ) e
L

neN

1
< (Z AL (y, 1, ¢)%z> 1qpllze

neN
< L@ 2] g, || z2- (44)

As our initial condition ¢ = &y is not in L2, we use that by the Chapman-Kolmogorov equation
ud (t,x) = u‘}i(t —3,x) fort > 3, with ¢ = u (3, z) and show that v? (3, z) is in L? and that
its L?-norm can be bounded as follows.

Lemma 3.3. Letg € [1,00, LEN, L > ¢,y € Qrandt > 2. Thenu¥(t,-) € LY(Qp) and
4,z < CeCtos’

Proof. We treat the case ¢ < 0o, the case ¢ = oo is similar but slightly easier. By Lemma[3.2) we

have for ¢ > 2and § = 3,

1

O, 5 X
Ju () o < o ([ puz(diaz)”.

L

AsUF (L) =uf(L,z) < €108 L) by [@2) and (36), and as L < L2 < eCtosl)® for ¢ > 2,

the desired estimate follows. O

Lemma 3.4. Let L; = t(logt)® or Ly = t. Then almost surely

lim sup 1227 @) _ (45)
t—o00 tALLt

Proof. Let £ = [L;]. Then U, < Ug, and A 1, ~ Ay g,. For ¢ large enough we have by (44)
and Lemma(as 1o, llze =L < eCllog L)%y,

Ug, () < elt=312, 01000z )7

so the claim easily follows. O

3.2 Lower bound

By the spectral representation given in Theorem [2.12] we obtain

e Y e [ @R de = [t dn (46)
QL L

neN
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@, X9

So we would already have established the lower bound if “u7” on the right-hand side was re-
placed by “u%”. The idea is therefore to use (6) with “t — §” instead of “¢”, for § chosen
appropriately (depending on t), and to combine this with lower bounds for the transition density
I'F in order to obtain a lower bound for U, (t).

Inequality (36) together with the Markov property gives for § € (1,t)

—C6(log L)
Up(t) 2 e” @0 Bog [ 0, U (8- 0). @7)
Now we take a smaller box inside the box of size L, i.e., let r € (0, L]. Then
X X
Eqg []l[X[o,a]CQL]UL "t~ 5)] = Bgg []l[X[o,a]CQL]]l[XaéQr]UT 't~ 5)}
X X
= Egy | Lx,c0q 07 (= 9)] ~Eqgy | Lix zaulixse@ U7 =) @®)

The second term on the right-hand side of (@8)]) can be estimated as follows, using (39), @2)) and

(B
Egp | Lo azantixselUR (= 6)] < Pog [Xjoq ¢ Q4 sup Ur(t=9)

2 2
< CeCd(log L)L%ec*(tﬂﬂ(logr)5 < CeCtllog L)57%.

By the heat kernel bound (37), we can estimate the first term on the right-hand side of by

Eqg [1[){66%(]5(6 (t — 5)] = / k0, 2)U% (t — 6) dz

Qr
> Le-ostosry— [y — 5y da
¢ o

Now we use the lower estimate for U;* (¢ — §) from Lemma 3.2 which allows us to use (@6).
We sum up all the estimates in the following lemma.

Lemma 3.5. For L,r e Nwith L > r > eandt > 6 > 1 (with C as above) we have

1 2 2
UL(t) > ae—SCzi(log L)~ &5 o(t=8)A1r _ 1 Ct(log L)5—%'
Now we tune L, r and 4, i.e., we choose them depending on ¢ in such a way that the lower
bound for the total mass follows.

Lemma 3.6. Let b € (%, 1] and Ly > t° for all t > 0 and such that log L; ~ blogt. Let
I C (e,0) be a countable unbounded set. Then almost surely

lim inf 710g U, (t)

> 1.
telt—oo  tA1 L,
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Proof. Let £ = |L¢]. Then Ur, > Ug,. Lett € (0,b),a € (20’ —1,2b — 1), 6; = t* and
re = [t¥]. Write
2

5_ Li

1 _306,(log e 5_ri
g L) t—6¢)A1.r Ct(log £¢)
or e(t=00) A1y Ce Ty

:@e

By Lemmawe have log Uy, (t) > log Ug, (t) > log(v; —w¢) = log vy +log(1—*). Observe
that, as 6; < t,

Ut Wy =

Dt 4Ct(log £;)° — £ + o t— 6
Uit_ €xp 0g At Ciét 07575 ( t)ALry | -

By Theoremwe have A1, > 0 for large ¢, and as £70; 1 > =% and r7/6; = t*¥ ~ and
2b — a > max{1,2V — a}, we deduce that §* — 0 and thus log(1 — ¥*) — 0. Therefore, we
obtain from Theorem 1.3}

logUp, (t A logr
lim inf M > liminf — liminf 22 — liminf X 08 Tt
telt—oo  tA1L, telt—oo tA1 ., A1, t€lt—oo A1,  telt—oo xlog Ly

log vy A1,

b/
>77
~ b

where we used that logr; ~ o' logt and log Ly ~ blogt. Since b’ € (0,b) was arbitrary, the
claim follows. O

Now Lemma [3.4]and Lemma 3.6|imply Theorem [I.4]

4 Splitting the PAM into boxes: Proof of Proposition [1.2]

In this section, we prove Proposition 4.5] that is, the fact that the total mass of the solution is
well approached by the total mass in a sufficiently large box. As we indicated in Section[[.2] we
will be following a standard strategy that decomposes R? into many large boxes and estimates
the contribution from each box to the Feynman—Kac formula. We will be using the Feynman—
Kac-type representation that we derived in Theorem [2.23]and the estimates of Lemma

Let U(t) = [p2 Uoo(t, ) dz for t € [0, 00), where u is the solution to the PAM on R? with
Uoo (0, +) = Jo. We will choose (L¢);e[o,0) in N later, in such a way that L; 1 co. We assume ¢
is large enough such that L; > 1. We define the events

Ao =[Xjoy CQul.  Av=[Xog # Qui Xy € Q| forkeN.

