LES and VMS Methods for the Simulation of Incompressible Turbulent Flows Volker John

University of the Saarland, Saarbrücken, Germany

Contents

- 1 Incompressible Turbulent Flows
- 2 Large Eddy Simulation (LES)
 - 2.1 Space–Averaged Navier–Stokes Equations
 - 2.2 Commutation Errors
 - 2.3 Models
 - 2.4 Finite Element Discretizations
 - 2.5 Finite Element Error Analysis
 - 2.6 Numerical Simulations
 - 2.7 Summary
- 3 Variational Multiscale (VMS) Methods
 - 3.1 Motivation and Derivation
 - 3.2 Practical Realizations and Experiences
 - 3.3 Bubble VMS Methods
 - 3.4 A Finite–Element Projection–Based VMS Method
 - 3.5 A Numerical Study the Turbulent Flow Around a Cylinder
 - 3.6 Summary and Outlook
- 4 Further Aspects
 - 4.1 Finite Element Error Estimates for Time–Averaged Quantities
 - 4.2 Solving the Algebraic Systems

1 Incompressible Turbulent Flows

- Navier–Stokes equations: fundamental equations of fluid dynamics
- Claude Louis Marie Henri Navier (1785 1836), George Gabriel Stokes (1819 1903)

conservation laws

- conservation of linear momentum
- o conservation of mass

$$\mathbf{u}_t - 2Re^{-1}\nabla \cdot \mathbb{D}(\mathbf{u}) + \nabla \cdot (\mathbf{u}\mathbf{u}^T) + \nabla p = \mathbf{f} \quad \text{in } (0,T] \times \Omega$$
$$\nabla \cdot \mathbf{u} = \mathbf{0} \quad \text{in } [0,T] \times \Omega$$
$$\mathbf{u}(0,\mathbf{x}) = \mathbf{u}_0 \quad \text{in } \Omega$$
+ boundary conditions

- given:
- $\Omega \subset \mathbb{R}^d, d \in \{2, 3\}$: domain
- \circ T: final time
- \circ **u**₀: initial velocity
- boundary conditions

 \circ velocity **u**, where

• to compute:

$$\mathbb{D}(\mathbf{u}) = \frac{\nabla \mathbf{u} + \nabla \mathbf{u}^T}{2},$$

is the velocity deformation tensor

 \circ pressure p

- parameter:
 - Reynolds number Re

• Reynolds number

$$Re = \frac{LU}{\nu}$$

- $\circ L[m]$ characteristic length scale (diameter of a channel, diameter of a body in the flow)
- $U[ms^{-1}]$ characteristic velocity scale (inflow velocity)
- $\nu [m^2 s^{-1}]$ kinematic viscosity (water: $\nu = 10^{-6} m^2 s^{-1}$)
- rough classification of flows:
 - Re small: steady-state flow field (if data do not depend on time)
 - Re larger: time-dependent flow field
 - Re very large: turbulent flows

• Reynolds number

$$Re = \frac{LU}{\nu}$$

- $\circ L[m]$ characteristic length scale (diameter of a channel, diameter of a body in the flow)
- $U[ms^{-1}]$ characteristic velocity scale (inflow velocity)
- $\circ \nu [m^2 s^{-1}]$ kinematic viscosity (water: $\nu = 10^{-6} m^2 s^{-1}$)
- rough classification of flows:
 - Re small: steady-state flow field (if data do not depend on time)
 - Re larger: time-dependent flow field
 - Re very large: turbulent flows
- There is no exact definition of what is a turbulent flow !

- mathematical analysis
 - 2d: existence and uniqueness of weak solution, Leary (1933), Hopf (1951)
 - 3d: existence of weak solution, Leary (1933), Hopf (1951)

Uniqueness of weak solution of 3d Navier–Stokes equations is open problem !

- mathematical analysis
 - 2d: existence and uniqueness of weak solution, Leary (1933), Hopf (1951)
 - 3d: existence of weak solution, Leary (1933), Hopf (1951)

Uniqueness of weak solution of 3d Navier–Stokes equations is open problem !

- difficulty in numerical analysis of methods for simulating turbulent flows
 - assumption of sufficient regularity of solution such that uniqueness is given
 - How regular are turbulent flow fields ?

Characteristics of Turbulent Flows

- posses flow structures of very different size
 - hurricane Katrina (2005)

• some large eddies (scales), many very small eddies (scales)

Characteristics of Turbulent Flows (cont.)

• Richardson energy cascade: energy is transported in the mean from large to smaller eddies

- start of cascade: kinetic energy introduced into flow by productive mechanisms at largest scale
- inner cascade: transmitting energy to smaller and smaller scales by processes not depending on molecular viscosity
- end of cascade: molecular viscosity enforcing dissipation of kinetic energy at smallest scales

• smallest scales important for physics of the flow

Characteristics of Turbulent Flows (cont.)

• Kolmogorov (1941):

energy is dissipated from eddies of size λ (Kolmogorov scale) such that

$$Re(\lambda) = \frac{\lambda u_{\lambda}}{\nu} = 1, \ \lambda = \left(\frac{\nu^3}{\epsilon}\right)^{1/4} \ [m]$$

Characteristics of Turbulent Flows (cont.)

• Kolmogorov (1941):

energy is dissipated from eddies of size λ (Kolmogorov scale) such that

$$Re(\lambda) = \frac{\lambda u_{\lambda}}{\nu} = 1, \ \lambda = \left(\frac{\nu^3}{\epsilon}\right)^{1/4} \ [m]$$

- size of the smallest eddies
 - rate of dissipation of turbulent energy (from theoretical and experimental studies)

$$\epsilon := 2\nu \left\langle \mathbb{D}(\mathbf{u})' : \mathbb{D}(\mathbf{u})' \right\rangle \sim \frac{U^3}{L} \left[m^2 s^{-3} \right]$$

 $\langle \cdot
angle$ – mean value, $\mathbf{u}' = \mathbf{u} - \langle \mathbf{u}
angle$ fluctuation

 $\circ \Longrightarrow$

$$\frac{\lambda}{L} \sim \left(\frac{\nu^3}{L^3 U^3}\right)^{1/4} = Re^{-3/4} \quad \Longleftrightarrow \quad \lambda \sim Re^{-3/4}$$

Impact on Numerical Simulations

- Galerkin method aims to simulate all persisting eddies, Direct Numerical Simulation (DNS)
 - $\circ \ \Omega = (0,1)^3 \implies L = 1$
 - approx 10^7 cubic mesh cells ($\approx 215^3$)
 - low order method (mesh width \approx resolution of discretization)
 - $\circ \implies \lambda \approx 1/215$
 - $\circ \implies Re \approx 1290$
- applications: Reynolds numbers larger by orders of magnitude

Direct Numerical Simulation not feasible !

• only resolvable scales can be simulated

The Kolmogorov Energy Spectrum

• energy of scales in wave number space (Fourier space)

- logarithmic axes
- resolved scales
 - o large scales
 - o resolved small scales
- unresolved scales, subgrid scales

- k wave number
- E(k) turbulent kinetic energy of modes with wave number k
- $k^{-5/3}$ law of energy spectrum: $E(k) \sim \epsilon^{2/3} k^{-5/3}$

Remarks to 3d vs. 2d

• smallest scales in 2d flows, Kraichnan (1967)

$$\lambda = \mathcal{O}\left(Re^{-1/2}\right)$$

- vortex stretching
 - vorticity: $\boldsymbol{\omega} = \nabla \times \mathbf{u}$
 - neglect viscous term for large Reynolds numbers

$$\frac{D\boldsymbol{\omega}}{Dt} = \frac{\partial\boldsymbol{\omega}}{\partial t} + (\mathbf{u}\cdot\nabla)\boldsymbol{\omega} \approx \boldsymbol{\omega}\cdot\nabla\mathbf{u}$$

- equation of infinitesimal line element of material
- if $\nabla \mathbf{u}$ acts to stretch the line element than $|\boldsymbol{\omega}|$ will be stretched, too \implies vortex stretching, important feature of turbulent flows
- 2d: right hand side vanishes \implies no vortex stretching

2d flows at high Reynolds number are qualitatively different from 3d turbulent flows

Summary

- DNS impossible
- (very) small scales important, have to be taken into account
- 3d simulations necessary
- literature
 - P.A. Davidson, *Turbulence*, Oxford University Press, 2004
 - U. Frisch, *Turbulence*, Cambridge University Press, 1995
 - S.B. Pope, *Turbulent Flows*, Cambridge University Press, 2000

Summary

- DNS impossible
- (very) small scales important, have to be taken into account
- 3d simulations necessary
- literature
 - P.A. Davidson, *Turbulence*, Oxford University Press, 2004
 - U. Frisch, *Turbulence*, Cambridge University Press, 1995
 - S.B. Pope, *Turbulent Flows*, Cambridge University Press, 2000

Impact on numerical simulations

- only large scales of a turbulent flows possible to simulate, two approaches
 - Large Eddy Simulation (LES)
 - Variational Multiscale (VMS) Methods
- impact of the small scales has to be modelled

2 Large Eddy Simulation (LES)

- 2.1 The Space–Averaged Navier–Stokes Equations
- 2.2 Commutation Errors
- 2.3 Models
- 2.4 Finite Element Discretizations
- 2.5 Finite Element Error Analysis
- 2.6 A Numerical Study
- 2.7 Summary

2.1 The Space–Averaged Navier–Stokes Equations

- two-scale decomposition of the flow: large and unresolved scales
- main idea in LES: large scales are defined by averages in space
 - equations for the large scales necessary

2.1 The Space–Averaged Navier–Stokes Equations

- two-scale decomposition of the flow: large and unresolved scales
- main idea in LES: large scales are defined by averages in space
 - equations for the large scales necessary
- starting point: incompressible Navier–Stokes equations

$$\mathbf{u}_{t} - 2\nu \nabla \cdot \mathbb{D}(\mathbf{u}) + \nabla \cdot (\mathbf{u}\mathbf{u}^{T}) + \nabla p = \mathbf{f} \quad \text{in } (0,T] \times \Omega$$
$$\nabla \cdot \mathbf{u} = 0 \quad \text{in } [0,T] \times \Omega$$
$$\mathbf{u} = \mathbf{0} \quad \text{in } [0,T] \times \partial \Omega$$
$$\mathbf{u} (0,\mathbf{x}) = \mathbf{u}_{0} \quad \text{in } \Omega$$
$$\int_{\Omega} p \, d\mathbf{x} = 0 \quad \text{in } (0,T]$$

• $\Omega \subset \mathbb{R}^d, d = 2, 3$: bounded domain, with Lipschitz boundary $\partial \Omega$

- assumptions :
 - \circ regularity :

$$\mathbf{u} \in \left(H^2(\Omega) \cap H^1_0(\Omega)\right)^d \quad \text{for } t \in [0, T]$$
$$\mathbf{u} \in \left(H^1((0, T))\right)^d \quad \text{for } \mathbf{x} \in \overline{\Omega}$$
$$p \in H^1(\Omega) \cap \mathcal{L}^2_0(\Omega) \quad \text{for } t \in (0, T]$$

 \circ weak solution is unique

• decompose velocity and pressure

$$\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}', \quad p = \overline{p} + p'$$

- $\circ \overline{\mathbf{u}}, \overline{p}$: large scales
- \circ **u**', p': subgrid scales

• decompose velocity and pressure

$$\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}', \quad p = \overline{p} + p'$$

- $\circ \overline{\mathbf{u}}, \overline{p}$: large scales
- \circ **u**', p': subgrid scales
- large scales defined by averaging in space (convolution with filter function)
 - filter out small flow structures
 - damp high wave numbers
- goal of LES : approximate $\overline{\mathbf{u}}, \overline{p} \implies$ one needs equations for $\overline{\mathbf{u}}, \overline{p}$

- derivation of space averaged Navier–Stokes equations (literature) :
 - \circ filter Navier–Stokes equations with filter function g

 $g*(\nabla\cdot\mathbf{u})=\,\overline{\nabla\cdot\mathbf{u}}$

o assume that convolution and differentiation commute

$$g\ast (\nabla \cdot \cdot) = \nabla \cdot (g\ast \cdot)$$

• commute both operators

$$g * (\nabla \cdot \mathbf{u}) = \nabla \cdot (g * \mathbf{u}) = \nabla \cdot \overline{\mathbf{u}}$$

 \implies equation for $\overline{\mathbf{u}}$

• application of convolution well defined in $\mathbb{R}^d \Longrightarrow$ extend all functions to \mathbb{R}^d :

$$\mathbf{u} = \mathbf{0}, \quad \mathbf{u}_0 = \mathbf{0}, \quad p = 0, \quad \mathbf{f} = \mathbf{0} \quad \text{for } \mathbf{x} \notin \overline{\Omega}$$

• application of convolution well defined in $\mathbb{R}^d \Longrightarrow$ extend all functions to \mathbb{R}^d :

$$\mathbf{u} = \mathbf{0}, \quad \mathbf{u}_0 = \mathbf{0}, \quad p = 0, \quad \mathbf{f} = \mathbf{0} \quad \text{for } \mathbf{x} \notin \overline{\Omega}$$

• resulting regularities :

$$\mathbf{u} \in \left(H_0^1(\mathbb{R}^d)\right)^d \quad \text{for } t \in [0,T]$$
$$\mathbf{u} \in \left(H^1((0,T))\right)^d \quad \text{for } \mathbf{x} \in \mathbb{R}^d$$
$$p \in L_0^2(\mathbb{R}^d) \quad \text{for } t \in (0,T]$$

 \Longrightarrow well defined in \mathbb{R}^d

$$\mathbf{u}_t, \quad \nabla \cdot (\mathbf{u}\mathbf{u}^T), \quad \nabla \mathbf{u}, \quad \nabla \cdot \mathbf{u}$$

- define pressure term and viscous term in the sense of distributions :
 - $\circ \ \varphi \in C_0^\infty(\mathbb{R}^d)$
 - pressure term

$$egin{aligned} & (
abla p)(arphi)(t) & := & -\int_{\mathbb{R}^d} p(t,\mathbf{x})
abla arphi(\mathbf{x}) d\mathbf{x} \ & = & \int_{\Omega} arphi(\mathbf{x})
abla p(t,\mathbf{x}) d\mathbf{x} - \int_{\partial \Omega} arphi(\mathbf{s}) p(t,\mathbf{s}) \mathbf{n}(\mathbf{s}) d\mathbf{s} \end{aligned}$$

 ${\bf n}$ - outward pointing unit normal on $\partial \Omega$

- define pressure term and viscous term in the sense of distributions :
 - $\circ \ \varphi \in C_0^\infty(\mathbb{R}^d)$
 - pressure term

$$egin{aligned} & (
abla p)(arphi)(t) & := & -\int_{\mathbb{R}^d} p(t,\mathbf{x})
abla arphi(\mathbf{x}) d\mathbf{x} \ & = & \int_{\Omega} arphi(\mathbf{x})
abla p(t,\mathbf{x}) d\mathbf{x} - \int_{\partial \Omega} arphi(\mathbf{s}) p(t,\mathbf{s}) \mathbf{n}(\mathbf{s}) d\mathbf{s} \end{aligned}$$

- ${\bf n}$ outward pointing unit normal on $\partial \Omega$
- viscous term

$$\nabla \cdot \mathbb{D}(\mathbf{u}) (\varphi) (t) := -\int_{\mathbb{R}^d} \mathbb{D}(\mathbf{u}) (t, \mathbf{x}) \nabla \varphi (\mathbf{x}) d\mathbf{x}$$
$$= \int_{\Omega} \varphi (\mathbf{x}) \nabla \cdot \mathbb{D}(\mathbf{u}) (t, \mathbf{x}) d\mathbf{x} - \int_{\partial \Omega} \varphi (\mathbf{s}) \mathbb{D}(\mathbf{u}) (t, \mathbf{s}) \mathbf{n} (\mathbf{s}) d\mathbf{s}$$

• convolve distributional form of momentum equation with a filter function $g(x) \in C^{\infty}(\mathbb{R}^d)$

Convolution and differentiation commute !

• convolve distributional form of momentum equation with a filter function $g(x) \in \mathbf{C}^{\infty}(\mathbb{R}^d)$

Convolution and differentiation commute !

