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1 Incompressible Turbulent Flows

• Navier–Stokes equations: fundamental equations of fluid dynamics

• Claude Louis Marie Henri Navier (1785 – 1836), George Gabriel Stokes (1819 –
1903)
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The Incompressible Navier–Stokes Equations

• conservation laws
◦ conservation of linear momentum
◦ conservation of mass

ut − 2Re−1∇ · D(u) + ∇ · (uuT ) + ∇p = f in (0, T ] × Ω

∇ · u = 0 in [0, T ] × Ω

u(0,x) = u0 in Ω

+ boundary conditions

• given:

◦ Ω ⊂ Rd, d ∈ {2, 3}: domain

◦ T : final time

◦ u0: initial velocity

◦ boundary conditions

• to compute:

◦ velocity u, where

D(u) =
∇u + ∇uT

2
,

is the velocity deformation tensor

◦ pressure p

• parameter:

◦ Reynolds number Re
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The Incompressible Navier–Stokes Equations (cont.)

• Reynolds number

Re =
LU

ν

◦ L [m] – characteristic length scale (diameter of a channel, diameter of a body
in the flow)

◦ U [ms−1] – characteristic velocity scale (inflow velocity)

◦ ν [m2s−1] – kinematic viscosity (water: ν = 10−6 m2s−1)

• rough classification of flows:

◦ Re small: steady–state flow field (if data do not depend on time)

◦ Re larger: time–dependent flow field

◦ Re very large: turbulent flows
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The Incompressible Navier–Stokes Equations (cont.)

• Reynolds number

Re =
LU

ν

◦ L [m] – characteristic length scale (diameter of a channel, diameter of a body
in the flow)

◦ U [ms−1] – characteristic velocity scale (inflow velocity)

◦ ν [m2s−1] – kinematic viscosity (water: ν = 10−6 m2s−1)

• rough classification of flows:

◦ Re small: steady–state flow field (if data do not depend on time)

◦ Re larger: time–dependent flow field

◦ Re very large: turbulent flows

• There is no exact definition of what is a turbulent flow !
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The Incompressible Navier–Stokes Equations (cont.)

• mathematical analysis

◦ 2d: existence and uniqueness of weak solution, Leary (1933), Hopf (1951)

◦ 3d: existence of weak solution, Leary (1933), Hopf (1951)

Uniqueness of weak solution of 3d Navier–Stokes equations is open problem !
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The Incompressible Navier–Stokes Equations (cont.)

• mathematical analysis

◦ 2d: existence and uniqueness of weak solution, Leary (1933), Hopf (1951)

◦ 3d: existence of weak solution, Leary (1933), Hopf (1951)

Uniqueness of weak solution of 3d Navier–Stokes equations is open problem !

• difficulty in numerical analysis of methods for simulating turbulent flows

◦ assumption of sufficient regularity of solution such that uniqueness is given

◦ How regular are turbulent flow fields ?
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Characteristics of Turbulent Flows

• posses flow structures of very different size

◦ hurricane Katrina (2005)

◦ some large eddies (scales), many very small eddies (scales)
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Characteristics of Turbulent Flows (cont.)

• Richardson energy cascade: energy is transported in the mean from large to
smaller eddies

◦ start of cascade: kinetic energy intro-
duced into flow by productive mechanisms
at largest scale

◦ inner cascade: transmitting energy to
smaller and smaller scales by processes
not depending on molecular viscosity

◦ end of cascade: molecular viscosity enforc-
ing dissipation of kinetic energy at smallest
scales

• smallest scales important for physics of the flow
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Characteristics of Turbulent Flows (cont.)

• Kolmogorov (1941):

energy is dissipated from eddies of size
λ (Kolmogorov scale) such that

Re(λ) =
λuλ

ν
= 1, λ =

„

ν3

ǫ

«1/4

[m]
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Characteristics of Turbulent Flows (cont.)