As X has continuous paths, we have ]P’O(UkeNo Aj) = 1. We consider the setting as in Sec-
tion[2.3] We define for k € Ngande > 0

ﬂk75(t) = EQikH ) [.@Lt75(0, t)]lAk] .
Fr

We will abbreviate L1, = Ly, 0. Observe that Up, (t) = Lo (t). In Lemma[4.3|below we prove that
U(t) = > ken, H(t), and in Lemma we derive bounds on 4l (). Combining these, we will
then prove Proposition 4.5 which in turn implies Proposition[I.2]
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4.1. By the continuity in ¢, see [18, Theorem 4.1], U(t) = ul (t,0) (almost surely), where u’,

is the solution to the PAM on R? with u! (0, -) = 1. Observe that by Lemma [2.13] Lemma
and (@2)) we have for L > 0, and ¢ > 0

b (1,0) = D tic(t). (49)
keNy
Lemma 4.2. Let L; = |t(logt)®| and let a. be as in Lemma There exist C > 1and T > 0
such that forallt > T, k € Nande > 0

Cexp (t(logt)’ [Cag(k; +1)5 - %D k> 1,

U () <
be(t) Cexp ((k+ 1)%t(logt)> [Cag - %D, k> 2.

Proof. By Lemma there exists a C' > 1 such that for all £ > 1 with Ly > e, forall k € N
and foralle > 0

L2k
Upo(t) < Cexp <Ca§t(k +1)5(log L¢)® — é) (50)

Let T > 0 be such that logt > 5loglogt and [t(logt)®] > it(logt)® for t > T. Then
log L; <logt+5loglogt < 2logtforallt > T, and therefore the first bound follows from (50)
(with a new C' > 0). The second bound follows from the first one by choosing 7" > 0 large
enough so that

T2k—3(10g T)5(2k‘—1) 2 4kk(k‘ + 1)5
for all £ > 2 (and then of course the same inequality holds for all ¢ > T). O

These bounds allow us to derive the series expansion of the total mass U (¢):

Lemma 4.3. Let L; = |t(logt)®|. There exists a T > 0 such that for all t > T, we have almost
surely U(t) = pen, Y (t)-
Proof. Since each term £ (t) is positive the series ;- Lx(t) converges almost surely to some

V (t) with values in [0, 00]. So if we can show that the series converges in probability to U (t),
then almost surely V' (¢) = U(¢) and the claimed identity holds.

By [I8, Theorem 1.4] we know that ul, _(t,0) =, ul, o(t,0) = U(t) in probability. By
Theorem [2.19| we have &1y, . (t) =9, 85, (t) in probability, for all k € No. Moreover, ul, _(¢,0) =

> reng Hie(t) for e > 0, see @9). Therefore, we have for K € N, ¢ € (0,1) and ¢ > 0 such
that L; > e:

P()U(t) — iuk(t)‘ > 5) < limsup P (’uolo(t, 0) — ugovg(t,O)’ > %)
k=0

el0
K K
+lim supP(‘uoloﬁ(t,O) - Zﬂk,g(t)’ > g) +limsup > P (|84, (1) — ()] > 5%)
el0 k=0 el ;7
oo
. KT . KT
< hmsupP< Z ﬂkﬁ(t)‘ > g, a < 5 2) —}—hmsupP(ag > TC'2>
el0 k=K1 el0



Let T' > e and C be as in Lemma and lett > T and K > 1. On the event [a2 <3
have by the second estimate of Lemma [4.2]

i e (t) < i Cexp ((k+ 1)5t(log t)’ [ca _ %])

k=K+1 k*K—&—l

s KT
<C exp (k4+1)°T(log T)° == ),
k ;ﬂ (- ')

ol

and the right-hand side vanishes as K — co. Therefore
o
KT
. 5 5 el0
hrrelisoupP( E ilk@(t)’ > g, a2 < 2—(]2) — 0.
k=K+1

By Markov’s inequality we have

1

KT KT\5
P )< —h (= E[ehae
pr (o1 55) <oo (-0 (33) ) e

so that by Lemma it follows that sup, > P (a2 > %) converges to zero as ' — oo. This

completes the proof. O

4.4. In the proof of the next proposition we use the following observation. Let K € N, g; 1 €
(0,00) and Ry € (0, 00) for t € (0,00) and k € {0, ..., K}. Suppose Ry ~=2% co. As

] ] K 1
08k _ 0g D j—o dt.k o logK b omax 08tk

max
kefo,... K} Ry R; - R kef0,... K} Ry
we have
log S°K 1
i |18 Xk tk o logak|
t—00 R; ke{0,...K} Ry

Proposition 4.5. For L; = t(logt)® we have almost surely

logU(t) logUy,(t)
tlog L tlog L

teQ,t—o0

Proof. By for all € > 0 the function L — u%ﬁ (t,0) is increasing. This implies, by The-
orem [2.19] that also L ~ U(t) is increasing. Therefore, we may consider L; = [t(logt) |
instead, so that Ur, (t) = to(t). We will use U(t) = > .o, Hx(t) (see Lemma .

Let T and C be as in Lemma[d.2] Then we have for k£ = 1 almost surely

= —0OQ.

log 44 (%) . t(logt)® sos (10g1)°7 ¢
————~ < lim —*|C(2a)°2° —
tlglo tlog Ly — tiglo tlog Ly { (2a) C } -
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Moreover, if t > T is large enough so that C(2a)® — 2 < —1 and exp(—t(logt)?) < 3, then
the second bound of Lemma.2] gives

S0 S 1+ s e )

k=2

< Zexp t(logt)®)Ft <1,

and therefore W — —oo as t — oco. Now it suffices to applywith Ry = tlog Ly,
qre =Ug(t) fork =0,1,and g2 = > oo o Up(t). As

liminf 108Uzt
teQ,t—oco  tlogt

by Lemma [3.6] this completes the proof.
O

Proof of Proposition[I.2] By Proposition 4.5 we have log U(t) ~ logUy,(t). By Lemma
and Lemmawe have log Uz, (t) ~ tA1 1, and log Uy(t) ~ tA1 . But Ay, ~ Ajpast ~ Ly
by Theorem[1.3] O
S Asymptotics of the supremum and infimum of the PAM

In this section we prove Theorem by proving that for all a € (0, 1):

log U (t) < 1 log (infeqQ,. u(t, x))

im m
teQ,t—oo tlogt  teQt—oo tlogt
< lim log(sup,cgr2 u(t, z)) < lim log U(t)'
teQ,t—so00 tlogt teQ,t—oo tlogt

To prove this, we first have to show that u(¢, z) is comparable to uy, (¢, z), and for that purpose
we need the following lemma, in which Ay, is as in Section 4] i.e.