• space averaged momentum equation in $(0,T] \times \mathbb{R}^d$

$$\overline{\mathbf{u}}_{t} - 2\nu\nabla \cdot \mathbb{D}(\overline{\mathbf{u}}) + \nabla \cdot \left(\overline{\mathbf{u}\mathbf{u}^{T}}\right) + \nabla \overline{p}$$
$$= \overline{\mathbf{f}} + \int_{\partial\Omega} g\left(\mathbf{x} - \mathbf{s}\right) \mathbb{S}\left(\mathbf{u}, p\right)\left(t, \mathbf{s}\right) \mathbf{n}\left(\mathbf{s}\right) d\mathbf{s}$$

with the stress tensor

$$\mathbb{S}\left(\mathbf{u},p\right)=2\nu\mathbb{D}(\mathbf{u})-p\mathbb{I}$$

• convolve distributional form of momentum equation with a filter function $g(x) \in C^{\infty}(\mathbb{R}^d)$

Convolution and differentiation commute !

• space averaged momentum equation in $(0,T] \times \mathbb{R}^d$

$$\overline{\mathbf{u}}_{t} - 2\nu\nabla \cdot \mathbb{D}(\overline{\mathbf{u}}) + \nabla \cdot \left(\overline{\mathbf{u}\mathbf{u}^{T}}\right) + \nabla \overline{p}$$
$$= \overline{\mathbf{f}} + \int_{\partial\Omega} g\left(\mathbf{x} - \mathbf{s}\right) \mathbb{S}\left(\mathbf{u}, p\right)\left(t, \mathbf{s}\right) \mathbf{n}\left(\mathbf{s}\right) d\mathbf{s}$$

with the stress tensor

$$\mathbb{S}(\mathbf{u},p) = 2\nu \mathbb{D}(\mathbf{u}) - p\mathbb{I}$$

• regularity of the normal stress

$$\mathbb{S}(\mathbf{u},p)\mathbf{n} \in (L^q(\partial\Omega))^d, \quad d=2: q \in [1,\infty), \quad d=3: q \in [1,4]$$

• usual practice: neglect term with normal stress (does not appear if $\Omega = \mathbb{R}^d$)

- closure problem: space averaged Navier–Stokes equations not yet equations for $(\,\overline{\mathbf{u}}\,,\,\overline{p}\,)$

$$\nabla \cdot \left(\overline{\mathbf{u} \mathbf{u}^T} \right) = \nabla \cdot \left(\overline{\mathbf{u}} \ \overline{\mathbf{u}}^T \right) - \nabla \cdot \left(\overline{\mathbf{u}} \ \overline{\mathbf{u}}^T - \overline{\mathbf{u} \mathbf{u}^T} \right)$$

last term (divergence of Reynolds stress tensor) depends on all scales

- closure problem: space averaged Navier–Stokes equations not yet equations for $(\,\overline{\mathbf{u}}\,,\,\overline{p}\,)$

$$\nabla \cdot \left(\overline{\mathbf{u} \mathbf{u}^T} \right) = \nabla \cdot \left(\overline{\mathbf{u}} \ \overline{\mathbf{u}}^T \right) - \nabla \cdot \left(\overline{\mathbf{u}} \ \overline{\mathbf{u}}^T - \overline{\mathbf{u} \mathbf{u}^T} \right)$$

last term (divergence of Reynolds stress tensor) depends on all scales

- open problems:
 - modelling of Reynolds stress tensor, main topic in LES
 - analysis of commutation error term

2.2 Commutation Errors

• standard filter function: Gaussian filter

$$g_{\delta}(\mathbf{x}) = \left(\frac{6}{\delta^2 \pi}\right)^{d/2} \exp\left(-\frac{6}{\delta^2} \|\mathbf{x}\|_2^2\right)$$

• δ – filter width, larger than mesh width

2.2 Commutation Errors

• standard filter function: Gaussian filter

$$g_{\delta}(\mathbf{x}) = \left(\frac{6}{\delta^2 \pi}\right)^{d/2} \exp\left(-\frac{6}{\delta^2} \|\mathbf{x}\|_2^2\right)$$

- δ filter width, larger than mesh width
- properties for $\delta = const$. :
 - \circ regularity : $g_{\delta} \in C^{\infty}(\mathbb{R}^d)$,
 - positivity : $0 < g_{\delta}(\mathbf{x}) \leq \left(\frac{6}{\delta^2 \pi}\right)^{\frac{d}{2}}$,
 - $\circ \text{ integrability : } g_{\delta} \in L^p(\mathbb{R}^d), p \in [1,\infty], \|g_{\delta}\|_{L^1(\mathbb{R}^d)} = 1,$
 - symmetry : $g_{\delta}(\mathbf{x}) = g_{\delta}(-\mathbf{x})$,
 - \circ monotonicity : $g_{\delta}(\mathbf{x}) \geq g_{\delta}(\mathbf{y})$ if $\|\mathbf{x}\|_2 \leq \|\mathbf{y}\|_2$

Commutation Errors – Constant Filter Width (cont.)

- per definition : $\delta \to 0$ implies $\overline{\mathbf{u}} \to \mathbf{u}$
- questions :
 - \circ Implies $\delta \rightarrow 0$ in a certain sense

$$\int_{\partial\Omega} g_{\delta} \left(\mathbf{x} - \mathbf{s} \right) \mathbb{S} \left(\mathbf{u}, p \right) \left(t, \mathbf{s} \right) \mathbf{n} \left(\mathbf{s} \right) d\mathbf{s} \to 0 \quad ?$$

- How fast is the convergence w.r.t. δ ?
- analyse terms of the form

$$\int_{\partial\Omega} g_{\delta}(\mathbf{x} - \mathbf{s}) \psi(\mathbf{s}) d\mathbf{s}$$

with $\psi(\mathbf{s}) \in L^q(\partial\Omega)$, $1 \le q \le \infty$

• Dunca, J., Layton (2004), J. (2004)
- strong form of the commutation error
- one can show that :
 - regularity :

$$\int_{\partial\Omega} g_{\delta}(\mathbf{x} - \mathbf{s})\psi(\mathbf{s})d\mathbf{s} \in L^{p}(\mathbb{R}^{d}), \quad 1 \le p \le \infty$$

• in general : no convergence for $\delta \rightarrow 0$:

$$\lim_{\delta \to 0} \left\| \int_{\partial \Omega} g_{\delta}(\mathbf{x} - \mathbf{s}) \psi(\mathbf{s}) d\mathbf{s} \right\|_{L^{p}(\mathbb{R}^{d})} = 0,$$

 $1 \leq p \leq \infty$, if and only if

$$\psi(\mathbf{s})=0$$
 a.e. on $\partial\Omega$

• proof: assumption
$$\lim_{\delta \to 0} \left\| \int_{\partial \Omega} g_{\delta}(\mathbf{x} - \mathbf{s}) \psi(\mathbf{s}) d\mathbf{s} \right\|_{L^{p}(\mathbb{R}^{d})} = 0$$

- then follows for every $\varphi\in C_0^\infty(\mathbb{R}^d)$

$$\begin{split} \lim_{\delta \to 0} \left| \int_{\mathbb{R}^d} \varphi\left(\mathbf{x} \right) \left(\int_{\partial \Omega} g_{\delta} \left(\mathbf{x} - \mathbf{s} \right) \psi\left(\mathbf{s} \right) d\mathbf{s} \right) d\mathbf{x} \right| \\ & \leq \quad \lim_{\delta \to 0} \|\varphi\|_{L^q(\mathbb{R}^d)} \left\| \int_{\partial \Omega} g_{\delta} \left(\mathbf{x} - \mathbf{s} \right) \psi\left(\mathbf{s} \right) d\mathbf{s} \right\|_{L^p(\mathbb{R}^d)} = 0 \end{split}$$

• for every
$$\varphi \in C_0^\infty(\mathbb{R}^d)$$
 is

$$\begin{split} \lim_{\delta \to 0} \int_{\mathbb{R}^d} \varphi\left(\mathbf{x}\right) \left(\int_{\partial \Omega} g_{\delta}\left(\mathbf{x} - \mathbf{s}\right) \psi\left(\mathbf{s}\right) d\mathbf{s} \right) d\mathbf{x} \\ &= \lim_{\delta \to 0} \int_{\partial \Omega} \psi\left(\mathbf{s}\right) \left(\int_{\mathbb{R}^d} g_{\delta}\left(\mathbf{x} - \mathbf{s}\right) \varphi\left(\mathbf{x}\right) d\mathbf{x} \right) d\mathbf{s} = \int_{\partial \Omega} \psi\left(\mathbf{s}\right) \varphi\left(\mathbf{s}\right) d\mathbf{s} \end{split}$$

•
$$\implies$$
 for every $\varphi \in C_0^{\infty}(\mathbb{R}^d)$: $0 = \left| \int_{\partial \Omega} \psi(\mathbf{s}) \varphi(\mathbf{s}) \, d\mathbf{s} \right|$

• $\implies \psi = 0$ a.e. on $\partial \Omega$

- implications :
 - $\circ \qquad \qquad S\left(\mathbf{u},p\right)\left(t,\mathbf{s}\right)\mathbf{n}\left(\mathbf{s}\right) = \mathbf{0} \text{ on } \partial\Omega$

fluid and boundary exert exactly zero force on each other

 commutation error does not vanish asymptotically for discretisations which rely upon a strong form of the space averaged Navier–Stokes equations, e.g., finite difference methods !!

- implications :
 - $\circ \qquad \qquad S\left(\mathbf{u},p\right)\left(t,\mathbf{s}\right)\mathbf{n}\left(\mathbf{s}\right)=\mathbf{0} \text{ on } \partial\Omega$

fluid and boundary exert exactly zero force on each other

- commutation error does not vanish asymptotically for discretisations which rely upon a strong form of the space averaged Navier–Stokes equations, e.g., finite difference methods !!
- $H^{-1}(\Omega)$ norm of the commutation error
 - \circ estimate

$$\left\| \int_{\partial\Omega} g_{\delta} \left(\mathbf{x} - \mathbf{s} \right) \psi \left(\mathbf{s} \right) d\mathbf{s} \right\|_{H^{-1}(\Omega)} \leq C \delta^{1/2} \|\psi\|_{L^{2}(\partial\Omega)}$$

for each $\delta > 0 \Longrightarrow$ order of convergence at least 1/2

 commutation error vanishes asymptotically for discretisations which rely upon a weak form of the space averaged NSE, e.g., finite element methods !!

Commutation Errors – Nonconstant Filter Width

- observation: difficulties arise from non–smooth extensions of functions off Ω
- goal: use filter with support always in Ω (bounded)

Commutation Errors – Nonconstant Filter Width

- observation: difficulties arise from non–smooth extensions of functions off Ω
- goal: use filter with support always in Ω (bounded)
 - non-uniform box filter

$$\overline{u}(\mathbf{y}) = \frac{1}{8\delta(x)\delta(y)\delta(z)} \int_{x-\delta(x)}^{x+\delta(x)} \int_{y-\delta(y)}^{y+\delta(y)} \int_{z-\delta(z)}^{z+\delta(z)} u(\mathbf{x}) \, d\mathbf{x}$$

• non-constant filter width s.t. $\delta \to 0$ as $\mathbf{x} \to \partial \Omega$

Commutation Errors – Nonconstant Filter Width

- observation: difficulties arise from non–smooth extensions of functions off Ω
- goal: use filter with support always in Ω (bounded)
 - non-uniform box filter

$$\overline{u}(\mathbf{y}) = \frac{1}{8\delta(x)\delta(y)\delta(z)} \int_{x-\delta(x)}^{x+\delta(x)} \int_{y-\delta(y)}^{y+\delta(y)} \int_{z-\delta(z)}^{z+\delta(z)} u(\mathbf{x}) \, d\mathbf{x}$$

- non-constant filter width s.t. $\delta \to 0$ as $\mathbf{x} \to \partial \Omega$
- implications
 - no extension of functions necessary for filter operation to be well defined
 - commutation error because of non-constant filter width
- concrete formulas in Berselli, Grisanti, J. (2007)
 - asymptotic vanishing of commutation errors requires very small filter widths at the boundary
 - o filter width depends on regularity of the filtered function
 - implication: resolution of the flow at the boundary becomes necessary

• extra terms in space averaged Navier–Stokes equations

commutation error
$$+ \nabla \cdot \left(\overline{\mathbf{u}} \ \overline{\mathbf{u}}^T - \overline{\mathbf{u} \mathbf{u}^T} \right)$$

importance of both terms studied in Berselli, J. (2006)

extra terms in space averaged Navier–Stokes equations

commutation error
$$+ \nabla \cdot \left(\overline{\mathbf{u}} \ \overline{\mathbf{u}}^T - \overline{\mathbf{u} \mathbf{u}^T} \right)$$

importance of both terms studied in Berselli, J. (2006)

- away from boundary: divergence of Reynolds stress tensor more important
- modelling the unknown flow field near the boundary with wall laws (mean flow), e.g. $1/\alpha$ th power law, + fluctuations
 - mean flow responsible for leading order terms in commutation errors
 - commutation error and divergence of Reynolds stress tensor are asymptotically of same order

modelling of commutation error at boundary as important as modelling of divergence of Reynolds stress tensor

• extra terms in space averaged Navier–Stokes equations

commutation error
$$+ \nabla \cdot \left(\overline{\mathbf{u}} \ \overline{\mathbf{u}}^T - \overline{\mathbf{u} \mathbf{u}^T} \right)$$

importance of both terms studied in Berselli, J. (2006)

- away from boundary: divergence of Reynolds stress tensor more important
- modelling the unknown flow field near the boundary with wall laws (mean flow), e.g. $1/\alpha$ th power law, + fluctuations
 - mean flow responsible for leading order terms in commutation errors
 - commutation error and divergence of Reynolds stress tensor are asymptotically of same order

modelling of commutation error at boundary as important as modelling of divergence of Reynolds stress tensor

- numerical studies
 - van der Bos, Geurts (2005) observed important commutation errors for some kinds of filters

Commutation Errors, Summary

- some open problems
 - optimal order of convergence for $H^{-1}(\Omega)$ commutation error
 - o commutation error analysis for other filters than Gaussian and box filter

o ...

Commutation Errors, Summary

- some open problems
 - optimal order of convergence for $H^{-1}(\Omega)$ commutation error
 - o commutation error analysis for other filters than Gaussian and box filter

o ...