• Kolmogorov (1941):

energy is dissipated from eddies of size
λ (Kolmogorov scale) such that

Re(λ) =
λuλ

ν
= 1, λ =

„

ν3

ǫ

«1/4

[m]

• size of the smallest eddies
◦ rate of dissipation of turbulent energy (from theoretical and experimental

studies)

ǫ := 2ν
˙

D(u)′ : D(u)′
¸

∼ U3

L
[m2s−3]

〈·〉 – mean value, u′ = u − 〈u〉 fluctuation
◦ =⇒

λ

L
∼
„

ν3

L3U3

«1/4

= Re−3/4 ⇐⇒ λ ∼ Re−3/4
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Impact on Numerical Simulations

• Galerkin method aims to simulate all persisting eddies, Direct Numerical
Simulation (DNS)

◦ Ω = (0, 1)3 =⇒ L = 1

◦ approx 107 cubic mesh cells (≈ 2153)

◦ low order method (mesh width ≈ resolution of discretization)

◦ =⇒ λ ≈ 1/215

◦ =⇒ Re ≈ 1290

• applications: Reynolds numbers larger by orders of magnitude

Direct Numerical Simulation not feasible !

• only resolvable scales can be simulated

Volker John, University of the Saarland, Saarbrücken, Germany – p.10/116



The Kolmogorov Energy Spectrum

• energy of scales in wave number space (Fourier space)
E(k)

k

−5/3 • logarithmic axes

• resolved scales
◦ large scales

◦ resolved small scales

• unresolved scales, subgrid scales

• k – wave number

• E(k) – turbulent kinetic energy of modes with wave number k

• k−5/3 – law of energy spectrum: E(k) ∼ ǫ2/3k−5/3
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Remarks to 3d vs. 2d

• smallest scales in 2d flows, Kraichnan (1967)

λ = O
“

Re−1/2
”

• vortex stretching

◦ vorticity: ω = ∇× u

◦ neglect viscous term for large Reynolds numbers

Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω ≈ ω · ∇u

- equation of infinitesimal line element of material
- if ∇u acts to stretch the line element than |ω| will be stretched, too =⇒

vortex stretching, important feature of turbulent flows
- 2d: right hand side vanishes =⇒ no vortex stretching

2d flows at high Reynolds number are qualitatively different from 3d turbulent flows
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Summary

• DNS impossible

• (very) small scales important, have to be taken into account

• 3d simulations necessary

• literature
◦ P.A. Davidson, Turbulence, Oxford University Press, 2004

◦ U. Frisch, Turbulence, Cambridge University Press, 1995

◦ S.B. Pope, Turbulent Flows, Cambridge University Press, 2000
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Summary

• DNS impossible

• (very) small scales important, have to be taken into account

• 3d simulations necessary

• literature
◦ P.A. Davidson, Turbulence, Oxford University Press, 2004

◦ U. Frisch, Turbulence, Cambridge University Press, 1995

◦ S.B. Pope, Turbulent Flows, Cambridge University Press, 2000

Impact on numerical simulations

• only large scales of a turbulent flows possible to simulate, two approaches

◦ Large Eddy Simulation (LES)

◦ Variational Multiscale (VMS) Methods

• impact of the small scales has to be modelled
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2 Large Eddy Simulation (LES)

2.1 The Space–Averaged Navier–Stokes Equations

2.2 Commutation Errors

2.3 Models

2.4 Finite Element Discretizations

2.5 Finite Element Error Analysis

2.6 A Numerical Study

2.7 Summary
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2.1 The Space–Averaged Navier–Stokes

Equations

• two–scale decomposition of the flow: large and unresolved scales

• main idea in LES: large scales are defined by averages in space

◦ equations for the large scales necessary
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2.1 The Space–Averaged Navier–Stokes

Equations

• two–scale decomposition of the flow: large and unresolved scales

• main idea in LES: large scales are defined by averages in space

◦ equations for the large scales necessary

• starting point: incompressible Navier–Stokes equations

ut − 2ν∇ · D(u) + ∇ · (uuT ) + ∇p = f in (0, T ] × Ω

∇ · u = 0 in [0, T ] × Ω

u = 0 in [0, T ] × ∂Ω

u(0,x) = u0 in Ω
Z

Ω
p dx = 0 in (0, T ]

• Ω ⊂ Rd, d = 2, 3 : bounded domain, with Lipschitz boundary ∂Ω
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Space–Averaged Navier–Stokes Equations (cont.)