Ay = [X[O,t] §Z QLfaX[o,t] C QLf“]'

5.1. Let us write Ff *(,-) for the transition probability kernel of X; under QF _. Let ¢ > 1.
Then the heat kernel bound in [28|, Theorem 1.1] and Lemma[2.26]imply the existence ofa C' > 1
and a k € (0,1) such that forall L € Nwith L > e,e > 0andt > 1

e Ct(ae log L) ]l[ Ot]CQL] < -@L,E(Oat)]]-[X[ot oLl < eCt(as log L) , (51)
e—Ct(as log L)5e |z yl < FL 8(1, y) < eCt(as log L)® 1‘ ‘12761"2‘2 T,y € R2. (52)
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Before we turn to the next lemma, let us make a few observations that will be used a couple of
times. Let ¢ € C.(R?) be a positive function. As Eg: [¢(X)] = [pa T (2, ) p(y) dy we
obtain the following bounds from (52) for all L > e, > 0,¢ > 1 and z € R?

l[z—
|@ll e CHaslos g o <1E@z [p(X)]
yEsupp ¢
lz—yl?
< ||@]|reCHo= 108 L) qup e Tme . (53)
yEsupp ¢

Letr € (0,L] and 7, = inf{t > 0: X; € 0Q,}. If 0 < 0 < t, then we have by the above

E@%,s [ﬂ[t—6<7r<t]¢(Xt)] = EQ%,E |:]]‘[t—5<Tr<t]EQf;r [QS(Xt*Tr)}

1 _ d(9Qrsupp)?
< [|llpeCHa o8 D’ gup —em TR
s€l0,8) S

where d(A, B) is the distance between two sets A, B C R2. By computing its derivative we see

m 2
that the function f(s) = s~te™ s is increasing on [0, m]. Therefore, if 1 < § < M,
then we have

d(8Qr supp $)*

Eqy [Lp-s<r<q@(Xo)] < [|@l] et 080 e = T, (54)

Lemma 5.2. Let Ly = [t(logt)®|, let ¢ > 0, and let a. be as in Lemma Let v € R? and
® € C.(R?) be positive and such that supp ¢ C B(z,1) = {y € R?: |x —y| < 1}. Let

I =Ego, | [Zypnr (0,0)La,$(X0)].
Lt JE
There exist C > 1 and T > 0 such that forallk € N, e > 0,t > T

2k—2 (o £)5(2k—1)
wor ey < { Clol exp (tog0)® [Cad(h+1)° - S )z,
BT gl exp ((k + 1)5t(log t)® [Cal — 5], k> 2.

In other words, uﬁ . (t) satisfies the same bound as Uy, . (t), except for the factor ||¢|| 1.

Proof. By the proof of Lemma[4.2]it is sufficient to prove that there exists a C' > 0 such that for
alkeN,e>0

2k
UPZ (1) < g Ot 0B L o (55)

LetT' > 1 be large enough such that LT > 4cT and lett > T We prove (53)) by dlstmgulshmg

the two cases || > L. and || < Lt In the first case, || > Lt observe thatas 1 < Z-
Ly Ly
inf |yl=|z|-1>"L-1>-%
y€B(z,1) 2 4
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Therefore, by bounding 14, by 1x;, ,cq ,.,) and using (51 and (53) we estimate:
) Lt

L2k
uﬁ,’f(t) < 2Ca2t(k+1)5(log L) 16| e 72t

If on the other hand |z| < %’If, then the distance between Q) » and B (x, 1) is bounded as follows

Lk:
d(0Qx, B(,1)) > Lj —|a| = 1> Tt >t

Therefore with 7 = inf{t > 0 : X; ¢ @}, by bounding 14, by 1, and using and

1.2k
UPZ (1) < ) 1y 2O D Qo8 L) e~ i
]

Corollary 5.3. There exists a T > 0 such that for all z € R?, for all positive ¢ € C.(R?) with
supp ¢ C B(x,1) and for all t > T we have almost surely

witn) = [ w (ot dy= Y Wi
R keNo
Proof. This follows from the same arguments as Lemma[4.3] O

Now we apply the above corollary to the mollifier function v (see[2.21)). As is done before,
we write 7 for the shifted function ¥ (y) = ¥-(y — x).

Corollary 5.4. For L; = t(logt)® we have almost surely

lim log(supyepe u(t, ) log (SupIEQLt ur,(t, $)> .
teQ,t—o00 tlogt tlogt '

Proof. Since u(t,z) = u®(t,z) = lim, 10 u¥z (t, ) and the L'-norm of ). is uniformly bounded
in €, this follows by Lemma [5.2] Corollary [5.3] together with the arguments from the proof of
Proposition §.5]

O

Theorem 5.5. For a € (0,1) we have almost surely

im log U (t) < liminf log (inf e, u(t, x))
teQt—oco tlogt teQ,t—00 tlogt
< Timsup log(sup,cp2 u(t, z)) < lim log U(t)'
teQ,t—00 tlogt teQ,t—oo tlogt
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Proof. Let C > 1 be such that (51), (53) and (34) hold. Let us write M = Ca and as before
take L; = t(logt)®. To derive the upper bound we apply Corollary and Lemma with
0 = 2 to obtain

log(supx€R2 U(t, J?)) IOg (SUPIEQ% UL, (t’ 37))

lim su = limsu
tGQ,t—>cI>)o tlogt te@,t—ﬂ?o tlogt
1 4C (log Lt)® + 1 t—2
< limsup 0g(C) +4C(log Lt)° + log Ur, (t — 2)
teQ,t—o00 tlogt
1
teQ,t—oo  tlogt teQ,t—oo tlogt

where the last step follows from Proposition 4.5
The argument for the lower bound is more technical. Let a € (0,1) and b € (a,1). We
estimate for 2 € Qy and for §; = r; = t*, € (0,1):