- Summary
 - commutation error give important contributions in the derivation of the space averaged Navier–Stokes equations
 - they are important at and near the boundary
 - they are simply neglected in practice, practinioners do not care about the analytical results

2.3 Models

• space averaged Navier–Stokes equations in $(0, T] \times \mathbb{R}^d$

$$\overline{\mathbf{u}}_{t} - 2\nu\nabla \cdot \mathbb{D}(\overline{\mathbf{u}}) + \nabla \cdot \left(\overline{\mathbf{u}} \,\overline{\mathbf{u}}^{T}\right) + \nabla \overline{p} = \overline{\mathbf{f}} + \nabla \cdot \left(\overline{\mathbf{u}} \,\overline{\mathbf{u}}^{T} - \overline{\mathbf{uu}^{T}}\right)$$

$$\nabla \cdot \overline{\mathbf{u}} = 0$$
(1)

- closure problem :
 - $\circ \ d+1$ space averaged unknowns in (1) and d(d+1)/2 unknown values in $\overline{\mathbf{u}\mathbf{u}^T}$
 - only d + 1 equations in (1)

2.3 Models

• space averaged Navier–Stokes equations in $(0, T] \times \mathbb{R}^d$

$$\overline{\mathbf{u}}_{t} - 2\nu\nabla \cdot \mathbb{D}(\overline{\mathbf{u}}) + \nabla \cdot \left(\overline{\mathbf{u}} \,\overline{\mathbf{u}}^{T}\right) + \nabla \overline{p} = \overline{\mathbf{f}} + \nabla \cdot \left(\overline{\mathbf{u}} \,\overline{\mathbf{u}}^{T} - \overline{\mathbf{uu}^{T}}\right)$$

$$\nabla \cdot \overline{\mathbf{u}} = 0$$
(1)

- closure problem :
 - $\circ \ d+1$ space averaged unknowns in (1) and d(d+1)/2 unknown values in $\overline{\mathbf{u}\mathbf{u}^T}$
 - only d + 1 equations in (1)
- main issue in LES : model $\overline{\mathbf{u}\mathbf{u}^T}$ with $(\overline{\mathbf{u}}, \overline{p})$

2.3.1 Models Based on an Approximation in Fourier Space

- derivation is mainly based on mathematical arguments (not physical)
- $\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'$ implies

$$\overline{\mathbf{u}\mathbf{u}^{T}} = \overline{\mathbf{u}} \,\overline{\mathbf{u}}^{T} + \overline{\mathbf{u}}{\mathbf{u'}^{T}} + \overline{\mathbf{u'}} \,\overline{\mathbf{u}}^{T} + \overline{\mathbf{u'}}{\mathbf{u'}^{T}}$$
(2)

- $\overline{\mathbf{u}}$ defined with Gaussian filter
- derivation:
 - transform each term of (2) to the Fourier space
 - $\circ~$ replace Fourier transform of \mathbf{u}' by Fourier transform of $\overline{\mathbf{u}}$
 - approximate Fourier transform of the Gaussian filter by a simpler function (2nd order approximations)
 - neglect all terms which are in certain sense of higher order (formally δ^4)
 - apply inverse Fourier transform

- transform to Fourier space
 - o large scale advective term

$$\mathcal{F}\left(\,\overline{\,\mathbf{u}\,\,\overline{\mathbf{u}\,\,T}\,}\right) = \mathcal{F}\left(g_{\delta}\right)\mathcal{F}\left(\,\overline{\mathbf{u}\,\,\overline{\mathbf{u}}\,\,}^{T}\right)$$

o cross terms

$$\mathcal{F}\left(\overline{\mathbf{u}\,\mathbf{u}'^{T}}\right) = \mathcal{F}\left(g_{\delta}\right)\left(\mathcal{F}\left(\mathbf{\overline{u}}\right) * \mathcal{F}\left(\mathbf{u}'\right)^{T}\right)$$

replace $\mathcal{F}(\mathbf{u}')$, use $\mathbf{u}' = \mathbf{u} - \overline{\mathbf{u}}$ and $\mathcal{F}(g_{\delta}) \neq 0$, use $\mathcal{F}(\overline{\mathbf{u}}) = \mathcal{F}(g_{\delta}) \mathcal{F}(\mathbf{u})$

$$\mathcal{F}(\mathbf{u}') = \mathcal{F}(\mathbf{u}) - \mathcal{F}(\overline{\mathbf{u}}) = \left(\frac{1}{\mathcal{F}(g_{\delta})} - 1\right) \mathcal{F}(\overline{\mathbf{u}})$$

gives

$$\mathcal{F}\left(\overline{\,\mathbf{\overline{u}}\,\mathbf{u}'^{T}\,}\right) = \mathcal{F}\left(g_{\delta}\right)\left(\mathcal{F}\left(\,\overline{\mathbf{u}}\,\right) * \left(\frac{1}{\mathcal{F}\left(g_{\delta}\right)} - 1\right)\mathcal{F}\left(\,\overline{\mathbf{u}}\,\right)^{T}\right)$$

• no modeling up to here

- Approximation of the Fourier transform of the Gaussian filter $\mathcal{F}(g_{\delta})$
 - Taylor series (Leonard (1974), Clark, Reynolds, Ferziger (1979)), Taylor LES model, gradient method
 Damping of highly oscillating components is not preserved !!!
 - approximation with rational function (Galdi, Layton (2000)), rational LES model

$$\mathcal{F}(g_{\delta})\left(\delta,\mathbf{y}\right) = 1 - \frac{\|\mathbf{y}\|_{2}^{2}}{4\gamma}\delta^{2} + \mathcal{O}\left(\delta^{4}\right) \text{ vs. } \mathcal{F}\left(g_{\delta}\right)\left(\delta,\mathbf{y}\right) = \frac{1}{1 + \frac{\|\mathbf{y}\|_{2}^{2}}{4\gamma}\delta^{2}} + \mathcal{O}\left(\delta^{4}\right)$$

- subgrid scale term
 - \circ both approaches $\overline{{f u}'{f u}'^T}pprox {f 0}$
 - blow–up in finite time in numerical simulations, J. (2004)
- use instead
 - Smagorinsky model (1963), see later for details

$$\overline{\mathbf{u'u'}^T} \approx -c_S \delta^2 \left\| \mathbb{D}(\overline{\mathbf{u}}) \right\|_F \mathbb{D}(\overline{\mathbf{u}})$$

formally of order δ^2

• Iliescu–Layton model (1998)

$$\overline{\mathbf{u}'\mathbf{u}'^{T}} \approx -c_{S}\delta \| \overline{\mathbf{u}} - g_{\delta} * \overline{\mathbf{u}} \|_{2} \mathbb{D}(\overline{\mathbf{u}})$$

formally of order δ^3

• find approximation (\mathbf{w}, r) to $(\overline{\mathbf{u}}, \overline{p})$ such that in $(0, T] \times \mathbb{R}^d$

$$\mathbf{w}_{t} - 2\nabla \cdot ((\nu + \nu_{T})\mathbb{D}(\mathbf{w})) + (\mathbf{w} \cdot \nabla)\mathbf{w} + \nabla r + \nabla \cdot \frac{\delta^{2}}{12} \left(A \left(\nabla \mathbf{w} \nabla \mathbf{w}^{T} \right) \right) = \mathbf{\overline{f}} \nabla \cdot \mathbf{w} = \mathbf{0} \mathbf{w}(\mathbf{0}, \mathbf{x}) = \mathbf{\overline{u}_{0}}$$

• turbulent viscosity, eddy viscosity

$$u_T = c_S \delta^2 \left\| \mathbb{D}(\mathbf{w}) \right\|_F \text{ or } \nu_T = c_S \delta \left\| \mathbf{w} - g_\delta * \mathbf{w} \right\|_2$$

- LES model
 - A = 0: Smagorinsky model ($\nu_T = 0$: Navier–Stokes equations)
 - A = I: Taylor LES model
 - $A = (I \delta^2/(24)\Delta)^{-1}$: rational LES model
 - o inverse of a Helmholtz operator, differential filter
 - approximation of convolution with Gaussian filter

2.3.2 Bounded Domain

- restrict equations to Ω
 - unknown error is committed
- boundary conditions for large scales
 - \circ unresolved problem
 - \circ boundary conditions of (\mathbf{u},p) for (\mathbf{w},r) : wrong

Boundary Conditions

- slip with friction and no penetration, Galdi, Layton (2000)
 - problem : determination of friction coefficient
 - can be given for model problems, J., Layton, Sahin (2004)
 - numerical experiences: Hoffman (2005, ...)

Boundary Conditions

- slip with friction and no penetration, Galdi, Layton (2000)
 - problem : determination of friction coefficient
 - can be given for model problems, J., Layton, Sahin (2004)
 - numerical experiences: Hoffman (2005, ...)
- boundary treatment in practice, Piomelli, Balaras (2002)
 - $\circ~$ impose some form of law of the wall
 - solve simplified equations in boundary layer regions

2.3.3 The Smagorinsky Model

• starting point Boussinesq hypothesis

Turbulent fluctuations are dissipative in the mean.

$$\implies \nabla \cdot \left(\overline{\mathbf{u} \mathbf{u}^T} - \overline{\mathbf{u}} \ \overline{\mathbf{u}}^T \right) \approx -\nabla \cdot \left(\nu_T \mathbb{D}(\overline{\mathbf{u}}) \right) + \text{terms inc. in } \overline{p}$$

 u_T – eddy viscosity, turbulent viscosity

The Smagorinsky Model – the Turbulent Viscosity Coefficient

• rate of dissipation of turbulent energy

$$\epsilon \sim \frac{U_{\rm int}^3}{L_{\rm int}}$$

 $L_{\rm int}$ – integral length scale (characterize the distance over which the fluctuating velocity field is correlated)

 $U_{\rm int}$ – corresponding velocity scale

• same ansatz for scales of size δ

$$\epsilon \sim \frac{U_{\delta}^3}{\delta}$$

$$\implies U_{\delta} \sim U_{\rm int} \left(\frac{\delta}{L_{\rm int}}\right)^{1/3}$$

The Smagorinsky Model – the Turbulent Viscosity Coefficient (cont.)

• goal of eddy viscosity model: capture dissipation of eddies of size δ

$$Re(\delta) = \frac{\delta U_{\delta}}{\nu_T} = 1 \implies \epsilon \sim \frac{U_{\delta}^3}{\delta} \sim \delta U_{\delta} \frac{U_{\delta}^2}{\delta^2} \sim \nu_T \frac{U_{\delta}^2}{\delta^2}$$

$$\implies \nu_T \sim \epsilon \frac{\delta^2}{U_{\delta}^2} \sim \frac{U_{\delta}^3}{\delta} \frac{\delta^2}{U_{\delta}^2} \sim U_{\delta} \delta \sim U_{\rm int} L_{\rm int}^{-1/3} \delta^{4/3}$$

assumption

$$U_{\text{int}} \sim L_{\text{int}} \|\mathbb{D}(\overline{\mathbf{u}})\|_F$$

• replacing similarity by equality with an unknown constant

$$\implies \quad \nu_T = c L_{\text{int}}^{2/3} \delta^{4/3} \left\| \mathbb{D}(\overline{\mathbf{u}}) \right\|_F$$

• $L_{\rm int}$ is hard to determine, approximate $L_{\rm int} \sim \delta$

$$u_T = c_S \delta^2 \left\| \mathbb{D}(\overline{\mathbf{u}}) \right\|_F \quad \text{often} \quad \nu_T = (c_S^* \delta)^2 \left\| \mathbb{D}(\overline{\mathbf{u}}) \right\|_F$$

The Smagorinsky Model – Choice of c_S

- Lilly (1967)
- idea: consider ideal situation and set

 $\langle \epsilon
angle = \langle \epsilon_{\rm Sma}
angle \,, \quad {
m time \ averages}$

with

$$\epsilon_{\mathrm{Sma}} \approx \int_{\Omega} \nu_T \|\mathbb{D}(\mathbf{w})\|_F^2 \ d\mathbf{x} = \int_{\Omega} c_S \delta^2 \|\mathbb{D}(\mathbf{w})\|_F^3 \ d\mathbf{x} = c_S \delta^2 \|\mathbf{w}\|_{L^3}^3$$

- further assumptions, details in Berselli, Iliescu, Layton (2006):
 - neglect time averages
 - ideal turbulence (homogeneous, isotropic)
- use Kolmogorov law
- result:

$$\sqrt{c_S} pprox 0.17, \quad c_S^* = 0.17$$

• practice: constant too large, results too dissipative

The Smagorinsky Model – Choice of c_S (cont.)

- dynamic Smagorinsky model $c_S = c_S(t, \mathbf{x})$, Germano, Piomelli, Moin, Cabot (1991), Lilly (1992)
- idea (more details in J. (2004)):
 - use two filters, e.g. δ and 2δ (coarse grid)
 - filter Navier–Stokes equations with both filters
 - make Smagorinsky model ansatz for both filtered equations
 - \circ assume same $c_S(t, \mathbf{x})$ for both filters

The Smagorinsky Model – Choice of c_S (cont.)

- dynamic Smagorinsky model $c_S = c_S(t, \mathbf{x})$, Germano, Piomelli, Moin, Cabot (1991), Lilly (1992)
- idea (more details in J. (2004)):
 - use two filters, e.g. δ and 2δ (coarse grid)
 - filter Navier–Stokes equations with both filters
 - make Smagorinsky model ansatz for both filtered equations
 - \circ assume same $c_S(t, \mathbf{x})$ for both filters
- result:
 - 6 equations for $c_S(t, \mathbf{x})$, coefficients depend on (doubled) filtered velocities with both filters
 - solve equations in least squares sense

The Smagorinsky Model – Choice of c_S (cont.)

• practice:

- hard to implement
- \circ expensive
- smoothing in space and time necessary, otherwise very oscillating and negative turbulent viscosities => blow up
- $\circ~$ backscatter of energy possible, since $\nu_T < 0$ possible
 - on the average: energy transferred from large to small scales
 - inverse transfer (backscatter) might be significant
 - \implies backscatter should be included in model
- values are far from being optimal, Meyers, Sagaut (2006)
- very popular until some years ago

The Smagorinsky Model – Variational Formulation

• velocity and pressure space

$$V = \left\{ \mathbf{v} \in (W^{1,3}(\Omega))^d, \mathbf{v} = \mathbf{0} \text{ on } \partial\Omega \right\}, \quad Q = L_0^2(\Omega)$$

- find $(\mathbf{w}, r) \in V \times Q$ such that
 - i) for all $t \in (0,T]$ and all $(\mathbf{v},q) \in V \times Q$

$$\begin{aligned} (\mathbf{w}_t, \mathbf{v}) + a(\mathbf{w}, \mathbf{w}, \mathbf{v}) + b_s(\mathbf{w}, \mathbf{w}, \mathbf{v}) \\ + (q, \nabla \cdot \mathbf{w}) - (r, \nabla \cdot \mathbf{v}) &= (\mathbf{f}, \mathbf{v}) \end{aligned}$$

with

$$\begin{aligned} a(\mathbf{u}, \mathbf{w}, \mathbf{v}) &= \left((2\nu + c_S \delta^2 \| \mathbb{D}(\mathbf{u}) \|_F) \mathbb{D}(\mathbf{w}), \mathbb{D}(\mathbf{v}) \right) \\ b_s(\mathbf{u}, \mathbf{w}, \mathbf{v}) &= \frac{1}{2} \left(b(\mathbf{u}, \mathbf{w}, \mathbf{v}) - b(\mathbf{u}, \mathbf{v}, \mathbf{w}) \right) \\ b(\mathbf{u}, \mathbf{v}, \mathbf{w}) &= \left((\mathbf{u} \cdot \nabla) \mathbf{v}, \mathbf{w} \right) \end{aligned}$$

 c_S - constant ii) $\mathbf{w}(0, \mathbf{x}) = \mathbf{w}_0(\mathbf{x})$ The Smagorinsky Model – Analysis

• weak equation posseses unique solution

 $\nabla \mathbf{w} \in L^3(0, T, L^3(\Omega))$

in 2d and 3d for large data and large time intervals, Ladyzhenskaya (1967)

• more known than for Navier–Stokes equations (uniqueness in 3d)

The Smagorinsky Model – Analysis

• weak equation posseses unique solution

 $\nabla \mathbf{w} \in L^3(0, T, L^3(\Omega))$

in 2d and 3d for large data and large time intervals, Ladyzhenskaya (1967)

- more known than for Navier–Stokes equations (uniqueness in 3d)
- proof by Galerkin method, Hopf (1951):
 - consider equation in finite dimensional space
 - show solvability of this equation
 - extract a subsequence of the finite dimensional solutions which converges to a solution of the continuous problem
 - \implies existence of weak solution

The Smagorinsky Model – Analysis (cont.)

- main analytical tools for uniqueness :
 - strong monotonicity

$$\left(\left\|\mathbb{D}(\mathbf{u})\right\|_{F}\mathbb{D}(\mathbf{u})-\left\|\mathbb{D}(\mathbf{v})\right\|_{F}\mathbb{D}(\mathbf{v}),\mathbb{D}(\mathbf{u}-\mathbf{v})\right)\geq\underline{C}\left\|\mathbb{D}(\mathbf{u}-\mathbf{v})\right\|_{L^{3}(\Omega)}^{3}$$

• local Lipschitz continuity

 $\left(\left\|\mathbb{D}(\mathbf{u})\right\|_{F}\mathbb{D}(\mathbf{u})-\left\|\mathbb{D}(\mathbf{v})\right\|_{F}\mathbb{D}(\mathbf{v}),\mathbb{D}(\mathbf{w})\right)\leq C\left\|\mathbb{D}(\mathbf{u}-\mathbf{v})\right\|_{L^{3}(\Omega)}\left\|\mathbb{D}(\mathbf{w})\right\|_{L^{3}(\Omega)}$

- Sobolev imbeddings of $W^{1,3}(\Omega)$
 - more regular function space as for Navier–Stokes equations $(W^{1,2}(\Omega))$ \implies more Sobolev imbeddings for Smagorinsky model

2.3.4 The $k-\epsilon$ Model

- very popular in engineering community
- additional quantities to compute
 - k kinetic energy of the turbulence

$$k = rac{1}{2} \left\langle \left\| \mathbf{u}' \right\|_2^2
ight
angle, \quad \langle \cdot
angle$$
 space average (filter)

• ϵ – rate of dissipation of turbulent energy

$$\epsilon = \frac{\nu}{2} \left\langle \left\| \nabla \mathbf{u}' + \left(\nabla \mathbf{u}' \right)^T \right\|_F^2 \right\rangle$$

• a number of hypotheses, see Mohammadi, Pironneau (1994)

The $k - \epsilon$ Model (cont.)