• assumptions :
◦ regularity :

u ∈
„

H2(Ω) ∩H1
0 (Ω)

«d

for t ∈ [0, T ]

u ∈
„

H1((0, T ))

«d

for x ∈ Ω

p ∈ H1(Ω) ∩ L2
0(Ω) for t ∈ (0, T ]

◦ weak solution is unique
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Space–Averaged Navier–Stokes Equations (cont.)

• decompose velocity and pressure

u = u + u′, p = p + p′

◦ u , p : large scales
◦ u′, p′ : subgrid scales
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Space–Averaged Navier–Stokes Equations (cont.)

• decompose velocity and pressure

u = u + u′, p = p + p′

◦ u , p : large scales
◦ u′, p′ : subgrid scales

• large scales defined by averaging in space (convolution with filter function)
◦ filter out small flow structures
◦ damp high wave numbers

• goal of LES : approximate u , p =⇒ one needs equations for u , p
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Space–Averaged Navier–Stokes Equations (cont.)

• derivation of space averaged Navier–Stokes equations (literature) :
◦ filter Navier–Stokes equations with filter function g

g ∗ (∇ · u) = ∇ · u

◦ assume that convolution and differentiation commute

g ∗ (∇ · ·) = ∇ · (g ∗ ·)

◦ commute both operators

g ∗ (∇ · u) = ∇ · (g ∗ u) = ∇ · u

=⇒ equation for u
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Space–Averaged Navier–Stokes Equations (cont.)

• application of convolution well defined in Rd =⇒ extend all functions to Rd :

u = 0, u0 = 0, p = 0, f = 0 for x /∈ Ω
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Space–Averaged Navier–Stokes Equations (cont.)

• application of convolution well defined in Rd =⇒ extend all functions to Rd :

u = 0, u0 = 0, p = 0, f = 0 for x /∈ Ω

• resulting regularities :

u ∈
„

H1
0 (Rd)

«d

for t ∈ [0, T ]

u ∈
„

H1((0, T ))

«d

for x ∈ Rd

p ∈ L2
0(R

d) for t ∈ (0, T ]

=⇒ well defined in Rd

ut, ∇ · (uuT ), ∇u, ∇ · u
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Space–Averaged Navier–Stokes Equations (cont.)

• define pressure term and viscous term in the sense of distributions :
◦ ϕ ∈ C∞

0 (Rd)

◦ pressure term

(∇p)(ϕ)(t) := −
Z

Rd

p(t,x)∇ϕ(x)dx

=

Z

Ω
ϕ(x)∇p(t,x)dx −

Z

∂Ω
ϕ(s)p(t, s)n(s)ds

n - outward pointing unit normal on ∂Ω
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Space–Averaged Navier–Stokes Equations (cont.)

• define pressure term and viscous term in the sense of distributions :
◦ ϕ ∈ C∞

0 (Rd)

◦ pressure term

(∇p)(ϕ)(t) := −
Z

Rd

p(t,x)∇ϕ(x)dx

=

Z

Ω
ϕ(x)∇p(t,x)dx −

Z

∂Ω
ϕ(s)p(t, s)n(s)ds

n - outward pointing unit normal on ∂Ω

◦ viscous term

∇ · D(u) (ϕ) (t) := −
Z

Rd

D(u) (t,x)∇ϕ (x) dx

=

Z

Ω
ϕ (x)∇ · D(u) (t,x) dx −

Z

∂Ω
ϕ (s) D(u) (t, s)n (s) ds
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Space–Averaged Navier–Stokes Equations (cont.)

• convolve distributional form of momentum equation with a filter function
g(x) ∈ C∞(Rd)

Convolution and differentiation commute !
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Space–Averaged Navier–Stokes Equations (cont.)

• convolve distributional form of momentum equation with a filter function
g(x) ∈ C∞(Rd)

Convolution and differentiation commute !

• space averaged momentum equation in (0, T ] × Rd

u t − 2ν∇ · D(u ) + ∇ ·
“

uuT
”

+ ∇ p

= f +

Z

∂Ω
g (x − s) S (u, p) (t, s)n (s) ds

with the stress tensor
S (u, p) = 2νD(u) − pI
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Space–Averaged Navier–Stokes Equations (cont.)

• convolve distributional form of momentum equation with a filter function
g(x) ∈ C∞(Rd)

Convolution and differentiation commute !