Eqy 210,01 1x ycar,1¥n (Xt)]
> ¢~ Mo(log Lt)SEQ%t [@Lt (0,t— 5t)ﬂ[X[o,z—at}CQrt]ﬂ[X[t—at,t}Cth]wg(Xt)}
> efMét(loth)sEQoLt [@Lt (0, — 5t)IL[XW_MCQ”]IZJﬁ(Xt)}
— ¢~ Mbi(log Lt)sE@%t [@Lt (0,t — 5t)]l[X[o,t—6t1CQrt]]l[X[t—at,tﬂQLtW’?(Xt)] ‘ (0
For € > 0 we have

=0t (Xs)—ce)ds
EQ(}%’E |:9Lt’5(0,t - 6t)]]'[X[O,t—6t]CQTt]i| = EO |:ef0 (5 ( ) ) :H'[X[()’t_gt]CQ'rt]}
= Un,s(t - 5t),

so after passing to the limit the same is true for ¢ = 0. Therefore, for € (0, 1) and large enough
t by using (53))

Egy, [.@Lt (0.6 = 1)Ly, e U (X0)

z EQ%t |:@Lt (0’ t— 5t):ﬂ'[X[0,t75t]CQ?"t]]E@ft_ét [T’Z)%‘(X(St)]
t

_ 5 . _lz—yl?
> U, (t — 6;)e~Moellog Le) inf e~ 2nt
2€EQr YEQr +1

2
2ry

> Uy, (t — (5t)€_M6t(10th)567"Tt.

This, as we will see below, is of the right order. If ¢ is large enough so that L; > 2(ry + 1),
then the expectation appearing in the negative term in (36]) can be bounded from above as follows:
With 7 = inf{t > 0: X; € 9Qr, }, using (34) and that

Ly

d(aQLt;SUppiﬁﬁ) >Li—ri—1> ?,
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L2
we have for ¢ large enough such that §; < ¢&

EQ%t P10, 8 = 5t)H[X[0,t76t]CQ7't]H[X[t—ét,t]gQLt]wg; (Xt)}

< M(t=5:)(log Lt)oEQ%t (L5, <rag ¥ (X1)]
2

5 _ L
< 62]V[t(lOth) e Sctst'

Therefore we have, using that r, = §; = tb:

EQ%t 71,(0,1) :H'[X[O,t] CQLJ%? (Xt)]

2
Ly
8cdy |

> U, (t — f0)e~ Mt 108 L) =2 _ 1= 2Mtlog L)~

and letting n | 0 we deduce that also

. _Apeb 5 _ 2t _ 5_ L3
inf u(t,a) = U (¢ — t7)e M0 55— g 2MHs "
rEQta

From here we obtain by Lemma|[3.6|and Theorem[I.3]

log (inf,eqQ,. u(t,x)) log U, (t — t?) bl log U (t)

lim inf > liminf —————~> = im .
teQ,t—o0 tlogt teQ,t—o0 tlogt teQ,t—oo tlogt
Since b € (a, 1) was arbitrary, this concludes the proof. O

6 Gaussian calculations: Proof of Theorem (1.3

We saved some Gaussian calculations for this last section. In Section [6.1] we prove that our en-
hanced mollified noise converges up to a constant to the same limit as the differently mollified
noise considered in [8]]. In Section [6.2] we prove the bounds on the noise terms and its enhance-
ment (for @ = (0,0) € X, O is called the enhancement), which are used to prove Lemma [2.24]
to control the growth of the L>°-norms of Z;, . and Y7, . with respect to L.

6.1 The limiting eigenvalues of a mollification on the full space

In this section we prove Theorem We state the theorems from [8] on which it relies in
Theorem [6.1] The proof then follows by the Gaussian convergence that is stated in Theorem [6.2]
(see alsol6.3).

Since § € 7/, the map f — (&, f) is linear and as [|(§, f)||2(o,p) = [IflL2(ray, it extends
to a bounded linear operator % : L2(R%) — L2(Q, P) such that for all f € L2(R%), # f is a
centered Gaussian random variable and E[# f# g] = (f,g) 2 for all f,g € L*(R%). We will
make abuse of notation and write “(&, ny, 1,)” instead of “(%, ny, 1,)” in the following (where ny, 1,

is as in[2.2)).
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Theorem 6.1.  (a) [8, Theorem 6.4] Let T be in C°(R?, [0, 1]) and equal to 1 around 0. Let
§L¢ be given by

{Le = Z T(Fk) (&, 0, ) 0, L. (57)

keNZ

There exist (CN'L)LE[LOO) and ¢y in R with Cr, =% 0 and a &, = (€1,2L) € X such
that almost surely in X3 for a < —1

(€rerre ©o(D)ere — plog = Cp—cr) = €y, (58)
where o(z) = (14 $m2|z|*)~L

(b) [8l Theorem 2.9] Let A\, (Q1,, EL) be the n-th eigenvalue of the operator %%L as in Theo-
rem Then for all unbounded countable sets | C (e, 0), almost surely, for all n € N,

An(CQLv EL) _

m
Lel,L—oo  log L

Proof. Actually, in [8] the setting is slightly different. Towards Let us write {, : R — R
for the function (,(x) = (a + 7%|z|?)~! with @ > 0. Then o = 2(s. Instead of o, in [§] (; is
considered in the sense that one shows the convergence of {7, - © (1(D)&r,  — % log % — C”L —d.
The choice of a = 1 in [§]] is rather arbitrary, as one finds a different limit/enhancement but the
operator stays the same due to cancellations in the definition of the product ¢ which involves
the enhancement (all the statements in [8] follow in an analogous manner). The difference of
% log % and % log % is then directly explained by the fact that the enhancement defined with o
is two times the enhancement defined with (5, as ¢ = 2(5. Towards In [8]] the Hamiltonian
is not defined with the factor % But it is shown that the eigenvalues of A + (2¢;,, 4= )¢ (which
is the limit of A + 2£. — 4c¢.) converge to 2y, which then proves the above convergence to x
immediately. O

The major difference between the setting in Theorem [6.1] and our setting in [2.22] is that
we have &7 _ instead of £z, .1 The &y _ is a projection of the mollified white noise £ onto the
Neumann space on the box Q. Whéreas, &L 18 an approximation of the white noise on the
box @, based on Fourier multipliers. The latter is dependent on the size of the box, whereas for
L > r we have that {7 _ equals £ almost everywhere on the box Q. The following theorem
shows that both approximations lead to the same limit, up to a constant.

