Research Workshop

Quantum Optimal Control

From Mathematical Foundations to Quantum Technologies

Preliminary Schedule

May 21 (Tuesday)	May 22 (Wednesday)	May 23 (Thursday)	May 24 (Friday)
8:50 – 9:00 Opening			
9:00 – 9:45 Rouchon <i>Quantum Error Correction and Feedback</i>	9:00 – 9:45 Egger Scaling quantum computing with dy- namic circuits	9:00 – 9:45 Calarco Quantum firmware: optimal control for quantum computers and quantum simu- lators	
9:45 – 10:30 Whaley Open loop control of continuously mon- itored quantum systems	9:45 – 10:30 Goerz Modernizing the Quantum Control Stack with the QuantumControl.jl Framework		9:45 – 10:30 Metelmann High-Purity Entanglement of Hot Prop- agating Modes Using Nonreciprocity
Coffee Break	Coffee Break	Coffee Break	Coffee Break
11:00 – 11:20 Erdman Optimal control of quantum thermal ma- chines with reinforcement learning	11:00 – 11:20 Schulte-Herbrüggen Symmetry Decides Observability in Quantum Dynamics	11:00 – 11:20 Sugny <i>Quantum optimal control of a Bose-</i> <i>Einstein Condensate in an optical lattice</i>	
11:20 – 11:40 Campbell <i>Quantum work statistics of controlled</i> <i>evolutions</i>	11:20 – 11:40 Pozzoli Time-zero controllability and Lie alge- braic properties of infinite-dimensional closed quantum systems	11:20 – 11:40 Cuestas A quantum engine in the BEC-BCS crossover	11:20 – 11:40 Kiely Universally Robust Quantum Control
11:40 – 12:25 Kosloff <i>Quantum control of noisy gates</i>	Solving Quantum Optimal Control Prob-	11:40 – 12:25 Weidner Controlling ultracold atoms in optical lattices: theory and practice (but mostly practice)	11:40 – 12:25 Shermer Robust Quantum Control
Lunch Break	Lunch Break	Lunch Break	
14:00 – 14:45 Tse Quantum Computing with Rydberg- atom quantum processors	14:00 – 16:00 Social Event	14:00 – 16:00 Tutorial	
14:45 – 15:05 Hegade Digitized Counterdiabatic Quantum Computing			
15:05 – 15:25 Grech <i>Optimising Quantum Gate Fidelity with</i> <i>Deep Reinforcement Learning</i>			
15:25 – 16:10 Wilhelm-Mauch Controlling and calibrating supercon- ducting qubits in practice			
	Coffee Break	Coffee Break	
from 16:30 Poster-Session	16:30 – 16:50 Petersson Mitigating scaling barriers through time- parallel multiple shooting method	16:30 – 16:50 Gago Encinas Testing systems for universal quantum computing: a controllability test using parametric quantum circuits	
	16:50 – 17:10 Schneider <i>Compositional Tensor Networks</i>	16:50 – 17:10 Bruschi Towards exact factorization of quantum dynamics via Lie algebras	
	17:10 – 17:55 Boscain Ensemble controllability for n-level quan- tum systems	17:10 – 17:30 Petiziol Optimized Floquet engineering of many- body interactions	
		17:30 – 18:15 Kuprov Simulation and design of shaped pulses beyond the piecewise-constant approxi- mation	