• space averaged momentum equation in (0, T ] × Rd

u t − 2ν∇ · D(u ) + ∇ ·
“

uuT
”

+ ∇ p

= f +

Z

∂Ω
g (x − s) S (u, p) (t, s)n (s) ds

with the stress tensor
S (u, p) = 2νD(u) − pI

• regularity of the normal stress

S (u, p)n ∈ (Lq(∂Ω))d , d = 2 : q ∈ [1,∞), d = 3 : q ∈ [1, 4]

• usual practice: neglect term with normal stress (does not appear if Ω = Rd)
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Space–Averaged Navier–Stokes Equations (cont.)

• closure problem: space averaged Navier–Stokes equations not yet equations for
(u , p )

∇ ·
“

uuT
”

= ∇ ·
“

u u T
”

−∇ ·
“

u u T − uuT
”

last term (divergence of Reynolds stress tensor) depends on all scales
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Space–Averaged Navier–Stokes Equations (cont.)

• closure problem: space averaged Navier–Stokes equations not yet equations for
(u , p )

∇ ·
“

uuT
”

= ∇ ·
“

u u T
”

−∇ ·
“

u u T − uuT
”

last term (divergence of Reynolds stress tensor) depends on all scales

• open problems:

◦ modelling of Reynolds stress tensor, main topic in LES

◦ analysis of commutation error term
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2.2 Commutation Errors

• standard filter function: Gaussian filter

gδ(x) =

„

6

δ2π

«d/2

exp

„

− 6

δ2
‖x‖2

2

«

−2 −1 0 1 2
0

1

2

3
δ = 1  
δ = 0.5

• δ – filter width, larger than mesh width
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2.2 Commutation Errors

• standard filter function: Gaussian filter

gδ(x) =

„

6

δ2π

«d/2

exp

„

− 6

δ2
‖x‖2

2

«

−2 −1 0 1 2
0

1

2

3
δ = 1  
δ = 0.5

• δ – filter width, larger than mesh width

• properties for δ = const. :

◦ regularity : gδ ∈ C∞(Rd),

◦ positivity : 0 < gδ(x) ≤
“

6
δ2π

” d
2 ,

◦ integrability : gδ ∈ Lp(Rd), p ∈ [1,∞], ‖gδ‖L1(Rd) = 1,

◦ symmetry : gδ(x) = gδ(−x),

◦ monotonicity : gδ(x) ≥ gδ(y) if ‖x‖2 ≤ ‖y‖2
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Commutation Errors – Constant Filter Width (cont.)

• per definition : δ → 0 implies u → u

• questions :
◦ Implies δ → 0 in a certain sense

Z

∂Ω
gδ (x − s) S (u, p) (t, s)n (s) ds → 0 ?

◦ How fast is the convergence w.r.t. δ ?

• analyse terms of the form
Z

∂Ω
gδ(x − s)ψ(s)ds

with ψ(s) ∈ Lq(∂Ω), 1 ≤ q ≤ ∞
• Dunca, J., Layton (2004), J. (2004)
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Commutation Errors – Constant Filter Width (cont.)

• strong form of the commutation error

• one can show that :
◦ regularity :

Z

∂Ω
gδ(x − s)ψ(s)ds ∈ Lp(Rd), 1 ≤ p ≤ ∞

◦ in general : no convergence for δ → 0 :

lim
δ→0

‚

‚

‚

‚

Z

∂Ω
gδ(x − s)ψ(s)ds

‚

‚

‚

‚

Lp(Rd)

= 0,

1 ≤ p ≤ ∞, if and only if

ψ(s) = 0 a.e. on ∂Ω
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Commutation Errors – Constant Filter Width (cont.)