Theorem 6.2. Let &1, . be as in and &7 _ be as in 28). There exist (CL) (1,00 and C' in R

such that Cf, L7000 and the following holds. In X5(Qp) for « < —1 as € | 0, the following
convergence in probability holds

(€3 . — €160 . ©a(D)EL . — 1. © (D)) o (0,0 + Cp). (59)
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6.3. As a consequence of (39), (29) holds with &; = (1,2 + Cp + Cp 4 ¢) and ¢, =
% log % + C. Moreover, by the following identity

)\n(QLa SL) = )\n(QLv EL) +Cr + CNvL +¢r,
we see that Theorem [6.2] and Theorem [6.1]indeed imply Theorem [I.3]
We prove Theorem [6.2]in Theorem[6.5] This is done using the following theorem.

Theorem 6.4. [8, Theorem 11.2] For r > 1 we let X}, and Y}; . be centered Gaussian variables
fork € N2, & > 0 such that every finite subset of {Yi, k€ N2, e > 0YU{X}, 1k € N2, e > 0}
is jointly Gaussian for all r > 1. We write

fr,a - Z Ylirnk,ry 9r,6 - Z X]i,rnk,r; (60)

keNZ keNZ
®r7g == 9r7g @ O’(D)er7£ — E[er’g @ O-(D)07-75:|,
ET,& = 57",8 © U(D)gr,a - E[&r,e O] U(D)gr,a]'

Let I C [1,00). We write R = {(k,l) € N3 x N2 : ki # l1,ka # lo}. Let Go(k,l) =
E[X;, X;, — Y., Y, and F . NZ x NZ — R. Consider the following conditions.

el0

VkeNjvrel; E[X;,-Yil]1=0 (61)

2

¥6>03C > 0Vr € Ik, 1€ N3 Ve >0 [Foc(k, )] < CT[+ ki —L)°", (62
=1

Vr € IV6>03C > 039 > 0Ve € (0,60) Vk,l € N2 :

2 1 1
Hi:l <1+|ki—£|)1*5 + H_m._g‘)l—é) (kal) € 9%7

2
i=1 1+|kij£|)l_5 + 1+\l¢*1£\)1_5 (k, l) € N%) X N%) \ R

Gre(k, )] < C (63)

(a) Suppose that (1)) holds and that (62) holds for F, . (k,1) being either E[ X} X ], E[Xf ,Yf,]
or E[Yy Y£|. Then forr € I, a < —1, in X; we have

—_ P
(97",5 - fr,sa 67',5 - :r,s) — 0.

(b) Suppose (63) holds. Then E[f,.. ® 0(D)b,. — & ©® 0(D)&c] — 0in 6, ! forall v > 0
andr € 1.

Consequently, if the conditions in[(a)|and (D) hold, then with ¢ = 0 forr € I, o < —1, in X%

(Ore — &, 0pc @ 3(D)bre — &rc © 0(D)Ere) 2 (0, ). (64)

Remember that the mollifying function v is given by ¥ (z) = ¢(x1)p(x2), for a mollifying
function ¢ see[2.21]
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Theorem 6.5. Let T be in C>°(R?,[0,1]) and equals 1 around 0. We write ¢(z) = ¢(—=z). Let
p: R — R be given by

p(z) = Q/OW[QD * p](2) cos(zz) dz. (65)

Let 7(z) = pla1)pla2).
(a) With X}, = T(Ek)(€, i), Vi, = T(Ek)(€, ) and O,.c, &rc as in Theorem there
exist C > 0,C, > 0 with C,, Z=°% 0 such that (64) holds with ¢ = C + C.

(b) With X}, = (&, g r) and Y, = T(Sk)(E ) ©4) holds for 0., & - as in Theo-
rem 6.4

As a consequence of[(a)| and[(b) we obtain (59).

Proof. That (61) holds is immediate. For F;..(k,!) being either E[X} X7 ], E[X} Y] or
E[Yy, Y| we have |F; . (k, )| = 0 in case k 7 [, hence the conditions for Theorem hold
and so it is sufficient to prove that E[0, . ® 6(D)6,. — & © 0(D)&,.] = (0,C + C,) in 6,
for all v > 0. This follows from Lemma[6.10]and Lemma [6.6]

For this we use Theorem [6.4] That (6I)) holds is immediate. The other conditions in
Theorem [6.4(a)| and [(b)| follow from (the stronger conditions in) Lemma[6.11} O

Lemma 6.6. Let 7 : R? — [0, 1] be given by 7(x) = p(x1)p(x2), where p € C*(R,[0,1]) is an
even function such that p' is bounded, p(0) = 1, p’(0) = 0 and |p(x)| < (1 + |z|)~" for some
v > 0. Write &1, - = ZkeNg T(Fk)(& )0, 1. There exists a C > 0 and for all L > 1, there

exists a Cp, with Cj, L2000 such that
Lpig D)éL](0) = L1ogl oy C
1 [éL,EQU( )fL,s]( ) — Zlogs — U+ Cp.
Moreover, there exists an M > 0 such that forall L > 1 and € € (0,1)

%E[EL@ © U(D)EL@](O) - %log %

< M.

Proof. The proof is similar to [8, Lemma 6.16]. We define |y| = (|y1], |y2]) and hr(y) =
(L2 + %W2|y|2)_1 for y € R2. Then (see also [} Section 6, equations (60), (61)])

F £ 2
1= Bl 00D )0 = 3 TR [ 7 ha(l)

1
hez? L2 + §7r2|k|2
Let
Orc=ere— [ H(70Phu)
RZ
We first show that there exists a;, € R with ay, — 0 such that

D 2% ay, (66)
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and that Dy, . is uniformly bounded in L and €. To shorten notation, we write § = % Then
Dp. =9} _+D? _, where

D}, = /R2 FOly))2(he(ly)) — ho(y))dy, D7.= /RQ [7(61y))? — 7(6y)*]hr(y) dy.

Ashi([y])=he(y) = he(lyDhe @)z (yP ~[ly] ). he(ly)) < he(y) and (jy*—|ly]*) <
1+ |y|, we have hy(|y]) — hr(y) < (14 |y|)hr(y)?. As the latter function is integrable over
RR2, it follows by Lebesgue’s dominated convergence theorem that as § | 0

Dp. — - hi(ly]) — ho(y)dy =: ar,

and ay, — 0. As 7 has values in [0, 1], ’)DlL’E is bounded by a7, for all € > 0 and therefore ’Di,e is
uniformly bounded in L and €. By the (multivariate) mean-value theorem, as V7 is bounded,

[7(3ly)) =70yl S dllyl —yl S 6.