EINSTEIN Foundation.de Einstein Stiftung Berlin Einstein Foundation Berlin

from 18:30 | Dinner

List of Posters

P1	Davide Lonigro (FAU Erlangen-Nürnberg) Global approximate controllability of quantum systems by form perturbations
Р2	Omar Kebiri (BTU Cottbus-Senftenberg) Deep learning methods for stochastic optimal control
Р3	Juhi Singh (Forschungszentrum Jülich) Optimal control methods for two-qubit gates in optical lattices
P4	Robert de Keijzer (Eindhoven University of Technology) Do qubits like Metallica?
P5	Mirko Consiglio (University of Malta) Variational Gibbs State Preparation on NISQ devices
P6	Thomas Reisser (Forschungszentrum Jülich) Closed-loop gate-set optimization via quantum optimal control for an ensemble of nitrogen vacancy centers in diamond
P7	Léo Van Damme (Technical University of Munich) Time-Optimal Recoil-Free Pulses for Cold Atom-Based Quantum Computers
P8	Boxi Li (Forschungszentrum Jülich) Analytical pulse design for crosstalk and leakage suppression
Р9	Robert Zeier (Forschungszentrum Jülich) Symmetry obstructions to the quantum approximate optimization algorithm
	Ressa Said (University of Ulm) Optimal control using phase-modulated driving fields in diamond
	Lukas Tarra (TU Wien) Adaptive nonlinear stabilization of ultrashort laser pulses
	William Steadman (Qruise GmbH) Adaptive system characterization and quantum optimal control competitive with closed loop calibration
P13	Emanuel Malvetti (Technical University Munich) Reduced Control Systems for Optimal Cooling and Entangling
P14	Lasse Ermoneit (Weierstrass Institute for Applied Analysis and Stochastics, Berlin) Optimal Control of a Si/SiGe Quantum Bus for Scalable Quantum Computing Architectures
P15	Jingjun Zhu (Université de Bourgogne) Optimal control and ultimate bounds of 1:2 nonlinear quantum systems
P16	Shimshon Kallush (Holon Institute Technology, Hebrew University) Controlling the uncontrollable: Quantum control of open-system dynamics
	Alejandro Ramos (University of Rostock) Shaping Laser Control Pulses by an Automatic Differentiation Direct Optimal Control Approach
	Cristina Cicali (Forschungszentrum Jülich) Atom transport optimization: theoretical frameworks, algorithms, and experimental integration
P19	Qi Zhang (Kipu Quantum) Analog Counterdiabatic Quantum Computing to Push the Boundaries of Neutral Atom Hardware To- wards Quantum Usefulness
P20	Ashutosh Mishra (Forschungszentrum Jülich) Superconducting Qubit Reset by Demolition Measurement
P21	Adrian Köhler (Free University of Berlin) Optimal control of arbitrary perfectly entangling gates for open quantum systems
P22	Matthias Krauss (Free University of Berlin) Parameter Optimization of Transmon Arrays and Crosstalk Mitigation
P23	Anton Halaski (Free University of Berlin) Quantum Feedback Control for Quantum Error Correction on Superconducting Qubits
P24	Roberto Sailer (University of Ulm) Implementing control optimization strategy for decoherence protected quantum register in diamond

P25	Yannick Strocka (Humboldt University of Berlin)
DAG	Optimal Control Aspects for Cluster State Generation with Group-IV Color Centers in Diamond
P26	Monika Leibscher (Free University of Berlin)
	A graph-theoretical approach to analyze controllability of driven quantum systems
P27	Mohammad Abedi (Forschungszentrum Jülich)
	Reinforcement learning entangling operations for spin qubits
P28	Armin Römer (Forschungszentrum Jülich)
	JuMPO: A Quantum Optimal Control Library for Open System Magnetic Resonance Experiments with
	Arbitrary Inhomogeneities
P29	Nicolas Wittler (Forschungszentrum Jülich)
	Co-design of quantum computing devices with optimal control
P30	Dirk Heimann (University of Bremen)
	Synthesizing optimal pulse sequences with an iterative linear quadratic regulator (iLQR) for IBM super-
	conducting qubits
P31	Alexander Simm (Forschungszentrum Jülich)
	Control of analog qubit-resonator gates in the strong coupling regime
P32	Martino Calzavara (Forschungszentrum Jülich)
	Quantum control landscapes of piecewise-constant pulses
P33	Luke Visser (Eindhoven University of Technology)
	Simulating the stochastic Schrödinger equation with semi-martingale noise
P34	Maurice Beringuier (Max Planck Institute for Nuclear Physics)
	Measuring and predicting the performance of atomic-scale systems as quantum classifiers
P35	Tangyou Huang (Chalmers University of Technology)
	High-fidelity superconducting two-qubit gate with optimal control
P36	Kapil Goswami (Zentrum für Optische Quantentechnologien, University of Hamburg)
	Solving optimization problems on quantum systems.
P37	Aviv Aroch (Hebrew University of Jerusalem)
	Mitigating controller noise in quantum gates using optimal control theory