• proof: assumption lim
δ→0

‚

‚

‚

‚

Z

∂Ω
gδ(x − s)ψ(s)ds

‚

‚

‚

‚

Lp(Rd)

= 0

• then follows for every ϕ ∈ C∞
0 (Rd)

lim
δ→0

˛

˛

˛

˛

Z

Rd

ϕ (x)

„Z

∂Ω
gδ (x − s)ψ (s) ds

«

dx

˛

˛

˛

˛

≤ lim
δ→0

‖ϕ‖Lq(Rd)

‚

‚

‚

‚

Z

∂Ω
gδ (x − s)ψ (s) ds

‚

‚

‚

‚

Lp(Rd)
= 0

• for every ϕ ∈ C∞
0 (Rd) is

lim
δ→0

Z

Rd

ϕ (x)

„Z

∂Ω
gδ (x − s)ψ (s) ds

«

dx

= lim
δ→0

Z

∂Ω
ψ (s)

„Z

Rd

gδ (x − s)ϕ (x) dx

«

ds =

Z

∂Ω
ψ (s)ϕ (s) ds

• =⇒ for every ϕ ∈ C∞
0 (Rd) : 0 =

˛

˛

˛

˛

Z

∂Ω
ψ (s)ϕ (s) ds

˛

˛

˛

˛

• =⇒ ψ = 0 a.e. on ∂Ω
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Commutation Errors – Constant Filter Width (cont.)

• implications :

◦ S (u, p) (t, s)n (s) = 0 on ∂Ω

⇐⇒

fluid and boundary exert exactly zero force on each other

◦ commutation error does not vanish asymptotically for discretisations which
rely upon a strong form of the space averaged Navier–Stokes equations, e.g.,
finite difference methods !!
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Commutation Errors – Constant Filter Width (cont.)

• implications :

◦ S (u, p) (t, s)n (s) = 0 on ∂Ω

⇐⇒

fluid and boundary exert exactly zero force on each other

◦ commutation error does not vanish asymptotically for discretisations which
rely upon a strong form of the space averaged Navier–Stokes equations, e.g.,
finite difference methods !!

• H−1 (Ω) norm of the commutation error

◦ estimate

‚

‚

‚

‚

Z

∂Ω
gδ (x − s)ψ (s) ds

‚

‚

‚

‚

H−1(Ω)

≤ Cδ1/2 ‖ψ‖L2(∂Ω)

for each δ > 0 =⇒ order of convergence at least 1/2

◦ commutation error vanishes asymptotically for discretisations which rely upon
a weak form of the space averaged NSE, e.g., finite element methods !!
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Commutation Errors – Nonconstant Filter Width

• observation: difficulties arise from non–smooth extensions of functions off Ω

• goal: use filter with support always in Ω (bounded)
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Commutation Errors – Nonconstant Filter Width

• observation: difficulties arise from non–smooth extensions of functions off Ω

• goal: use filter with support always in Ω (bounded)

◦ non–uniform box filter

u(y) =
1

8δ(x)δ(y)δ(z)

Z x+δ(x)

x−δ(x)

Z y+δ(y)

y−δ(y)

Z z+δ(z)

z−δ(z)
u(x) dx

◦ non–constant filter width s.t. δ → 0 as x → ∂Ω
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Commutation Errors – Nonconstant Filter Width

• observation: difficulties arise from non–smooth extensions of functions off Ω

• goal: use filter with support always in Ω (bounded)

◦ non–uniform box filter

u(y) =
1

8δ(x)δ(y)δ(z)

Z x+δ(x)

x−δ(x)

Z y+δ(y)

y−δ(y)

Z z+δ(z)

z−δ(z)
u(x) dx

◦ non–constant filter width s.t. δ → 0 as x → ∂Ω

• implications

◦ no extension of functions necessary for filter operation to be well defined

◦ commutation error because of non–constant filter width

• concrete formulas in Berselli, Grisanti, J. (2007)

◦ asymptotic vanishing of commutation errors requires very small filter widths at
the boundary

◦ filter width depends on regularity of the filtered function

◦ implication: resolution of the flow at the boundary becomes necessary
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Commutation Errors – Nonconstant Filter Width (cont.)

• extra terms in space averaged Navier–Stokes equations

commutation error + ∇ ·
“

u u T − uuT
”

importance of both terms studied in Berselli, J. (2006)

Volker John, University of the Saarland, Saarbrücken, Germany – p.29/116



Commutation Errors – Nonconstant Filter Width (cont.)