As 7(y) < (1+ |y|)~7 uniformly in y and 6(1 + |5 |y]|)™Y < (1 + |y|)~7 for|y| > 2and § < 1,
we get (uniformly in y)

7(8Ly))* = 7(0y)*| < (1 + [y

Therefore D7 _ is bounded by [p»(1 + [y|)™7(1 + 7|y[*) "' dy for L > 1 and € € (0,1), and
by Lebesgue’s dominated convergence theorem

[ FOLL)? = 76 ns) dy 5 .

So we have obtained (66) and therefore study the asymptotics of the following integral (which
does not depend on L, so that the boundedness follows from the convergence)

~ 2
F(6y)*hr(y)d :/ -
/RQT( y)hr(y) dy o 1 L2
~ 2 ~ 2 ~ 2
:/ _ T 2da:+/ _ea) 2dx+/ ) g,
R2\B(0,1) €2 + 37| B(o,1) 1+ 57|z Ae) €%+ o7z

where A(e,1) = B(0,1) \ B(0, ¢). Because of the assumption that 7(y) < (1 + |y|) ™7, the sum
of the first two integrals converges in R (and the limit only depends on 7):

F(x)? 7(ex)?
/ 2(1)22‘193*/ %dx
R2\B(0,1) €% + 572|x] B(0,1) 1 + 572|z|

€l0 7~_($)2 1
—>/ i 2d$+/ T2,
R2\B(0,1) 572|7| B(o1) 1+ 37|
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On the other hand we have [ A1) ——dr = % log é and thus

572 ||

7(x)? 4 1 F(z)? — Din?|z)? — &2
/ 27—(136)22d$_10g:/ ((2) 1 2)22‘1|2 ;- dz
A1) €2+ 32| ™ € Ay (624 5m2|z|?)5m2 |z

Now

/ = dz i>/ ! dy
Ay (€2 + gm2laf?) g2l r\B(0.1) (L+ 372 ly2)gm2lyl2

and

JRRLC S P
A1) (€2 + §m2|z[?) i72|a)? B(0,1) 27T2\96|2

Let us prove that the latter integral is finite by showing that the integrand is bounded. First
observe that as 7(x) = p(z1)p(z2)

%(:c)?—lS‘pm)?—lp(m)?—l‘+‘P<ml>2‘1‘+\p("“’2)2_1‘-

|z |2 1 9 z? 3

Now, by using that and that p(0) = 1 and p’(0) = 0 and that p is twice differentiable at 0, the
latter is bounded for x € B(0,1). O

Remark 6.7. Instead of taking 7 to be of the product form as in Lemma one could take
7(z) = p(]z|) with a p satisfying the properties and obtain the same statement. The idea of the
proof is similar and easier as one can apply the substitution to polar coordinates.

Theorem 6.8. Let 7 € C1(R?,[0,1]) satisfy 7(0) = 1. Let v € R. There exists a C > 0 such
that for all L > 0 and h € H,)(Qr) we have ||h — 7(eD)h|| =% and for B < ~, ¢ € (0,1),
I = #(eD)hll s < CeP=INO=D || o

Proof. By [8, Theorem 4.14]

Ih = (D)5 < DA+ 5P = 7(5k)* (h, )
keN3

S (s (1 P70 = #5000 IR
keN3

Observe that if |k| > L—?, then (1 + | %2 )5_7 < €20-8)9_ On the other hand, if |k| < gg,
then |1 — 7(£k)| < £|k| < as'~° (as 7 is bounded on the ball of radius a). Therefore, as
(1—T(zk)),§1and(1+|k| )<

(‘sup (14 [P (1 = 7(58))?) S 20-9120-99,
keNZ
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Lemma 6.9. Let 7 and &1, . be as in Lemma Then z v+ E[¢r . © 0(D)Ep - (2)] — %E[SL,E 0]
o(D)EL - (0)] converges in €, " to a limit that is independent of 7 as € | 0 for all v > 0.
Moreover, there exists a M > 0 such that forall L > 1 and e > 0

IE[Le © g(D)ére()] = $E[ELe ® 0(D)Erc(0)][ly < M. (67)

Proof. The proof of the convergence follows along the same lines as [8, Theorem 6.15] by using
Theorem [6.8]instead of [8] Theorem 6.14]. The bound is not proven in [8, Theorem 6.15],
but can be derived from the decomposition done in the proof and by the bound

1
E( - <1
L A+ m)i+ ~ 0

me+ No
which for example can be concluded by [8, Lemma 11.7]. O

Lemma 6.10. Let p be as in (63). Then p € C*(R, [0,1]) and p is an even function such that p'
is bounded, p(0) =1, p'(0) = 0 and |p(z)| < (1 + |z)~!

Proof. By Leibniz integral rule p is C°°. That p’ is bounded follows by the identity p'(x) =
—2 [ z[¢ * ¢](2) sin(zz) dz and that z — z[p * @](z) is integrable. The bound p(z) < (1 +
|z|) =1 follows by the following identity that holds for x # 0

1 1

p(z) = - /Ow[gp * gb](z)% sin(zz)dz = - /Oﬂ[go * @) (2) sin(xz) dz.

O

Lemma 6.11. Let 7 be as in Theorem For Xj 1, = (&, 1) and Fp (k. 1) = E[X} [ X}/]
the following holds

2
3O > 0VL > 0Vk, 1 € N2k #1Ve >0, |Fpo(k1)] < CH(E/\ ) (68)
=1

1
3C >0VL>0Vk € N§Ve > 0;  |Fro(k,k) —7(5k)* [ < Cle Nt +en ) (69)

(©8) also holds for Fr, - (k,1) = E[(&,ng 1) (€, m.1)].