• find approximation (\mathbf{w}, r) to $(\overline{\mathbf{u}}, \overline{p})$ and (k, ϵ) such that in $(0, T] \times \Omega$

$$\mathbf{w}_{t} - 2\nabla \cdot (\nu \mathbb{D}(\mathbf{w})) + (\mathbf{w} \cdot \nabla)\mathbf{w} + \nabla r - c_{k}\nabla \cdot \left(\frac{k^{2}}{\epsilon}\left(\nabla\mathbf{w} + \nabla\mathbf{w}^{T}\right)\right) = \overline{\mathbf{f}}$$

$$\nabla \cdot \mathbf{w} = 0$$

$$k_{t} + \mathbf{w}\nabla k - \frac{c_{k}}{2}\frac{k^{2}}{\epsilon}\left\|\nabla\mathbf{w} + \nabla\mathbf{w}^{T}\right\|_{F}^{2} - \nabla \cdot \left(c_{k}\frac{k^{2}}{\epsilon}\nabla k\right) + \epsilon = 0$$

$$- c_{1}^{2}\|\mathbf{w} - \mathbf{w}^{T}\|_{F}^{2} - \nabla \cdot \left(c_{k}\frac{k^{2}}{\epsilon}\nabla k\right) + \epsilon = 0$$

$$\epsilon_t + \mathbf{w}\nabla\epsilon - \frac{c_1}{2} \left\| \nabla \mathbf{w} + \nabla \mathbf{w}^T \right\|_F^2 - \nabla \cdot \left(c_\epsilon \frac{k^2}{\epsilon} \nabla k \right) + c_2 \frac{\epsilon^2}{k} = 0$$

+ boundary and initial conditions

- $c_k, c_{\epsilon}, c_1, c_2$ appropriate constants
- coupled system of equations
 - Navier–Stokes type equations
 - 2 convection–dominated convection–diffusion equations

The $k - \epsilon$ Model – Remarks

- original proposal by Launder and Spalding (1972)
- standard model of (almost) all commercial CFD codes
- model not valid near solid walls
- correct boundary conditions for all equations are open problem
- accurate and efficient numerical solution of convection-dominated scalar equations is active field of research
- only initial steps for numerical analysis available
- a lot of variants proposed, newer proposals by the Cottet, Jiroveanu, Michaux (2003)
2.3.5 Approximate Deconvolution Models

- Adams, Stolz, et al. (1999 2001)
- approximate deconvolution operator D_N of order N:

$$\varphi = D_N\left(\overline{\varphi}\right) + \mathcal{O}\left(\delta^{2N+2}\right)$$

for smooth functions φ

$$D_0\left(\overline{\varphi}\right) = \overline{\varphi} + \mathcal{O}\left(\delta^2\right)$$

• closure approximation

Ο

$$\overline{\mathbf{u}\mathbf{u}^T} \approx \overline{D_N(\overline{\mathbf{u}})D_N(\overline{\mathbf{u}})^T}$$

• *N*-th order ADM: find approximation (\mathbf{w}, r) to $(\overline{\mathbf{u}}, \overline{p})$ such that in $(0, T] \times \Omega$

$$\mathbf{w}_t - 2\nabla \cdot (\nu \mathbb{D}(\mathbf{w})) + \nabla \cdot \overline{D_N(\mathbf{w})D_N(\mathbf{w})^T} + \nabla r = \overline{\mathbf{f}}$$
$$\nabla \cdot \mathbf{w} = 0$$
$$\mathbf{w}(0, \mathbf{x}) = \overline{\mathbf{u}_0}$$

+ boundary conditions

Approximate Deconvolution Models (cont.)

- van Cittert approximate deconvolution operator (1931)
 - \circ define average by differential filter (Helmholtz filter) A

$$A\,\overline{\varphi}\,:=-\delta^2\Delta\,\overline{\varphi}\,+\,\overline{\varphi}\,=\varphi\quad\text{in }\Omega$$

- + periodic (or homogeneous) boundary conditions
- recursive definition of approximate deconvolution

$$\begin{split} \mathbf{u}_0 &= \overline{\mathbf{u}} \\ \text{for } n = 1, \dots, N-1 \\ \mathbf{u}_{n+1} &= \mathbf{u}_n + \left(\overline{\mathbf{u}} - A^{-1}\mathbf{u}_n\right) \\ \text{end} \end{split}$$

• results

$$D_{0} \overline{\mathbf{u}} = \overline{\mathbf{u}}$$

$$D_{1} \overline{\mathbf{u}} = 2 \overline{\mathbf{u}} - \overline{\overline{\mathbf{u}}}$$

$$D_{2} \overline{\mathbf{u}} = 3 \overline{\mathbf{u}} - 3 \overline{\overline{\mathbf{u}}} + \overline{\overline{\mathbf{u}}}$$

Approximate Deconvolution Models (cont.)

- numerical studies: Adams, Stolz, et al. (1999)
 - zeroth-order ADM
- analysis
 - existence and uniqueness of solution, energy inequalities, Dunca, Epshteyn (2006), Layton, Lewandowski (2006)
 - finite element error analysis, Ervin, Layton, Neda (2007), Manica, Merdan (2007)
 - energy dissipation, Layton (2007)
 - conservation laws, Layton, Manica, Neda, Rebholz (2008)
 - o •••

2.3.6 Other Models

- scale similarity models, Bardina, Ferziger, Reynolds (1980)
- Leray regularization model, Leray (1933)
 - analysis of ADM regularization, Layton, Manica, Neda, Rebholz (2008)
 - numerical study of different regularizations Geurts, Kuczaj, Titi (2008)
- Navier–Stokes α –model, Camassa–Holm model
 - analysis and numerical studies Foias, Holm, Titi (2001, 2002)
- Navier–Stokes ω–model
 - theory of continuous model, Layton, Stanculescu, Trenchea (2008)
 - finite element analysis, Layton, Manica, Neda, Rebholz (2009)

2.4 Finite Element Discretizations

- finite element code MooNMD (Mathematics and object-oriented Numerics in MagDeburg)
- J., Matthies (2004)

2.4 Finite Element Discretizations

- finite element code MooNMD (Mathematics and object-oriented Numerics in MagDeburg)
- J., Matthies (2004)
- discretization strategy :
 - discretization in time
 - variational formulation and iterative solution of the algebraic equations in each discrete time
 - discretization of the linear saddle point problems in each step of the iteration with an inf-sup stable finite element method

Temporal Discretization

- second order implicit schemes
 - Crank–Nicolson scheme (A–stable)
 - fractional-step θ -scheme (strongly A-stable, more expensive)
- much more accurate than first order schemes, J., Matthies, Rang (2006) for laminar Navier–Stokes equations

Temporal Discretization

- second order implicit schemes
 - Crank–Nicolson scheme (A–stable)
 - fractional-step θ -scheme (strongly A-stable, more expensive)
- much more accurate than first order schemes, J., Matthies, Rang (2006) for laminar Navier–Stokes equations
- future: certain Rosenbrock schemes might be of interest
 - even more accurate
 - allow simple time step control with imbedded schemes
 - studies for laminar Navier–Stokes equations: J., Rang (2009, in preparation)

Linearization of Nonlinear Terms

- convective term
 - with fixed point iteration (Picard iteration)

$$(\mathbf{w}^{(n)}\nabla \cdot)\mathbf{w}^{(n)} \approx (\mathbf{w}^{(n-1)}\nabla \cdot)\mathbf{w}^{(n)}$$

 $\mathbf{w}^{(n-1)}$ – current velocity approximation

 more efficient than Newton's method, J. (2006) for laminar Navier–Stokes equations

$$(\mathbf{w}^{(n)}\nabla\cdot)\mathbf{w}^{(n)} \approx (\mathbf{w}^{(n-1)}\nabla\cdot)\mathbf{w}^{(n)} + (\mathbf{w}^{(n)}\nabla\cdot)\mathbf{w}^{(n-1)} - (\mathbf{w}^{(n-1)}\nabla\cdot)\mathbf{w}^{(n-1)}$$

Linearization of Nonlinear Terms

- convective term
 - with fixed point iteration (Picard iteration)

$$(\mathbf{w}^{(n)}\nabla\cdot)\mathbf{w}^{(n)} \approx (\mathbf{w}^{(n-1)}\nabla\cdot)\mathbf{w}^{(n)}$$

 $\mathbf{w}^{(n-1)}$ – current velocity approximation

 more efficient than Newton's method, J. (2006) for laminar Navier–Stokes equations

$$(\mathbf{w}^{(n)}\nabla \cdot)\mathbf{w}^{(n)} \approx (\mathbf{w}^{(n-1)}\nabla \cdot)\mathbf{w}^{(n)} + (\mathbf{w}^{(n)}\nabla \cdot)\mathbf{w}^{(n-1)} - (\mathbf{w}^{(n-1)}\nabla \cdot)\mathbf{w}^{(n-1)}$$

• turbulent viscosity, e.g. Smagorinsky term

$$\nu_T \left(\mathbf{w}^{(n)} \right) \mathbf{w}^{(n)} \approx \nu_T \left(\mathbf{w}^{(n-1)} \right) \mathbf{w}^{(n)}$$

• LES term, explicit

$$A\left(\nabla \mathbf{w}_{k} \left(\nabla \mathbf{w}_{k}\right)^{T}\right) \approx A\left(\nabla \mathbf{w}_{k-1} \left(\nabla \mathbf{w}_{k-1}\right)^{T}\right)$$

Discretization of Linear Saddle Point Problems

• inf-sup stable pairs of finite elements (Babuška-Brezzi condition): there is a constant *C* independent of the mesh size parameter *h* s.t.

$$\inf_{q^{h} \in Q^{h}} \sup_{\mathbf{v}^{h} \in V^{h}} \frac{\left(\nabla \cdot \mathbf{v}^{h}, q^{h}\right)}{\left\|\nabla \mathbf{v}^{h}\right\|_{L^{2}} \left\|q^{h}\right\|_{L^{2}}} \geq C$$

 V^h – velocity finite element space Q^h – pressure finite element space (\cdot, \cdot) – inner product in $L^2(\Omega)$

Discretization of Linear Saddle Point Problems

• inf-sup stable pairs of finite elements (Babuška-Brezzi condition): there is a constant *C* independent of the mesh size parameter *h* s.t.

$$\inf_{q^{h} \in Q^{h}} \sup_{\mathbf{v}^{h} \in V^{h}} \frac{\left(\nabla \cdot \mathbf{v}^{h}, q^{h}\right)}{\left\|\nabla \mathbf{v}^{h}\right\|_{L^{2}} \left\|q^{h}\right\|_{L^{2}}} \ge C$$

- V^h velocity finite element space
- Q^h pressure finite element space
- (\cdot, \cdot) inner product in $L^2(\Omega)$
 - no pressure stabilization necessary
 - V^h , Q^h have to be different finite element spaces

Inf–Sup Stable Pairs of Finite Elements

- experiences with different finite element spaces, J.,Matthies (2001), J. (2002), J. (2004), J. (2006)
- spaces with continuous pressure (Taylor–Hood spaces)
 - divergence constraint very inaccurate
 - linear saddle point problems hard too solve
 - $\circ \implies$ cannot be recommended

Inf–Sup Stable Pairs of Finite Elements

- experiences with different finite element spaces, J.,Matthies (2001), J. (2002), J. (2004), J. (2006)
- spaces with continuous pressure (Taylor–Hood spaces)
 - divergence constraint very inaccurate
 - linear saddle point problems hard too solve
 - $\circ \implies$ cannot be recommended
- spaces with discontinuous pressure
 - more accurate
 - linear saddle point problems much easier too solve
 - best ratio between accuracy and efficiency: second order velocity, first order discontinuous pressure ⇒ recommendations:
 - hexahedral grids $Q_2/P_1^{\rm disc}$
 - tetrahedral grids $P_2^{\text{bubble}}/P_1^{\text{disc}}$, Bernardi, Raugel (1985)

Inf–Sup Stable Pairs of Finite Elements

- experiences with different finite element spaces, J.,Matthies (2001), J. (2002), J. (2004), J. (2006)
- spaces with continuous pressure (Taylor–Hood spaces)
 - divergence constraint very inaccurate
 - linear saddle point problems hard too solve
 - $\circ \implies$ cannot be recommended
- spaces with discontinuous pressure
 - more accurate
 - linear saddle point problems much easier too solve
 - best ratio between accuracy and efficiency: second order velocity, first order discontinuous pressure => recommendations:
 - hexahedral grids $Q_2/P_1^{\rm disc}$
 - tetrahedral grids $P_2^{\text{bubble}}/P_1^{\text{disc}}$, Bernardi, Raugel (1985)
- lowest order elements ($P_1^{\rm nc}/P_0$ Crouzeix, Raviart (1973), $Q_1^{\rm rot}/Q_0$ Rannacher, Turek (1992))
 - very inaccurate
 - important to construct an efficient multigrid solver

2.5 Finite Element Error Analysis

- Smagorinsky model, J., Layton (2002)
- find $(\mathbf{w}, r) \approx (\,\overline{\mathbf{u}}\,,\,\overline{p}\,)$ such that

$$\mathbf{w}_{t} - \nabla \cdot \left((2\nu + \nu_{T}) \mathbb{D}(\mathbf{w}) \right) + (\mathbf{w} \cdot \nabla) \mathbf{w} + \nabla r = \mathbf{f} \quad \text{in } (0, T] \times \Omega$$
$$\nabla \cdot \mathbf{w} = 0 \quad \text{in } [0, T] \times \Omega$$
$$\mathbf{w} = \mathbf{0} \quad \text{in } [0, T] \times \partial \Omega$$
$$\mathbf{w}(0, \mathbf{x}) = \mathbf{w}_{0} \quad \text{in } \Omega$$
$$\int_{\Omega} r \, d\mathbf{x} = 0 \quad \text{in } (0, T]$$

with

$$\nu_T = a_0(\delta) + c_S \delta^2 \left\| \mathbb{D}(\mathbf{w}) \right\|_F, \quad a_0(\delta) > 0$$

2.5 Finite Element Error Analysis

- Smagorinsky model, J., Layton (2002)
- find $(\mathbf{w}, r) \approx (\overline{\mathbf{u}}, \overline{p})$ such that

$$\mathbf{w}_{t} - \nabla \cdot \left((2\nu + \nu_{T}) \mathbb{D}(\mathbf{w}) \right) + (\mathbf{w} \cdot \nabla) \mathbf{w} + \nabla r = \mathbf{f} \quad \text{in } (0, T] \times \Omega$$
$$\nabla \cdot \mathbf{w} = 0 \quad \text{in } [0, T] \times \Omega$$
$$\mathbf{w} = \mathbf{0} \quad \text{in } [0, T] \times \partial \Omega$$
$$\mathbf{w}(0, \mathbf{x}) = \mathbf{w}_{0} \quad \text{in } \Omega$$
$$\int_{\Omega} r \, d\mathbf{x} = 0 \quad \text{in } (0, T]$$

with

$$\nu_T = a_0(\delta) + c_S \delta^2 \left\| \mathbb{D}(\mathbf{w}) \right\|_F, \quad a_0(\delta) > 0$$

- observations in computations : error independent of ν
- $(\mathbf{w}, r) \in V \times Q$ weak solution of the continuous problem
- $(\mathbf{w}^h, r^h) \in V^h \times Q^h \subset V \times Q$ finite element solution

Goals and Sketch of the Proof

- goals of the analysis :
 - \circ error estimates for $\|\mathbf{w}-\mathbf{w}^h\|$ in appropriate norms independent of u
 - use only minimal regularity of solution $\mathbf{w} \in L^3(0,T; W_0^{1,3}(\Omega))$

Goals and Sketch of the Proof

- goals of the analysis :
 - error estimates for $\|\mathbf{w} \mathbf{w}^h\|$ in appropriate norms independent of ν
 - use only minimal regularity of solution $\mathbf{w} \in L^3(0,T; W_0^{1,3}(\Omega))$
- Sketch of the proof :
 - 1. prove stability of \mathbf{w}, \mathbf{w}^h with constants independent of ν in various norms
 - use \mathbf{w}, \mathbf{w}^h as test functions
 - standard estimates (Poincaré, Korn, Young)

Goals and Sketch of the Proof

- goals of the analysis :
 - error estimates for $\|\mathbf{w} \mathbf{w}^h\|$ in appropriate norms independent of ν
 - use only minimal regularity of solution $\mathbf{w} \in L^3(0,T; W_0^{1,3}(\Omega))$
- Sketch of the proof :
 - 1. prove stability of \mathbf{w}, \mathbf{w}^h with constants independent of ν in various norms
 - \circ use \mathbf{w}, \mathbf{w}^h as test functions
 - standard estimates (Poincaré, Korn, Young)
 - 2. introduce appropriate approximation $\tilde{\mathbf{w}} \in V^h$ of \mathbf{w} and split the error

$$\mathbf{w} - \mathbf{w}^h = (\mathbf{w} - \tilde{\mathbf{w}}) + (\tilde{\mathbf{w}} - \mathbf{w}^h) = \eta - \phi^h$$

 $\implies \eta$: approximation error (independent of the problem)

Sketch of the Proof (cont.)