Proof. Let us first rewrite F, .(k,[) by using that ({.,ny 1) = (e x &,y 1) = <f,1[)5 * Nk 1)
where 1. (z) = 1-(—x) (see also [10, Theorem 11.5]), so that

FL,E(ka l) = E[<€57 nk,L><§Ea nl,L>] = <TZJS * Nk L, %5 * t1l,L>L2(]R2)
2

= (0o Ve * e # v n) paee) = | [k Ko 0, 2) 12wy,
=1

where K. (z) = %cpe * @8(%1:) and n,, . for m € Ny is the element in the Neumann basis for
L?([-%,%]). Observe that K := K is a smooth even function with supp K C [—,7] (as
L > 1) that integrates to one.
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Because (ny, , K. * nlm>Lz(R) = (T, Ko * %“li,w>L2(R) for all y € R, and for
y=—(%,5)andall k € Ny and z € [0, 7],

iﬂynk,ﬂ(x) = \/gcos(kx),
we have for k,! € Ny we have by a substitution and Fubini’s theorem,

™

Af = o (e, Ke * 0y ) p2r) = / / K (x — y) cos(kx) cos(ly) dx dy
’ vy ’ 0o Jo

= /07r /_W_y K. (z) cos(k(z + y)) cos(ly) dz dy

T (m—z)Am
= K (z) / cos(k(z +y)) cos(ly) dy d=.
- (—2)Vv0

We write

(m—2z)Am
Tri(z) = /( cos(k(z 4+ y)) cos(ly) dy.

—2z)V0
Note that (1 —2) Am =7 — (2V0) =7 — 2" and (—2) V 0 = 2~. Using that the product of

cosine functions can be written as the sum of two cosines and that sin(7mm + ) = (—1)"" sin(x)
for m € Z, we obtain for k # [

Tri(z) = ;/iz cos(kz + (k+1)y)) + cos(kz + (k — 1)y)) dy
_ {[(—1)’“” sin(lz) — sin(kz)] ﬁ 2>0,
[(—1)’“” sin(kz) — sin(lz)] 0.

z

IN

k
[

In case k + [ is odd, fj; is an odd function so ffﬁ K. (2)fri(2)dz = 0. If k + Lis even, fy is
an even function. As K is even one has A7 ; = A7, and so for k, [ such that k£ + [ is even

™

= Ke(2)5lfru(z) + fiz(2)]dz

PN
= k—i—l/o K. (z)[sin(lz) — sin(kz)] dz.

As K is a positive function with support in [—7, 7| that integrates to 1, we obtain |Ai,l’ < k%rl
On the other hand

A

1 T . .
= ‘k?‘H/o K(z)[sin(elz) — sin(ekz)] dz| < e.

This proves (68). As also E[(&, g 1) (&, n.1)] is of the form Hf:1<nkm, Ke %0y, 7) 2wy but

with K, (z) = £ wg(%x) for which still K is a smooth even function with supp K7 C [—, 7]

o

(as L > 1) that integrates to one, the above also proves (68) for Fy, . (k, 1) = E[(&, ng 1) (€, nin)]-
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Now for k = [ # 0, we have

_t
1 Tz
Jrr(z) = 5 / cos(kz + 2ky)) + cos(kz) dy

_ 1sin(kz — 2k — zT) —sin(kz + 2kz7) 1

=3 o + 5[7r —|2|] cos(kz)
_ —sin(k[z]) |1

= ok + 2[7r |z|] cos(kz),

andfork =1 =0, fr,(2) = m—|z| = [7 — |2[]. Observing that 3 = 2 (for the one dimensional
0). Hence for k € Ng

2

H ﬁ /” (S:i:]ifiz)ﬂN(ki) +[1—L)z]] cos(kiz)> dz.

Observe that as K.(z) = %[gp * gb](%z),

2 .
}12/0 K.(2) cos(kiz) dz = EQ/O [p % @] (2) cos(Tkiz) dz = 7(£k)>.

As Fp . (k, k) — 7($k) is of the form ay, a, — by, by, and |a;| and |b;| are bounded by one, we
have |ay, ag, — by, bi,| < |ak, — bk, |+ |ar, — b, |. Therefore it is sufficient to show the following
forallk € N

1 (7 T 1
‘_k: / K (z)sin(ekz)dz + E/ K(z)zcos(ekz)dz| Se A T (70)
0 0

By partial integration we have

/ K(z)sin(ekz)dz = —6/ / K(z)dzcos(ekz)dz + — / K(z)dzsin(ekn),

/K )z cos(ekz) dz /K zdism(ekz)d

1 [" ' .
= _k/o (zK'(z) + K(2)) sin(ekz) dz.

By using that sin(ekm) < ekm and that [ |2K’(z)| 4 |K(z)| dz is bounded by a constant that
does not depend on L, we obtain (70). O
6.2 Bounds on the noise terms

In this section we prove bounds on the size of the norms of the noise term 7 _ and its enhance-
ment with respect to the size of the box, L, in Lemma We derive these bounds from LP
bounds, provided in Lemma|6.14] First some auxiliary lemmas.
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Lemma 6.12. For all v € (0, 1) there exists a € > 1 such that forall L > 1, i € N_j, € > 0,
T €@y

E[| A€} (|(2)?] < €FF)i 0 R[|AE]} [(x)?] < €27, (71)

Proof. The proof is similar to the proof of [8, Theorem 11.1], based on [8, Theorem 11.5 and
11.12], in which on the right-hand side the factor L?” appears. As mentioned before, the bound
we have obtained in Lemma [6.11]is stronger than (62)). It also assures that we do not obtain
anything that depends on L on the right-hand side of (7I). Indeed, similar to the proof of [§]
Theorem 11.5]

. 1 1 \2
2R ALL (0)x] S (D L7 s
(kle T 1+k:) T4 ”k+l>

( > 1(1+;)1+)4§¢,

kel N()

AN

for some € that does not depend on L, by [8, Lemma 11.7]. Similarly, one can prove the bound
on =} _ by following the proof of [8, Theorem 11.12]. O

We present the following consequence of the Gaussian hypercontractivity, which basically
generalises the fact that the p-th moment of a Gaussian can be bounded by a multiple of its
second moment to the power %.

Lemma 6.13. [26, Theorem 1.4.1, see also the end of p.62] Let V' be in the k-th Wiener chaos
for some k € N. Then E[VP] < (p — 1) > B[V?)2. Forp>1

Lemma 6.14. For all v € (0, 1) there exist C, M > 0 such that forall L > 1, ¢ € (0,1), p > 1

BllEL N7 -, 2] < CL?pEME, (72)
B[} . @ o(D)EE . — e’ ] < CLPpPME. (73)
Gy P

Proof. Using Lemma [6.13]along the same lines as [8, Lemma 6.10], there exists a C' > 0 inde-
pendent of {7 _ and §7 . © 0(D)&] . — ¢ such that with € as in Lemma forall L > 1,6 >0
and p > 1 we have and

2 b
BIIELP_ )< orpret.
Therefore it is sufficient to show that there exists an M > 0 such that

IEE} . © o(D)E} ] — ce|lP 2 S CL*pPM?.
6,

n

This follows from Lemmaand Lemmaas B . ©0(D)E] | —ceis the sumof E[¢} . ©
o(D)&} ] — 1El¢} . © o(D)E} (0)] and 3 E[E} . © o(D)&} (0)] — c. O
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Lemma 6.15. For L > 1let &;, = (£1,EL) be as in 29). For all vy > 0 there exist a hg > 0
such that for all h € [0, ho]

hller 12—y R|I€? _Oo(D)EY —ce|. —
sup 1748 e kel |+ 128 €%, O (D), —e ”%W] < o0, (74)
e>0,L>1
hllEcll? - R|EL|. -
sup L*E [e Hlat q + L_QE[e 1Zely; 7} < 0. (75)
L>1
As a consequence, for all £ > 0 almost surely
s I oy + 1€k, @ o (D)EL, — celly
A, .= sup n < 00, (76)
LeN,L>e log L
[ A
4= sup s < 00, (77)
LeN,L>e log L

and moreover E[e'] < oo and sup, o E[e"7<] < oo for all h € [0, hy).

Proof. Let v > 0 and m € N be such that % < 7. Let us write Sg, .1 = ||52,€H<€—1—27 and
Spe2 =€ . ©0(D)E} . —cellp—2v. For k € {1,2}, by using subsequently Jensen’s inequality,

2p
(72) and (73), i.e., B[S}, ;] < CL?pPeP (we may and do assume ¢ > 1) and % < (8)", we
obtain for h > 0ande > 0

2 Sy L h" h”
Blexp(hSf 1)l = D —rEIS /) < D L EIST sl + Z ARKN
n=0 "~ '

For hg = (26@:% )~! the latter series is finite, i.e., there exists a M > 0 such that for all h € [0, ho),
2
L>1,e>0andk € {1,2} we have E[exp(hS} _,)] < ML¥. This implies (74). Let us write

2
Stk = limg g Sy for k € {1,2}. By Fatou’s lemma we obtain E[exp(hS} ;)] < ML
for k € {1,2} and thus also obtain (73). Moreover, fora > % + 1

»

Z L™ sup Elexp(hoS} _,)] < oc. (78)
LeN €€[0,00) 7

Therefore Se 1= > ;L™ exp(hoS [ is almost surely finite for all € € [0, 00). Conse-
2
quently, S} _, < h—lo(a log L + log S:) and thus for ¢ € [0,00) and L € N with L > e

n
[ ENIN)

7€7k
log L

< h—lo(a +log S:).
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This proves and (77). By Jensen’s inequality

A
sup_ Blexp(hit(a+logS.))] < exp(i2) sup B[S.],
£€[0,00) £€[0,00)

hence by the latter is finite for h € [0, ho], this concludes the proof. O

A Regularity of even extensions

Lemma A.1. Let a € R. There exists a C > 1 such that for all ¢ € €*(Qr)
1 — _
clcllze < licllzg < Cliclee,

where ( = ZkeNg (¢, g )0y, 1, (notation as in .

Proof. By definition the norm of ( is equivalent to the norm of the even extension of ¢ on the
torus T2, (see [8]). On the other hand, the ¢"*(R?)-norm of ¢ is equivalent to the €*(T3; )-norm
of the “restriction” of Z to the torus, see for example [29, Theorem 3.8.1, p.195] (observe that
there is the condition x X co > d, which for y = 0 can be thought of as still valid). O

B The resolvent equation

Here we show the existence of and a bound for the solution v of
m—3M)v=Ff+Vv-g &  v=0y(D)(f+Vv-g),

for suitable distributions f, g, where 0,)(2) := (n + 272|z|*)~! and 7 is a scalar.
Lemma [B.T] displays the regularizing effect of the Fourier multiplier ), it follows by an
application of [3, Lemma 2.2].

Lemma B.1. There exists a C > 0 only depending on d, such that for all « € R, 6 € [0, 2] and
n=>1

_(1-3%
HUU(D)UH%&H(]}M) <Cn (1 Q)HUH%Q(Rd)'

Proposition B.2. Leta € (—3,—1) and B € (—a, 2a+4) and f € €**+2(RY), g € €F1(RY).
Then there exists a C > 0 such that with

M > max{]|f

€212, HgH%’O“H}’
foralln > C(1+ M) 2F17 the equation
v=0y(D)(f+Vv-g)

has a unique solution v € €° (RY), and |lvllgs < M. Moreover, v depends continuously on

f and g in the following sense. Suppose additionally that f. € €**T%(R%),g. € €*TH(R?),

I fellg2atz, |gellgatr < M fore > 0and f- — f, g — g in €**T2(R?) respectively in
2

€+ RY). Forn > C(1 + M)?+=3 and with v. the solution to ve = o,(D)(f + Ve - gc)

we have v. — v in €°(R?).
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Proof. We use a Picard iteration: Let ®: 6% — ¢, ®(u) = 0,,(D)(f + Vu - g), forn > 0. Let
Cy > 1beas Cis in LemmaB.1]and Cy > 1 be such that || Vu - gl|ga+1 < Collullgs||gllga+-
Let C' = C - Cy. A short computation shows that if ||u||4s < M, then

204+4—f

[D(u)llgs < CM(1+ M)y~ >

2

Soifn > C(1+ M)2e+i=5 then || ®(u)
M and center 0 invariant. Moreover,

o6 < M and thus ® leaves the ball in %P with radius

[ (u) — ®(a)

ws = llog(D)((Du —Da) - g)

2a+4—p

SOMn~ 2 |lu—allgs.

(gﬁ

So @ is a contraction and it has a unique fixed point. The continuity is shown as in [28, Proposi-
tion 2.4]. O
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