3. prove differential inequality

$$\frac{d}{dt} \|\phi^h(t)\| + \text{ non-negative terms } \le g(t) + c(t) \|\phi^h(t)\|^{\gamma}$$

g(t), c(t) bounded by approximation errors and data independent of ν

- long estimates (here is the work)
- standard estimates
- Sobolev imbeddings
- o strong monotonicity
- local Lipschitz continuity

Sketch of the Proof (cont.)

3. prove differential inequality

$$rac{d}{dt} \|\phi^h(t)\| + \text{ non-negative terms } \leq g(t) + c(t) \|\phi^h(t)\|^{\gamma}$$

g(t), c(t) bounded by approximation errors and data independent of ν

- long estimates (here is the work)
- o standard estimates
- Sobolev imbeddings
- strong monotonicity
- local Lipschitz continuity
- 4. Gronwall's lemma
 - show $g(t), c(t) \in L^{1}(0, T)$
 - \circ show $\gamma = 1$
 - Gronwall's lemma

$$\|\phi^{h}(t)\| + \text{ non-negative terms } \leq \exp\left(\int_{0}^{t} c(\tau)d\tau\right)\left(\|\phi^{h}(0)\| + \int_{0}^{t} g(\tau)d\tau\right)$$

 $\implies \|\phi^h(t)\|$ bounded by data and approximation errors independent of ν

Final Estimate

$$\begin{split} \|\mathbf{w} - \mathbf{w}^{h}\|_{L^{\infty}(0,T;L^{2}(\Omega))}^{2} + \|\nabla \cdot (\mathbf{w} - \mathbf{w}^{h})\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} \\ &+ (\nu + Ca_{0}(\delta)) \|\mathbb{D}(\mathbf{w} - \mathbf{w}^{h})\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} + \delta^{2} \|\mathbb{D}(\mathbf{w} - \mathbf{w}^{h})\|_{L^{3}(0,T;L^{3}(\Omega))}^{3} \\ &\leq C \exp\left(\|c(t,\delta)\|_{L^{1}(0,T)}\right) \|(\mathbf{w} - \mathbf{w}^{h})(0,\mathbf{x})\|_{L^{2}(\Omega)}^{2} \\ &+ C \inf_{\tilde{\mathbf{w}} \in V_{\text{div}}^{h} \cap W^{1,3}(\Omega), q^{h} \in Q^{h}} \mathcal{F}(\mathbf{w} - \tilde{\mathbf{w}}, r - q^{h}, \delta) \end{split}$$

with approximation error $\mathcal{F}(\mathbf{w} - \tilde{\mathbf{w}}, r - q^h, \delta)$

error \leq constant \cdot approximation error

where the constant is independent of ν

Finite Element Error Analysis – Remarks

- analysis possible for different boundary conditions (slip with friction and no penetration)
- similar finite element error analysis possible for Taylor LES model (Iliescu, J., Layton (2002))
 - \circ strong monotonicity if c_S sufficiently large
 - Taylor LES model only a local perturbation
- numerical examples support analysis

Finite Element Error Analysis – Remarks

- analysis possible for different boundary conditions (slip with friction and no penetration)
- similar finite element error analysis possible for Taylor LES model (Iliescu, J., Layton (2002))
 - \circ strong monotonicity if c_S sufficiently large
 - Taylor LES model only a local perturbation
- numerical examples support analysis
- open problems
 - ν -independent estimate for $a_0(\delta) = 0$
 - only global estimates used so far
 - $c_S \delta^2 \|\mathbb{D}(\mathbf{w})\|_F > 0$ cannot be ensured for each point in Ω
 - if there are points with $c_S \delta^2 \|\mathbb{D}(\mathbf{w})\|_F = 0$, global estimates cannot be better than for Navier–Stokes equations
 - finite element error analysis for rational LES model
 - difficulty: strong monotonicity open, rational LES model is a global perturbation
 - result for small data/time, Berselli, Galdi, Iliescu, Layton (2002)

2.6 A Numerial Study

- Goal : LES models have been derived for the approximation of (u
 , p
) how good is that achieved ?
 - Smagorinsky model
 - rational LES model with different subgrid scale terms

2.6 A Numerial Study

- Goal : LES models have been derived for the approximation of (u
 , p
) how good is that achieved ?
 - Smagorinsky model
 - rational LES model with different subgrid scale terms
- mixing layer problem in 2d

Setup of the Mixing Layer Problem

• initial velocity

$$\mathbf{w}_0 = \begin{pmatrix} W_\infty \tanh\left(\frac{2y}{\sigma_0}\right) \\ 0 \end{pmatrix} + \text{ noise }$$

with

$$\sigma_0 = 1/14, \qquad W_\infty = 1, \qquad \text{viscosity } \nu^{-1} = 140000$$

•
$$Re = \frac{\sigma_0 W_\infty}{\nu} = 10000$$

- Galerkin FEM : appr. 3 000 000 d.o.f. in space
- LES : appr. 45 000 d.o.f. in space
- Q_2/P_1^{disc} finite element discretisation

• Smagorinsky model

- first vortex pairing too late
- second vortex pairing somewhat too late, symmetric
- delay before the last vortex pairing, much too late
- speed of rotation of final vortex too slow

• Smagorinsky model

- first vortex pairing too late
- second vortex pairing somewhat too late, symmetric
- delay before the last vortex pairing, much too late
- speed of rotation of final vortex too slow
- rational LES model with Smagorinsky sgs term
 - first vortex pairing somewhat too early
 - period up to second vortex pairing computed very badly
 - second vortex pairing much too late
 - delay before last vortex pairing, occurs much too late
 - speed of rotation of final vortex too slow

• Smagorinsky model

- first vortex pairing too late
- second vortex pairing somewhat too late, symmetric
- delay before the last vortex pairing, much too late
- speed of rotation of final vortex too slow
- rational LES model with Smagorinsky sgs term
 - first vortex pairing somewhat too early
 - period up to second vortex pairing computed very badly
 - second vortex pairing much too late
 - delay before last vortex pairing, occurs much too late
 - speed of rotation of final vortex too slow
- rational LES model with Iliescu-Layton sgs term
 - first vortex pairing somewhat too early
 - second vortex pairing somewhat too late, but non-symmetric
 - no delay before last vortex pairing
 - speed of rotation of final vortex too slow

• Smagorinsky model

- first vortex pairing too late
- second vortex pairing somewhat too late, symmetric
- delay before the last vortex pairing, much too late
- speed of rotation of final vortex too slow
- rational LES model with Smagorinsky sgs term
 - first vortex pairing somewhat too early
 - period up to second vortex pairing computed very badly
 - second vortex pairing much too late
 - delay before last vortex pairing, occurs much too late
 - speed of rotation of final vortex too slow
- rational LES model with Iliescu-Layton sgs term
 - first vortex pairing somewhat too early
 - second vortex pairing somewhat too late, but non-symmetric
 - no delay before last vortex pairing
 - speed of rotation of final vortex too slow

rational LES model with Iliescu-Layton sgs term best in this example

Further Numerical Studies with Rational LES model

- turbulent driven cavity 2D, 3D: Iliescu, J., Layton, Matthies, Tobiska (2003)
- turbulent channel flows: Fischer, Iliescu (2003, 2004)
- turbulent flow around a cylinder: J., Kindl, Suciu (2009, preprint)
- geophysical flows: Fischer, Iliescu, Ozgokmen (2009)
- rational LES model seldom used

2.7 Summary

- analysis and modeling
 - o commutation errors arise, partially analyzed, important near boundaries
 - boundary conditions open
 - Smagorinsky model with constant c_S well analyzed (existence, uniqueness of solution, finite element errors)

2.7 Summary

- analysis and modeling
 - o commutation errors arise, partially analyzed, important near boundaries
 - boundary conditions open
 - Smagorinsky model with constant c_S well analyzed (existence, uniqueness of solution, finite element errors)
- practical application of LES models
 - many models proposed, used
 - Smagorinsky model (and variants) very popular, but often too diffusive
- Literatur
 - best reference: Sagaut (2006)
 - more mathematical: J. (2004), Berselli, Iliescu, Layton (2006)

Variational Multiscale 3

Methods

- Motivation and Derivation 3.1
- 3.2 Practical Realizations and Experiences
- 3.3 Bubble VMS Methods
- 3.4 A Finite–Element Projection–Based VMS Method
- A Numerical Study the Turbulent Flow Around a Cylinder 3.5
- 3.6 Summary and Outlook
3.1 Motivation and Derivation

- motivation: definition of large scales by spatial averaging leads to problems (in particular at the boundary)
- goal: define large scales in a different way

3.1 Motivation and Derivation

- motivation: definition of large scales by spatial averaging leads to problems (in particular at the boundary)
- goal: define large scales in a different way
- ideas:
 - define scales by projections into function spaces
 VMS methods are based on variational formulation of underlying equation
 - model for influence of unresolved small scales acts directly only on resolved small scales (many VMS models)
- three scale decomposition of the flow (many VMS models)
 - (resolved) large scales, should be simulated
 - resolved small scales, should be simulated, too
 - unresolved small scales
- based on ideas for simulation of multiscale problems from Hughes (1995), Guermond (1999)
- first connection to turbulent flows: Hughes, Mazzei, Jansen (2000)

- three scale VMS method
- starting point: variational form of the Navier–Stokes equations

•
$$V = (H_0^1(\Omega))^3, Q = L_0^2(\Omega)$$

• find \mathbf{u} : $[0,T] \to V, p$: $(0,T] \to Q$ satisfying for all $(\mathbf{v},q) \in V \times Q$

$$(\mathbf{u}_t, \mathbf{v}) + (2Re^{-1}\mathbb{D}(\mathbf{u}), \mathbb{D}(\mathbf{v})) + ((\mathbf{u} \cdot \nabla) \mathbf{u}, \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) + (q, \nabla \cdot \mathbf{u}) = (\mathbf{f}, \mathbf{v})$$

and $\mathbf{u}\left(0,\mathbf{x}\right) = \mathbf{u}_{0}\left(\mathbf{x}\right) \in V$

- three scale VMS method
- starting point: variational form of the Navier–Stokes equations

•
$$V = (H_0^1(\Omega))^3, Q = L_0^2(\Omega)$$

• find $\mathbf{u} : [0,T] \to V, \ p : (0,T] \to Q$ satisfying for all $(\mathbf{v},q) \in V \times Q$

$$(\mathbf{u}_t, \mathbf{v}) + (2Re^{-1}\mathbb{D}(\mathbf{u}), \mathbb{D}(\mathbf{v})) + ((\mathbf{u} \cdot \nabla) \mathbf{u}, \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) + (q, \nabla \cdot \mathbf{u}) = (\mathbf{f}, \mathbf{v})$$

and $\mathbf{u}(0, \mathbf{x}) = \mathbf{u}_0(\mathbf{x}) \in V$

• short form of variational equation

$$A(\mathbf{u}; (\mathbf{u}, p), (\mathbf{v}, q)) = F(\mathbf{v})$$

- three scale decomposition
 - \circ large scales $(\overline{\mathbf{u}}, \overline{p})$
 - resolved small scales $(\tilde{\mathbf{u}}, \tilde{p})$
 - \circ unresolved small scales (\mathbf{u}', p')

• find $\mathbf{u} = \overline{\mathbf{u}} + \tilde{\mathbf{u}} + \mathbf{u}' : [0, T] \to V, \ p = \overline{p} + \tilde{p} + p' : (0, T] \to Q \text{ s.t. for all}$ $(\mathbf{v}, q) \in V \times Q$

 $A\left(\mathbf{u};\left(\overline{\mathbf{u}},\overline{p}\right),\left(\overline{\mathbf{v}},\overline{q}\right)\right) + A\left(\mathbf{u};\left(\tilde{\mathbf{u}},\widetilde{p}\right),\left(\overline{\mathbf{v}},\overline{q}\right)\right) + A\left(\mathbf{u};\left(\mathbf{u}',p'\right),\left(\overline{\mathbf{v}},\overline{q}\right)\right) = F\left(\overline{\mathbf{v}}\right),$

 $A\left(\mathbf{u};\left(\overline{\mathbf{u}},\overline{p}\right),\left(\tilde{\mathbf{v}},\tilde{q}\right)\right) + A\left(\mathbf{u};\left(\tilde{\mathbf{u}},\tilde{p}\right),\left(\tilde{\mathbf{v}},\tilde{q}\right)\right) + A\left(\mathbf{u};\left(\mathbf{u}',p'\right),\left(\tilde{\mathbf{v}},\tilde{q}\right)\right) = F\left(\tilde{\mathbf{v}}\right),$

 $A\left(\mathbf{u};\left(\overline{\mathbf{u}},\overline{p}\right),\left(\mathbf{v}',q'\right)\right) + A\left(\mathbf{u};\left(\tilde{\mathbf{u}},\tilde{p}\right),\left(\mathbf{v}',q'\right)\right) + A\left(\mathbf{u};\left(\mathbf{u}',p'\right),\left(\mathbf{v}',q'\right)\right) = F\left(\mathbf{v}'\right)$

• find $\mathbf{u} = \overline{\mathbf{u}} + \tilde{\mathbf{u}} + \mathbf{u}' : [0, T] \to V, \ p = \overline{p} + \tilde{p} + p' : (0, T] \to Q \text{ s.t. for all}$ $(\mathbf{v}, q) \in V \times Q$

$$A\left(\mathbf{u};\left(\overline{\mathbf{u}},\overline{p}\right),\left(\overline{\mathbf{v}},\overline{q}\right)\right) + A\left(\mathbf{u};\left(\overline{\mathbf{u}},\widetilde{p}\right),\left(\overline{\mathbf{v}},\overline{q}\right)\right) + A\left(\mathbf{u};\left(\mathbf{u}',p'\right),\left(\overline{\mathbf{v}},\overline{q}\right)\right) = F\left(\overline{\mathbf{v}}\right),$$

$$A\left(\mathbf{u};\left(\overline{\mathbf{u}},\overline{p}\right),\left(\widetilde{\mathbf{v}},\widetilde{q}\right)\right) + A\left(\mathbf{u};\left(\widetilde{\mathbf{u}},\widetilde{p}\right),\left(\widetilde{\mathbf{v}},\widetilde{q}\right)\right) + A\left(\mathbf{u};\left(\mathbf{u}',p'\right),\left(\widetilde{\mathbf{v}},\widetilde{q}\right)\right) = F\left(\widetilde{\mathbf{v}}\right),$$

$$A\left(\mathbf{u};\left(\overline{\mathbf{u}},\overline{p}\right),\left(\mathbf{v}',q'\right)\right) + A\left(\mathbf{u};\left(\widetilde{\mathbf{u}},\widetilde{p}\right),\left(\mathbf{v}',q'\right)\right) + A\left(\mathbf{u};\left(\mathbf{u}',p'\right),\left(\mathbf{v}',q'\right)\right) = F\left(\mathbf{v}'\right)$$

- ideas and assumptions
 - neglect equation with test function (\mathbf{v}', q')
 - \circ assume

$$A\left(\mathbf{u};\left(\mathbf{u}',p'\right),\left(\overline{\mathbf{v}},\overline{q}\right)\right)=0$$

(direct influence of unresolved scales onto the large scales negligible)

model influence of the unresolved scales onto the small resolved scales:

 $A\left(\mathbf{u};\left(\mathbf{u}',p'\right),\left(\tilde{\mathbf{v}},\tilde{q}\right)\right) \approx B\left(\mathbf{u};\left(\overline{\mathbf{u}},\overline{p}\right),\left(\tilde{\mathbf{u}},\tilde{p}\right),\left(\tilde{\mathbf{v}},\tilde{q}\right)\right)$

• find $(\overline{\mathbf{u}}, \tilde{\mathbf{u}}, \overline{p}, \tilde{p}) \in \overline{V} \times \tilde{V} \times \overline{Q} \times \tilde{Q}$ s.t. for all $(\overline{\mathbf{v}}, \tilde{\mathbf{v}}, \overline{q}, \tilde{q}) \in \overline{V} \times \tilde{V} \times \overline{Q} \times \tilde{Q}$

$$A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; (\overline{\mathbf{u}}, \overline{p}), (\overline{\mathbf{v}}, \overline{q})\right) + A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; (\tilde{\mathbf{u}}, \widetilde{p}), (\overline{\mathbf{v}}, \overline{q})\right) = F\left(\overline{\mathbf{v}}\right)$$
$$A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; (\overline{\mathbf{u}}, \overline{p}), (\tilde{\mathbf{v}}, \widetilde{q})\right) + A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; (\tilde{\mathbf{u}}, \widetilde{p}), (\tilde{\mathbf{v}}, \widetilde{q})\right)$$
$$+ B\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; (\overline{\mathbf{u}}, \overline{p}), (\tilde{\mathbf{v}}, \widetilde{q})\right) = F\left(\tilde{\mathbf{v}}\right)$$

• find $(\overline{\mathbf{u}}, \widetilde{\mathbf{u}}, \overline{p}, \widetilde{p}) \in \overline{V} \times \widetilde{V} \times \overline{Q} \times \widetilde{Q}$ s.t. for all $(\overline{\mathbf{v}}, \widetilde{\mathbf{v}}, \overline{q}, \widetilde{q}) \in \overline{V} \times \widetilde{V} \times \overline{Q} \times \widetilde{Q}$

$$A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\overline{\mathbf{u}}, \overline{p}\right), \left(\overline{\mathbf{v}}, \overline{q}\right)\right) + A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\tilde{\mathbf{u}}, \widetilde{p}\right), \left(\overline{\mathbf{v}}, \overline{q}\right)\right) = F\left(\overline{\mathbf{v}}\right)$$
$$A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\overline{\mathbf{u}}, \overline{p}\right), \left(\tilde{\mathbf{v}}, \widetilde{q}\right)\right) + A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\tilde{\mathbf{u}}, \widetilde{p}\right), \left(\tilde{\mathbf{v}}, \widetilde{q}\right)\right)$$
$$+ B\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\overline{\mathbf{u}}, \overline{p}\right), \left(\tilde{\mathbf{v}}, \widetilde{q}\right)\right) = F\left(\tilde{\mathbf{v}}\right)$$

- parameters:
 - spaces $(\overline{V}, \overline{Q})$
 - $\circ \ \ {\rm spaces} \ (\tilde{V},\tilde{Q})$
 - model $B(\mathbf{u}; (\overline{\mathbf{u}}, \overline{p}), (\tilde{\mathbf{u}}, \tilde{p}), (\tilde{\mathbf{v}}, \tilde{q}))$

• find $(\overline{\mathbf{u}}, \widetilde{\mathbf{u}}, \overline{p}, \widetilde{p}) \in \overline{V} \times \widetilde{V} \times \overline{Q} \times \widetilde{Q}$ s.t. for all $(\overline{\mathbf{v}}, \widetilde{\mathbf{v}}, \overline{q}, \widetilde{q}) \in \overline{V} \times \widetilde{V} \times \overline{Q} \times \widetilde{Q}$

$$\begin{aligned} A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\overline{\mathbf{u}}, \overline{p}\right), \left(\overline{\mathbf{v}}, \overline{q}\right)\right) + A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\tilde{\mathbf{u}}, \widetilde{p}\right), \left(\overline{\mathbf{v}}, \overline{q}\right)\right) &= F\left(\overline{\mathbf{v}}\right) \\ A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\overline{\mathbf{u}}, \overline{p}\right), \left(\tilde{\mathbf{v}}, \widetilde{q}\right)\right) + A\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\tilde{\mathbf{u}}, \widetilde{p}\right), \left(\tilde{\mathbf{v}}, \widetilde{q}\right)\right) \\ &+ B\left(\overline{\mathbf{u}} + \tilde{\mathbf{u}}; \left(\overline{\mathbf{u}}, \overline{p}\right), \left(\tilde{\mathbf{v}}, \widetilde{q}\right)\right) &= F\left(\tilde{\mathbf{v}}\right) \end{aligned}$$

- parameters:
 - spaces $(\overline{V}, \overline{Q})$
 - spaces (\tilde{V}, \tilde{Q})
 - model $B\left(\mathbf{u}; \left(\overline{\mathbf{u}}, \overline{p}\right), \left(\tilde{\mathbf{u}}, \tilde{p}\right), \left(\tilde{\mathbf{v}}, \tilde{q}\right)\right)$
- often $B(\mathbf{u}; (\overline{\mathbf{u}}, \overline{p}), (\tilde{\mathbf{u}}, \tilde{p}), (\tilde{\mathbf{v}}, \tilde{q})) \mathsf{Smagorinsky model}$
 - influence of Smagorinsky model is controlled with appropriate choice of spaces
 - in contrast to control with $c_S(t, \mathbf{x})$ as in dynamic Smagorinsky LES model

3.2 Practical Realizations and Experi-

ences

- Hughes, Mazzei, Oberai, Wray (2001)
 - Fourier spectral method
 - scale separation by wave numbers
 - two static Smagorinsky–type models
 - homogeneous isotropic turbulence
 - Result: VMS in better agreement with DNS data than, e.g., dynamic Smagorinsky LES method

3.2 Practical Realizations and Experi-

ences

- Hughes, Mazzei, Oberai, Wray (2001)
 - Fourier spectral method
 - scale separation by wave numbers
 - two static Smagorinsky-type models
 - homogeneous isotropic turbulence
 - Result: VMS in better agreement with DNS data than, e.g., dynamic Smagorinsky LES method
- Hughes, Oberai, Mazzei (2001)
 - streamwise and spanwise: Fourier spectral method wall-normal: spectral method (Legendre polynomials)
 - two static Smagorinsky-type models
 - turbulent channel flow at $Re_{\tau} \in \{180, 395\}$
 - Result: VMS produced in general better results than dynamic Smagorinsky LES method

- Holmen, Hughes, Oberai, Wells (2004)
 - Aim: sensitivity of VMS method with respect to scale partition (in terms of wave numbers)
 - static and dynamic Smagorinsky model
 - turbulent channel flow at $Re_{\tau} \in \{180, 395\}$
 - Results:
 - VMS methods better than dynamic Smagorinsky LES method
 - static VMS methods are highly accurate at appropriate partition ratios
 - dynamic VMS method relatively insensitive to the scale separation

• Ramakrishnan, Collis (2004)

- streamwise and spanwise: Fourier spectral method wall–normal: second order FVM
- scale separation only streamwise and spanwise: planar VMS (PVMS)
- static Smagorinsky model
- turbulent channel flow at $Re_{\tau} \in \{180, 590\}$
- Result: PVMS consistently outperformed the dynamic Smagorinsky LES method

• Ramakrishnan, Collis (2004)

- streamwise and spanwise: Fourier spectral method wall–normal: second order FVM
- scale separation only streamwise and spanwise: planar VMS (PVMS)
- static Smagorinsky model
- turbulent channel flow at $Re_{\tau} \in \{180, 590\}$
- Result: PVMS consistently outperformed the dynamic Smagorinsky LES method
- Ramakrishnan, Collis (2004); Collis, Ramkrishnan (2005)
 - discontinuous Galerkin discretization: local VMS method
 - scale separation by polynomial degree
 - no turbulence model used (grids fine enough)
 - turbulent channel flow at $Re_{\tau} \in \{180, 395\}$
 - **Result:** p-refinement better than h-refinement

• Gravemeier, Wall, Ramm (2004, 2005)

- o finite elements
- $\circ~$ bubble functions for $\mathbf{\tilde{u}},$ bubble VMS method, see Section 3.3
- additional grad–div stabilization in large scale momentum equation
- dynamic Smagorinsky model
- \circ driven cavity at Re = 10000
- Results: good mean velocity; less good second order statistics

• Gravemeier, Wall, Ramm (2004, 2005)

- o finite elements
- $\circ~$ bubble functions for $\tilde{\mathbf{u}},$ bubble VMS method, see Section 3.3
- additional grad–div stabilization in large scale momentum equation
- dynamic Smagorinsky model
- \circ driven cavity at Re = 10000
- Results: good mean velocity; less good second order statistics
- Gravemeier (2006, 2007)
 - projection–based VMS method, see Section 3.4, with second–order FVM
 - two-level method
 - additional viscous term in the momentum equation for the large scales
 - turbulent channel flow at $Re_{\tau} \in \{180, 590\}$ turbulent flow in a diffuser
 - Result: VMS with constant Smagorinsky model better than VMS with dynamic Smagorinsky model and dynamic Smagorinsky LES method

- two–scale VMS method, Calo (2004), Bazilevs, Calo, Cottrell, Hughes, Reali, Scovazzi (2007)
- scale decomposition with projector \overline{P} : $V \to \overline{V}$, $U = (\mathbf{u}, p)$ into two scales

$$\overline{U} := \overline{P}(U), \quad \tilde{U} := (I - \overline{P})(U), \quad V = \overline{V} \oplus \tilde{V}$$

- write coupled equation as in three–scale VMS method
- rewrite (and linearize) equation for small scale test functions

$$A\left(\tilde{U};\tilde{U},\tilde{V}\right) + A\left(\overline{U};\tilde{U},\tilde{V}\right) + A\left(\tilde{U};\overline{U},\tilde{V}\right) = F\left(\tilde{V}\right) - A\left(\overline{U};\overline{U},\tilde{V}\right)$$
$$= \left(\operatorname{res}(\overline{U}),\tilde{V}\right)$$

formal representation

$$\tilde{U} = \tilde{F}\left(\overline{U}, \operatorname{res}(\overline{U})\right)$$

How to approximate $\tilde{F} : V'^* \to V'$?

• assume
$$\varepsilon = \|\operatorname{res}(\overline{U})\|_{\tilde{V}^*}$$
 small, perturbation series $\tilde{U} = \sum_{k=1}^{\infty} \varepsilon^k \tilde{U}_k$

• inserting in linearized equation with small scale test functions

$$A\left(\tilde{U}_{1};\overline{U},\tilde{V}\right) + A\left(\overline{U};\tilde{U}_{1},\tilde{V}\right) = (\varepsilon^{-1}\operatorname{res}(\overline{U}),\tilde{V})$$
$$A\left(\tilde{U}_{k};\overline{U},\tilde{V}\right) + A\left(\overline{U};\tilde{U}_{k},\tilde{V}\right) = -\sum_{i=1}^{k-1} A\left(\tilde{U}_{i};\tilde{U}_{k-i},\tilde{V}\right), \ k \ge 2$$

How to solve this recursively defined system?

• assume
$$\varepsilon = \|\operatorname{res}(\overline{U})\|_{\tilde{V}^*}$$
 small, perturbation series $\tilde{U} = \sum_{k=1}^{\infty} \varepsilon^k \tilde{U}_k$

• inserting in linearized equation with small scale test functions

$$A\left(\tilde{U}_{1};\overline{U},\tilde{V}\right) + A\left(\overline{U};\tilde{U}_{1},\tilde{V}\right) = (\varepsilon^{-1}\operatorname{res}(\overline{U}),\tilde{V})$$
$$A\left(\tilde{U}_{k};\overline{U},\tilde{V}\right) + A\left(\overline{U};\tilde{U}_{k},\tilde{V}\right) = -\sum_{i=1}^{k-1} A\left(\tilde{U}_{i};\tilde{U}_{k-i},\tilde{V}\right), \ k \ge 2$$

- -

How to solve this recursively defined system?

• formally with small–scale Green's operator $\tilde{G}_{\overline{U}}$: $\tilde{V}^* \to \tilde{V}$

$$\tilde{U}_1 = \tilde{G}_{\overline{U}}\left(\left(\varepsilon^{-1}\operatorname{res}(\overline{U}), \tilde{V}\right)\right), \quad \tilde{U}_k = \tilde{G}_{\overline{U}}\left(-\sum_{i=1}^{k-1} A\left(\tilde{U}_i; \tilde{U}_{k-i}, \tilde{V}\right)\right), \ k \ge 2$$

• $\tilde{G}_{\overline{U}}$ can be represented by \overline{P} and classical Green's operator (Hughes, Sangalli (2007))

• practice: truncate series at k = 1

$$\tilde{U} \approx \varepsilon \tilde{U}_1 = \tilde{G}_{\overline{U}}\left(\left(\operatorname{res}(\overline{U}), \tilde{V}\right)\right)$$

• practice: truncate series at k = 1

$$\tilde{U} \approx \varepsilon \tilde{U}_1 = \tilde{G}_{\overline{U}}\left(\left(\operatorname{res}(\overline{U}), \tilde{V}\right)\right)$$

- practice: approximate small-scale Green's operator
 - $\circ~$ large scales defined by finite element function $U^h=\overline{U}$
 - \circ K mesh cell

$$\tilde{U} \approx \tilde{G}_{\overline{U}}\left(\left(\operatorname{res}(U^h), \tilde{V}\right)\right)|_K \approx \boldsymbol{\tau}_K \operatorname{res}(U^h)|_K, \quad \boldsymbol{\tau}|_K \in \mathbb{R}^{4 \times 4}$$

linear, local approximation

• small scales are approximated by product of au and the large scale residual

- additional terms in momentum equation
 - Streamline–Upwind Petrov–Galerkin (SUPG) term

$$\sum_{K\in\mathcal{T}^h} \left(\boldsymbol{\tau}_m \operatorname{res}_m(U^h), (\mathbf{u}^h \cdot \nabla) \mathbf{v}^h + \nabla q^h\right)_K$$

o grad-div term

$$\sum_{K\in\mathcal{T}^h} \left(\boldsymbol{\tau}_c \nabla \cdot \mathbf{u}^h, \nabla \cdot \mathbf{v}^h\right)_K$$

- two further terms with residuals
- features:
 - no eddy viscosity model
 - o parameters in the additional terms
- extension of residual-based stabilized methods for Navier-Stokes equations
- numerical studies
 - Calo, Hughes et al. (2004 -)
 - Gravemeier, Wall (2008), some improvements of two–scale VMS method compared to standard stabilized finite element methods

- Algebraic Multigrid VMS method, Gravemeier (2008),
 - algebraic scale separation by an algebraic multigrid
 - turbulent flow around a cylinder, see Section 3.5:
 better than dynamic Smagorinsky LES model and two–scale VMS method

- Algebraic Multigrid VMS method, Gravemeier (2008),
 - algebraic scale separation by an algebraic multigrid
 - turbulent flow around a cylinder, see Section 3.5:
 better than dynamic Smagorinsky LES model and two–scale VMS method
- projection-based finite element VMS method, J., Kaya, Kindl (2005)
 - \circ see Section 3.4

- Algebraic Multigrid VMS method, Gravemeier (2008),
 - algebraic scale separation by an algebraic multigrid
 - turbulent flow around a cylinder, see Section 3.5:
 better than dynamic Smagorinsky LES model and two–scale VMS method
- projection-based finite element VMS method, J., Kaya, Kindl (2005)
 - \circ see Section 3.4

Summary

- VMS methods in general better than dynamic Smagorinsky LES method
- static VMS methods work well

3.3 **Bubble VMS Methods**

- standard finite element spaces $(\overline{V}^h, \overline{Q}^h)$ for large scales
- finite element spaces $(\tilde{V}^h, \tilde{Q}^h)$ for resolved small scales necessary
 - $\circ~$ higher resolution than $(\overline{V}^h,\overline{Q}^h)$ since small scales
 - \implies higher order finite elements or refined mesh
 - solution of equations for resolved small scales must not be too expensive \implies decouple finite elements to get local problems

 \implies use bubble functions for velocity

$$ilde{V}^h \subset \left\{ \mathbf{v} \ : \ \mathbf{v} \in \left(H_0^1
ight)^3, \mathbf{v} = \mathbf{0} ext{ on faces of the mesh cells}
ight\}$$

• idea in Hughes, Mazzei, Jansen (2000)

Bubble VMS Methods (cont.)

- Gravemeier (2003), Gravemeier, Wall, Ramm (2004,2005), ...
- strategy:
 - 1. simplify resolved small scale equation:
 - \circ model

$$\tilde{p} = \tau_K \nabla \cdot \overline{\mathbf{u}}^h \implies \sum_{K \in \mathcal{T}^h} (\tau_K \nabla \cdot \overline{\mathbf{u}}^h, \nabla \cdot \overline{\mathbf{v}}^h)$$

grad-div stabilization in large scale equation

- neglect resolved small scale continuity equation
- 2. solve resolved small scale equation for velocity with residual free bubble (RFB) functions, using current approximation on $(\overline{\mathbf{u}}, \overline{p})$
- 3. solve large scale equations with result from step 2 and grad-div stabilization
- implementation:

$$\circ \ \ (\overline{V}^h,\overline{Q}^h)=Q_1/Q_1 ext{ or } P_1/P_1$$

- \circ solve bubble equations using Q_1 finite elements
- $\circ \ pprox 4 imes 4 imes 4$ local meshes
- similar method studied in J., Kindl (2009)

Bubble VMS Methods (cont.)

- bubble VMS method without model for small scale pressure blows up in finite time, J., Kindl (2009)
- high effort in implementation
- our conclusions:
 - bubble VMS methods not worth to be considered
 - two-scale VMS method seems to be more attractive alternative

Bubble VMS Methods (cont.)

- bubble VMS method without model for small scale pressure blows up in finite time, J., Kindl (2009)
- high effort in implementation
- our conclusions:
 - bubble VMS methods not worth to be considered
 - two-scale VMS method seems to be more attractive alternative
- Unphysical property of bubble–VMS methods
 - resolved small scales bound to the mesh cells, no interactions between resolved small scales across mesh cell boundaries

does not reflect physical reality

• impact of this property on numerical results not known

3.4 A Finite–Element Projection–Based VMS Method

- J., Kaya (2005), based on ideas from Layton (2002)
- (V^h, Q^h) conform velocity–pressure finite element spaces fulfilling the inf–sup condition for all resolved scales
- L^H finite dimensional space of symmetric tensor–valued functions in $L^2(\Omega)^{d \times d}$ (large scale space)

3.4 A Finite–Element Projection–Based VMS Method

- J., Kaya (2005), based on ideas from Layton (2002)
- (V^h, Q^h) conform velocity–pressure finite element spaces fulfilling the inf–sup condition for all resolved scales
- L^H finite dimensional space of symmetric tensor–valued functions in $L^2(\Omega)^{d \times d}$ (large scale space)
- find \mathbf{u}^h : $[0,T] \to V^h$, p^h : $(0,T] \to Q^h$, \mathbb{G}^H : $[0,T] \to L^H$:

$$\begin{aligned} (\mathbf{u}_t^h, \mathbf{v}^h) + (2Re^{-1}\mathbb{D}(\mathbf{u}^h), \mathbb{D}(\mathbf{v}^h)) + ((\mathbf{u}^h \cdot \nabla)\mathbf{u}^h, \mathbf{v}^h) \\ - (p^h, \nabla \cdot \mathbf{v}^h) + (\nu_T(\mathbb{D}(\mathbf{u}^h) - \mathbb{G}^H), \mathbb{D}(\mathbf{v}^h)) &= (\mathbf{f}, \mathbf{v}^h) \quad \forall \ \mathbf{v}^h \in V^h \\ (q^h, \nabla \cdot \mathbf{u}^h) &= 0 \qquad \forall \ q^h \in Q^h \\ (\mathbb{G}^H - \mathbb{D}(\mathbf{u}^h), \mathbb{L}^H) &= 0 \qquad \forall \ \mathbb{L}^H \in L^H \end{aligned}$$

 $\nu_T(t, \mathbf{x}) \ge 0 - \text{turbulent viscosity, turbulence model}$ $\mathbb{G}^H = P_{L^H} \mathbb{D}(\mathbf{u}^h) - L^2 - \text{projection}$

• same idea as in local projection stabilization (LPS) schemes for stabilizing convection–dominated equations

Properties of the Projection–Based VMS Method

- three scale decomposition:
 - (resolved) large scales
 - resolved small scales
 - unresolved small scales
- turbulence model acts directly only on the resolved small scales modeling the influence of unresolved small scales
- indirect influence onto large scales by coupling of resolved small and large scales

Properties of the Projection–Based VMS Method

- three scale decomposition:
 - (resolved) large scales
 - o resolved small scales
 - unresolved small scales
- turbulence model acts directly only on the resolved small scales modeling the influence of unresolved small scales
- indirect influence onto large scales by coupling of resolved small and large scales
- parameters of the VMS method
 - $\circ L^H$
 - $\circ
 u_T$

Properties of the Projection–Based VMS Method

- three scale decomposition:
 - $\circ~$ (resolved) large scales
 - resolved small scales
 - unresolved small scales
- turbulence model acts directly only on the resolved small scales modeling the influence of unresolved small scales
- indirect influence onto large scales by coupling of resolved small and large scales
- parameters of the VMS method

```
\circ L^H
```

```
\circ 
u_T
```

- finite element error analysis: J., Kaya (2008); J., Kaya, Kindl (2008) follows the approach of the analysis for Smagorinsky model
- similar approach with finite volume methods by Gravemeier (2006)

How to Choose the Large Scale Space L^H ?

- standard bases for velocity–pressure finite element spaces
- here: L^H defined on the same grid:

$$\begin{split} L^{H} &= \operatorname{span} \left\{ \begin{pmatrix} l_{j}^{H} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 0 & l_{j}^{H} & 0 \\ l_{j}^{H} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \frac{1}{2} \begin{pmatrix} 0 & 0 & l_{j}^{H} \\ 0 & 0 & 0 \\ l_{j}^{H} & 0 & 0 \end{pmatrix}, \\ \begin{pmatrix} 0 & 0 & 0 \\ 0 & l_{j}^{H} & 0 \\ 0 & 0 & l_{j}^{H} \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & l_{j}^{H} \\ 0 & l_{j}^{H} & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & l_{j}^{H} \\ 0 & l_{j}^{H} & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & l_{j}^{H} \\ 0 & 0 & l_{j}^{H} \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & l_{j}^{H} \\ 0 & 0 & l_{j}^{H} \end{pmatrix} \right\} \end{split}$$

 $j=1,\ldots,n_L$

• two-level method (for convection-diffusion equations), J., Kaya, Layton (2006)

How to Choose the Large Scale Space L^H ? (cont.)

• coupled system

$\bigwedge A_{11}$	A_{12}	A_{13}	B_1^T	\tilde{G}_{11}	\tilde{G}_{12}	\tilde{G}_{13}	0	0	0		$\left(\begin{array}{c} u_1^h \end{array} \right)$		$\left(\begin{array}{c}f_1^h\end{array}\right)$
A_{21}	A_{22}	A_{23}	B_2^T	0	\tilde{G}_{22}	0	\tilde{G}_{24}	\tilde{G}_{25}	0		u_2^h		f_2^h
A_{31}	A_{32}	A_{33}	B_3^T	0	0	$ ilde{G}_{33}$	0	$ ilde{G}_{35}$	$ ilde{G}_{36}$		u_3^h		f_3^h
B_1	B_2	B_3	0	0	0	0	0	0	0		p^h		0
G_{11}	0	0	0	M	0	0	0	0	0		g^H_{11}		0
G_{21}	G_{22}	0	0	0	$\frac{M}{2}$	0	0	0	0		g^H_{12}	_	0
G_{31}	0	G_{33}	0	0	0	$\frac{M}{2}$	0	0	0		g^H_{13}		0
0	G_{42}	0	0	0	0	0	M	0	0		g^H_{22}		0
0	G_{52}	G_{53}	0	0	0	0	0	$\frac{M}{2}$	0		g^H_{23}		0
0	0	G_{63}	0	0	0	0	0	$\overline{0}$	M	\mathcal{F}	$\langle g_{33}^H \rangle$		$\langle 0 \rangle$

• 7 additional matrices
How to Choose the Large Scale Space L^H ? (cont.)

• condensation

$$\begin{pmatrix} \tilde{A}_{11} & \tilde{A}_{12} & \tilde{A}_{13} & B_1^T \\ \tilde{A}_{21} & \tilde{A}_{22} & \tilde{A}_{23} & B_2^T \\ \tilde{A}_{31} & \tilde{A}_{32} & \tilde{A}_{33} & B_3^T \\ B_1 & B_2 & B_3 & 0 \end{pmatrix} \begin{pmatrix} u_1^h \\ u_2^h \\ u_3^h \\ p^h \end{pmatrix} = \begin{pmatrix} f_1^h \\ f_2^h \\ f_3^h \\ 0 \end{pmatrix}$$

$$\tilde{A}_{11} = A_{11} - \tilde{G}_{11}M^{-1}G_{11} - \frac{1}{2}\tilde{G}_{24}M^{-1}G_{42} - \frac{1}{2}\tilde{G}_{36}M^{-1}G_{63}$$

$$\vdots$$

$$\tilde{A}_{33} = A_{33} - \tilde{G}_{36}M^{-1}G_{63} - \frac{1}{2}\tilde{G}_{11}M^{-1}G_{11} - \frac{1}{2}\tilde{G}_{24}M^{-1}G_{42}$$

• goal: sparsity pattern of
$$\tilde{A}_{\alpha\beta}$$
 same like $A_{\alpha\beta}$

How to Choose the Large Scale Space L^H ? (cont.)

- conditions on L^H :
 - support of each basis function of L^H only one mesh cell
 - basis of L^H is L^2 -orthogonal
 - ⇒ discontinuous finite element spaces with bases of piecewise Legendre polynomials
- simulations found in the literature: J., Kaya (2005), J., Roland (2007), J., Kindl (2008)
 - $\circ L^H(K) = P_0(K)$ for all mesh cells K
 - $L^H(K) = P_1^{\operatorname{disc}}(K)$ for all mesh cells K

How to Choose the Large Scale Space L^H ? (cont.)

- conditions on L^H :
 - support of each basis function of L^H only one mesh cell
 - basis of L^H is L^2 -orthogonal
 - ⇒ discontinuous finite element spaces with bases of piecewise Legendre polynomials
- simulations found in the literature: J., Kaya (2005), J., Roland (2007), J., Kindl (2008)
 - $\circ L^H(K) = P_0(K)$ for all mesh cells K
 - $\circ L^H(K) = P_1^{\operatorname{disc}}(K)$ for all mesh cells K
- goal: method should determine local coarse space $L^H(K)$ a posteriori such that
 - $L^H(K)$ is a small space where flow is strongly turbulent \iff turbulence model has large influence
 - $L^H(K)$ is a large space where flow is less turbulent \iff turbulence model has little influence

Adaptive Large Scale Space

- assumption: local turbulence intensity reflected by size of local resolved small scales
 - $\circ~$ size of resolved small scales large \Longrightarrow many unresolved scales can be expected
 - $\circ~$ size of resolved small scales small \Longrightarrow little unresolved scales can be expected
- compute the deformation tensor of the large scales G^H
 - computation is not necessary for static L^H
 - \circ additional matrices to assemble in comparison to static L^H

Adaptive Large Scale Space

- assumption: local turbulence intensity reflected by size of local resolved small scales
 - $\circ~$ size of resolved small scales large \Longrightarrow many unresolved scales can be expected
 - $\circ~$ size of resolved small scales small \Longrightarrow little unresolved scales can be expected
- compute the deformation tensor of the large scales G^H
 - \circ computation is not necessary for static L^H
 - \circ additional matrices to assemble in comparison to static L^H
- define indicator of the size of the resolved small scales in mesh cell K

$$\eta_K = \frac{\|\mathbb{G}^H - \mathbb{D}(\mathbf{u}^h)\|_{L^2(K)}}{\|1\|_{L^2(K)}} = \frac{\|\mathbb{G}^H - \mathbb{D}(\mathbf{u}^h)\|_{L^2(K)}}{|K|^{1/2}}, \quad K \in \mathcal{T}^h$$

- size of the resolved small scales does not depend on size of mesh cell
- size of the mesh cell scales out

Adaptive Large Scale Space

- assumption: local turbulence intensity reflected by size of local resolved small scales
 - $\circ~$ size of resolved small scales large \Longrightarrow many unresolved scales can be expected
 - $\circ~$ size of resolved small scales small \Longrightarrow little unresolved scales can be expected
- compute the deformation tensor of the large scales G^H
 - \circ computation is not necessary for static L^H
 - \circ additional matrices to assemble in comparison to static L^H
- define indicator of the size of the resolved small scales in mesh cell K

$$\eta_K = \frac{\|\mathbb{G}^H - \mathbb{D}(\mathbf{u}^h)\|_{L^2(K)}}{\|1\|_{L^2(K)}} = \frac{\|\mathbb{G}^H - \mathbb{D}(\mathbf{u}^h)\|_{L^2(K)}}{|K|^{1/2}}, \quad K \in \mathcal{T}^h$$

- size of the resolved small scales does not depend on size of mesh cell
- size of the mesh cell scales out

• compare η_K to some reference value

• similar to a posteriori error estimation and mesh refinement

Adaptive Large Scale Space (cont.)

• reference values

$$\begin{array}{ll} \circ & \text{mean value at current time} & \overline{\eta} := \frac{1}{\text{no. of cells}} \sum\limits_{K \in \mathcal{T}^h} \eta_K \\ \\ \circ & \text{time average of mean values} & \overline{\eta}^t := \frac{1}{\text{no. of time steps}} \sum\limits_{\text{time steps}} \overline{\eta} \\ \\ \circ & \text{linear combination} & \overline{\eta}^{t/2} := \frac{\overline{\eta} + \overline{\eta}^t}{2} \end{array}$$

$$\circ$$
 linear combination $\overline{\eta}^{t/2}:=$

Adaptive Large Scale Space (cont.)

• reference values

• mean value at current time
$$\overline{\eta} := \frac{1}{\text{no. of cells}} \sum_{K \in \mathcal{T}^h} \eta_K$$

• time average of mean values $\overline{\eta}^t := \frac{1}{\text{no. of time steps}} \sum_{\text{time steps}} \overline{\eta}$

$$\circ$$
 linear combination $\overline{\eta}^{t/2}:=rac{\overline{\eta}+2}{2}$

- local spaces ($V^h = Q_2$ or $V^h = P_2^{\text{bubble}}$)
 - $\circ \ \mathbb{L}^{H}(K) = 0 = P_{00}(K) \ \ \text{turbulence model influences locally all resolved} \ \ \text{scales}$

Adaptive Large Scale Space (cont.)

- procedure:
 - choose three values

$$0 \le C_1 \le C_2 \le C_3$$

- \circ choose a mean value η
- choose a frequency of updating the large scale space

 n_{update}

• in every n_{update} -th step: compute η_K and determine the local large scale space

$$\begin{split} L^{H}(K) &= P_{2}^{\text{disc}}(K), \ \nu_{T}(K) = 0 & \text{ if } \eta_{K} \leq C_{1}\eta \\ L^{H}(K) &= P_{1}^{\text{disc}}(K) & \text{ if } C_{1}\eta < \eta_{K} \leq C_{2}\eta \\ L^{H}(K) &= P_{0}(K) & \text{ if } C_{2}\eta < \eta_{K} \leq C_{3}\eta \\ L^{H}(K) &= P_{00}(K) & \text{ if } C_{3}\eta < \eta_{K} \end{split}$$

3.5 A Numerical Study – the Turbulent Flow Around a Cylinder

• domain and coarse grid

- vortex street (iso-surfaces of the velocity)
- statistically periodic flow
- Re = 22000, (inflow, diameter of cylinder, viscosity)

3.5 A Numerical Study – the Turbulent Flow Around a Cylinder

• domain and coarse grid

- vortex street (iso-surfaces of the velocity)
- statistically periodic flow
- Re = 22000, (inflow, diameter of cylinder, viscosity)
- Q_2/P_1^{disc} , no. of d.o.f.: 522 720 velocity, 81 920 pressure
- Crank–Nicolson scheme with $\Delta t = 0.005$
- static Smagorinsky model for ν_T :

$$\nu_T = 0.01(2h_{K,\min})^2 \|\mathbb{D}(\mathbf{u}^h)\|_F$$

 $h_{K,\min}$ shortest edge of K

- characteristic values of the flow
 - \circ lift coefficient c_l
 - \circ drag coefficient c_d
 - \circ Strouhal number St

- characteristic values of the flow
 - \circ lift coefficient c_l
 - \circ drag coefficient c_d
 - \circ Strouhal number St
- time-averaged values and rms values (25 periods)

C_1	C_2	C_3	mean	$n_{ m update}$	$ar{c}_l$	$c_{l,\mathrm{rms}}$	$ar{c}_d$	$c_{d,\mathrm{rms}}$	St
VMS with $L^H = P_0$				0.010	1.10	2.55	0.16	0.138	
VMS	S with 1	$\Sigma^H =$	P_1^{disc}		-0.007	1.24	2.57	0.21	0.137
0.2	0.5	2	$\overline{\eta}$	1	-0.018	1.12	2.49	0.20	0.135
0.2	0.75	2	$\overline{\eta}$	1	-0.009	1.29	2.57	0.14	0.142
0.2	1.0	2	$\overline{\eta}$	1	0.016	1.05	2.49	0.15	0.136
0.2	1.25	2	$\overline{\eta}$	1	0.005	1.33	2.57	0.20	0.138
0.2	0.5	2	$\overline{\eta}^{t/2}$	1	-0.042	1.36	2.54	0.23	0.144
0.2	0.75	2	$\overline{\eta}^{t/2}$	1	-0.003	1.24	2.60	0.12	0.136
0.2	1.0	2	$\overline{\eta}^{t/2}$	1	-0.055	1.36	2.59	0.13	0.140
0.2	1.25	2	$\overline{\eta}^{t/2}$	1	0.011	1.53	2.62	0.22	0.143
experiments					0.7–1.4	1.9–2.1	0.1–0.2	0.132	

• typical snapshots

• typical snapshots

 results with adaptive large scale space and good parameters better than with uniform large scale space

$$C_1 \approx 0.2, \quad C_2 \in \{0.5, 1\}, \quad C_3 \in \{2, 3\}, \quad \overline{\eta}, \quad n_{\text{update}} = 1$$

- different mean values lead to rather different results
- increase of $n_{
 m update}$ leads to worse results

3.6 Summary and Outlook

- VMS is attractive alternative to LES
- bubble VMS methods not to be recommended
- current approaches:
 - two-scale VMS method (Hughes et al.)
 - algebraic Multigrid VMS method (Gravemeier et al.)
 - projection–based finite element VMS method (J. et al.)
- literature: review Gravemeier (2006)

3.6 Summary and Outlook

- VMS is attractive alternative to LES
- bubble VMS methods not to be recommended
- current approaches:
 - two-scale VMS method (Hughes et al.)
 - algebraic Multigrid VMS method (Gravemeier et al.)
 - projection–based finite element VMS method (J. et al.)
- literature: review Gravemeier (2006)
- projection-based finite element VMS method
 - adaptive VMS method is able to adapt large scale space to local intensity of the turbulence
 - further studies of parameters of the method (C_1 , C_2 , C_3 , n_{update}) necessary
 - o mathematical analysis for supporting parameter choice necessary
 - method can be extended to tetrahedral meshes and $P_2^{\text{bubble}}/P_1^{\text{disc}}$ finite element (J., Kindl, Suciu (Preprint 2009))
 - add adaptivity in space and time

4 Further Aspects

- 4.1 Finite Element Error Estimates for Time–Averaged Quantities
- 4.2 Solving the Algebraic Systems

4.1 Analysis of Temporal Mean Values for Turbulent Flows

- J., Manica, Layton (2007)
- homogeneous Dirichlet boundary conditions
- temporal mean value of a quantity q

$$< q > = \limsup_{T \to \infty} \frac{1}{T} \int_0^T q(t) \, dt$$

• studied for energy dissipation rate per volume

$$\varepsilon(\mathbf{u}) = \frac{Re^{-1}}{|\Omega|} \|\nabla \mathbf{u}(\cdot, t)\|^2$$

and kinetic energy

$$k(\mathbf{u}) = \frac{1}{2|\Omega|} \|\mathbf{u}(\cdot, t)\|^2$$

• Galerkin finite element discretization (continuous–in–time) with inf–sup stable finite element spaces (V^h,Q^h)

• initial results for \mathbf{u} obtained with Hopf construction

$$\lim_{T \to \infty} \frac{1}{T} \|\mathbf{u}(T)\|^2 = 0, \ \lim_{T \to \infty} \frac{1}{T} \|\mathbf{u}^h(T)\|^2 = 0 \implies \lim_{T \to \infty} \frac{1}{T} \|(\mathbf{u} - \mathbf{u}^h)(T)\|^2 = 0$$

proof for continuous solution:

- for finite-dimensional subspaces take solution in this subspace as test function
- \circ stability estimate \implies solution in this subspace has finite kinetic energy
- $\circ~$ limit: dimension of subspace $\rightarrow \infty$

• initial results for \mathbf{u} obtained with Hopf construction

$$\lim_{T \to \infty} \frac{1}{T} \|\mathbf{u}(T)\|^2 = 0, \ \lim_{T \to \infty} \frac{1}{T} \|\mathbf{u}^h(T)\|^2 = 0 \implies \lim_{T \to \infty} \frac{1}{T} \|(\mathbf{u} - \mathbf{u}^h)(T)\|^2 = 0$$

proof for continuous solution:

- for finite-dimensional subspaces take solution in this subspace as test function
- \circ stability estimate \implies solution in this subspace has finite kinetic energy
- $\circ~$ limit: dimension of subspace $\rightarrow \infty$
- energy dissipation rate

$$\begin{aligned} < \varepsilon(\mathbf{u}) > &\leq \quad \frac{1}{|\Omega|} < (\mathbf{f}, \mathbf{u}) > \leq \frac{Re}{|\Omega|} \|f\|_{L^{\infty}(0, \infty; H^{-1})}^{2} \\ < \varepsilon(\mathbf{u}^{h}) > &= \quad \frac{1}{|\Omega|} < (\mathbf{f}, \mathbf{u}^{h}) > \leq \frac{Re}{|\Omega|} \|f\|_{L^{\infty}(0, \infty; H^{-1})}^{2} \end{aligned}$$

- energy (in)equality
- results from above

• estimate for pressure error

$$\| \| \leq \frac{Re^{-1}}{\beta^h} \left(1 + 2M \operatorname{Re}^2 \| \mathbf{f} \|_{L^{\infty}(0,\infty;H^{-1})} \right) < \| \nabla (\mathbf{u} - \mathbf{u}^h) \|^2 >^{1/2}$$
$$+ \left(1 + \frac{\sqrt{3}}{\beta^h} \right) \inf_{q^h \in \mathbb{Q}^h} \limsup_{T \to \infty} \| _T \|$$

- $\circ \beta^h$ discrete inf–sup constant
- \circ *M* norm of the convective operator

• estimate for pressure error

$$\| \| \le \frac{Re^{-1}}{\beta^h} \left(1 + 2M \operatorname{Re}^2 \| \mathbf{f} \|_{L^{\infty}(0,\infty;H^{-1})} \right) < \| \nabla (\mathbf{u} - \mathbf{u}^h) \|^2 >^{1/2}$$
$$+ \left(1 + \frac{\sqrt{3}}{\beta^h} \right) \inf_{q^h \in \mathbb{Q}^h} \limsup_{T \to \infty} \| _T \|$$

- $\circ \beta^h$ discrete inf–sup constant
- \circ *M* norm of the convective operator
- error equation
- take test function independent of time in the error equation
- o standard estimates

• estimate for the velocity error

$$\begin{aligned} &< \varepsilon(\mathbf{u} - \mathbf{u}^{h}) > \\ &\leq C \inf_{\tilde{u} \in Y} \Big[< \varepsilon(\mathbf{u} - \tilde{\mathbf{u}}) > + Re < \|(\mathbf{u} - \tilde{\mathbf{u}})_{t}\|_{-1}^{2} > \\ &+ Re^{3} < \|\mathbf{u} - \mathbf{u}^{h}\|^{2/3} \|\nabla \mathbf{u}\|^{4/3} \|\nabla (\mathbf{u} - \tilde{\mathbf{u}})\|^{4/3} > \\ &+ Re^{3} < \|\mathbf{u} - \mathbf{u}^{h}\|^{2} \|\nabla (\mathbf{u} - \tilde{\mathbf{u}})\|^{4} > + < Re \|\mathbf{u}\| \|\nabla \mathbf{u}\| \|\nabla (\mathbf{u} - \tilde{\mathbf{u}})\|^{2} > \Big] \\ &+ C \inf_{q^{h} \in \mathbb{Q}^{h}} \Big[\nu^{-1} < \|p - q^{h}\|^{2} > \Big] + CRe^{3} < \|\nabla \mathbf{u}\|^{4} \|\mathbf{u} - \mathbf{u}^{h}\|^{2} > . \end{aligned}$$

- $\circ \ Y \subset V^h$
- estimate not closed because of last term on the right hand side
- proof based on error equation, error splitting and standard estimates

• estimate for the velocity error

$$\begin{aligned} < \varepsilon(\mathbf{u} - \mathbf{u}^{h}) > \\ \leq & C \inf_{\tilde{u} \in Y} \left[< \varepsilon(\mathbf{u} - \tilde{\mathbf{u}}) > + Re < \|(\mathbf{u} - \tilde{\mathbf{u}})_{t}\|_{-1}^{2} > \\ & + Re^{3} < \|\mathbf{u} - \mathbf{u}^{h}\|^{2/3} \|\nabla \mathbf{u}\|^{4/3} \|\nabla (\mathbf{u} - \tilde{\mathbf{u}})\|^{4/3} > \\ & + Re^{3} < \|\mathbf{u} - \mathbf{u}^{h}\|^{2} \|\nabla (\mathbf{u} - \tilde{\mathbf{u}})\|^{4} > + < Re \|\mathbf{u}\| \|\nabla \mathbf{u}\| \|\nabla (\mathbf{u} - \tilde{\mathbf{u}})\|^{2} > \right] \\ & + C \inf_{q^{h} \in \mathbb{Q}^{h}} \left[\nu^{-1} < \|p - q^{h}\|^{2} > \right] + CRe^{3} < \|\nabla \mathbf{u}\|^{4} \|\mathbf{u} - \mathbf{u}^{h}\|^{2} > . \end{aligned}$$

- $\circ \ Y \subset V^h$
- estimate not closed because of last term on the right hand side
- proof based on error equation, error splitting and standard estimates
- closed estimate possible with higher regularity assumptions (then uniqueness of weak solution)

Analysis of Temporal Mean Values for Turbulent Flows: Small Body Forces

• closed estimate possible with assumption that solution becomes stationary for $T \to \infty$

uniqueness of the way to reach the stationary limit not assumed

$$<\varepsilon(\mathbf{u}-\mathbf{u}^{h})>\leq C\left[\inf_{\mathbf{v}^{h}\in\mathbb{V}^{h}}Re^{-1}\|\nabla(\mathbf{u}^{*}-\mathbf{v}^{h})\|^{2}+\inf_{q^{h}\in\mathbb{Q}^{h}}Re\|p^{*}-q^{h}\|^{2}\right]$$

 (\mathbf{u}^*, p^*) – solution of stationary problem

Analysis of Temporal Mean Values for Turbulent Flows: Small Body Forces

- closed estimate possible with assumption that solution becomes stationary for $T \to \infty$

uniqueness of the way to reach the stationary limit not assumed

$$<\varepsilon(\mathbf{u}-\mathbf{u}^{h})>\leq C\left[\inf_{\mathbf{v}^{h}\in\mathbb{V}^{h}}Re^{-1}\|\nabla(\mathbf{u}^{*}-\mathbf{v}^{h})\|^{2}+\inf_{q^{h}\in\mathbb{Q}^{h}}Re\|p^{*}-q^{h}\|^{2}\right]$$

 (\mathbf{u}^*,p^*) – solution of stationary problem

- additional estimates for:
 - o drag and lift coefficient for flows around obstacles
 - energy dissipation rate for shear flows behaves accordingly to the Kolmogorov law

$$<\varepsilon(\mathbf{u}^h)>\leq C\frac{U^3}{L}$$

if grid at the wall is sufficiently fine

- U characteristic velocity scale
- L characteristic length scale

4.2 Solving the Algebraic Systems – Coupled Multigrid Methods

• multigrid methods for the (coupled) saddle point problems

$$\mathcal{A}\left(\begin{array}{c} u\\ p\end{array}\right) = \left(\begin{array}{cc} A & B\\ C & \mathbf{0}\end{array}\right) \left(\begin{array}{c} u\\ p\end{array}\right) = \left(\begin{array}{c} f\\ g\end{array}\right)$$

- components of a multigrid method
 - smoother: simple iterative method for damping the highly oscillating error components
 - restriction: restricts the residual from level l to level l-1
 - prolongation: prolongation of correction from level l 1 to level l
 - coarse grid solver: direct or iterative solver on level 0

Smoother for Saddle Point Problems

- main difficulty: smoother because of zero–block in the system matrix
- Vanka smoother
 - based on solution of local problems, Vanka (1986)
 - smoothing property provable if A s.p.d., $C = B^T$ for additive Vanka smoother (block Jacobi method), Zulehner (2002)
 - multiplicative Vanka smoother (block Gauss–Seidel method) more efficient
 - no theory for multiplicative Vanka smoother

Multiplicative Vanka Smoother

• decomposition of velocity d.o.f. \mathcal{V}_h and pressure d.o.f. \mathcal{Q}_h

$$\mathcal{V}_h = \cup_{j=1}^J \mathcal{V}_{hj}, \quad \mathcal{Q}_h = \cup_{j=1}^J \mathcal{Q}_{hj}$$

• A_j matrix block A which is connected to $W_{hj} = V_{hj} \cup Q_{hj}$

$$\mathcal{A}_{j} = \begin{pmatrix} A_{j} & B_{j} \\ C_{j} & 0 \end{pmatrix} \in \mathbb{R}^{\dim(\mathcal{W}_{hj}) \times \dim(\mathcal{W}_{hj})}$$

• one application of multiplicative Vanka smoother: for $j = 1, \ldots, J$

$$\left(\begin{array}{c} u\\ p\end{array}\right)_{j}:=\left(\begin{array}{c} u\\ p\end{array}\right)_{j}+\mathcal{A}_{j}^{-1}\left(\left(\begin{array}{c} f\\ g\end{array}\right)-\mathcal{A}\left(\begin{array}{c} u\\ p\end{array}\right)\right)_{j}$$

- strategy:
 - \circ choose \mathcal{Q}_{hj}
 - \mathcal{V}_{hj} all velocity d.o.f. which are connected to pressure d.o.f. in \mathcal{Q}_{hj}

Mesh Cell Oriented Vanka Smoother

- discontinuous pressure approximation
- \mathcal{W}_{hj} : all d.o.f. which are connected to one mesh cell
- *J* : number of mesh cells

Pressure Node Oriented Vanka Smoother

- continuous pressure approximation
- $\dim \mathcal{Q}_{hj} = 1$ for all j
- *J* : number of pressure d.o.f.

Size of Local Systems

• mesh cell oriented Vanka smoother

	2d			3d		
	velo	pressure	total	velo	pressure	total
Q_1^{nc}/Q_0 (R/T)	4	1	9	6	1	19
Q_2/P_1^{disc}	9	3	21	27	4	85
$Q_3/P_2^{ m disc}$	16	6	38	64	10	202
P_1^{nc}/P_0 (C/R)	3	1	7	4	1	13

• same size for all mesh cells

Size of Local Systems (cont.)

• pressure node oriented Vanka smoother

		2d			3d	
	velo	pressure	total	velo	pressure	total
Q_2/Q_1	25	1	51	125	1	376
Q_3/Q_2	49	1	99	343	1	1030
P_{2}/P_{1}	19	1	39	65	1	196
P_{3}/P_{2}	37	1	75	175	1	526

The Multiple Discretization Multilevel Method (md ml)

- coupled multigrid methods with Vanka smoother:
 - very efficient for lowest order non–conforming finite element discretizations (Turek (1999); J., Tobiska (2000))
 - less efficient for higher order finite element discretizations (J., Matthies (2001))

The Multiple Discretization Multilevel Method (md ml)

- coupled multigrid methods with Vanka smoother:
 - very efficient for lowest order non–conforming finite element discretizations (Turek (1999); J., Tobiska (2000))
 - less efficient for higher order finite element discretizations (J., Matthies (2001))
- Construct a multigrid method for higher order finite element discretizations which is based on lowest order non-conforming finite element discretizations !!
The Multiple Discretization Multilevel Method (cont.)

both multilevel approaches

• md ml: convergence of W–cycle for A s.p.d., $C = B^T$, Braess–Sarazin smoother: J., Knobloch, Matthies, Tobiska (2002)

Summary of Our Experiences

- higher order discretizations in space and time necessary for accurate simulations
- low order discretizations are important tools in the construction of multilevel solvers for systems coming from higher order discretizations
- system are much more complicated to solve for higher order discretizations
- multiple discretization multilevel methods as preconditioner of stable Krylov subspace method currently an efficient approach
- flexible Krylov subspace methods necessary (flexible GMRES, Saad (1993))
- systems easier to solve for discontinuous pressure approximations
- similar observations for the steady state Navier–Stokes equations, J. (2002)

Thank you for your attention !

http://www.math.uni-sb.de/ag/john/