• extra terms in space averaged Navier–Stokes equations

commutation error + ∇ ·
“

u u T − uuT
”

importance of both terms studied in Berselli, J. (2006)

• away from boundary: divergence of Reynolds stress tensor more important

• modelling the unknown flow field near the boundary with wall laws (mean flow),
e.g. 1/αth power law, + fluctuations

◦ mean flow responsible for leading order terms in commutation errors

◦ commutation error and divergence of Reynolds stress tensor are
asymptotically of same order

modelling of commutation error at boundary as important as
modelling of divergence of Reynolds stress tensor
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Commutation Errors – Nonconstant Filter Width (cont.)

• extra terms in space averaged Navier–Stokes equations

commutation error + ∇ ·
“

u u T − uuT
”

importance of both terms studied in Berselli, J. (2006)

• away from boundary: divergence of Reynolds stress tensor more important

• modelling the unknown flow field near the boundary with wall laws (mean flow),
e.g. 1/αth power law, + fluctuations

◦ mean flow responsible for leading order terms in commutation errors

◦ commutation error and divergence of Reynolds stress tensor are
asymptotically of same order

modelling of commutation error at boundary as important as
modelling of divergence of Reynolds stress tensor

• numerical studies
◦ van der Bos, Geurts (2005) observed important commutation errors for some

kinds of filters
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Commutation Errors, Summary

• some open problems

◦ optimal order of convergence for H−1(Ω) commutation error

◦ commutation error analysis for other filters than Gaussian and box filter
◦ . . .
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Commutation Errors, Summary

• some open problems

◦ optimal order of convergence for H−1(Ω) commutation error

◦ commutation error analysis for other filters than Gaussian and box filter
◦ . . .

• Summary

◦ commutation error give important contributions in the derivation of the space
averaged Navier–Stokes equations

◦ they are important at and near the boundary
◦ they are simply neglected in practice, practinioners do not care about the

analytical results
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2.3 Models

• space averaged Navier–Stokes equations in (0, T ] × Rd

u t − 2ν∇ · D(u ) + ∇ ·
“

u u T
”

+ ∇ p = f + ∇ ·
“

u u T − uuT
”

∇ · u = 0
(1)

• closure problem :

◦ d+ 1 space averaged unknowns in (1) and d(d+ 1)/2 unknown values in

uuT

◦ only d+ 1 equations in (1)
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2.3 Models

• space averaged Navier–Stokes equations in (0, T ] × Rd

u t − 2ν∇ · D(u ) + ∇ ·
“

u u T
”

+ ∇ p = f + ∇ ·
“

u u T − uuT
”

∇ · u = 0
(1)

• closure problem :

◦ d+ 1 space averaged unknowns in (1) and d(d+ 1)/2 unknown values in

uuT

◦ only d+ 1 equations in (1)

• main issue in LES : model uuT with (u , p )
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2.3.1 Models Based on an Approximation in

Fourier Space

• derivation is mainly based on mathematical arguments (not physical)

• u = u + u′ implies

uuT = u u T + uu′T + u′ u T + u′u′T (2)

• u defined with Gaussian filter

• derivation:
◦ transform each term of (2) to the Fourier space

◦ replace Fourier transform of u′ by Fourier transform of u

◦ approximate Fourier transform of the Gaussian filter by a simpler function
(2nd order approximations)

◦ neglect all terms which are in certain sense of higher order (formally δ4)

◦ apply inverse Fourier transform
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Models Based on an Approximation in Fourier Space

(cont.)

• transform to Fourier space
◦ large scale advective term

F
“

u u T
”

= F (gδ)F
“

u u T
”

◦ cross terms

F
“

uu′T
”

= F (gδ)
“

F (u ) ∗ F
`

u′
´T
”

replace F (u′), use u′ = u − u and F (gδ) 6= 0, use F (u ) = F (gδ)F (u)

F
`

u′
´

= F (u) − F (u ) =

„

1

F (gδ)
− 1

«

F (u )

gives

F
“

uu′T
”

= F (gδ)

„

F (u ) ∗
„

1

F (gδ)
− 1

«

F (u )T

«

• no modeling up to here
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Models Based on an Approximation in Fourier Space

(cont.)

• Approximation of the Fourier transform of the Gaussian filter F (gδ)

◦ Taylor series (Leonard (1974), Clark, Reynolds, Ferziger (1979)), Taylor LES
model, gradient method

Damping of highly oscillating components is not preserved !!!

◦ approximation with rational function (Galdi, Layton (2000)), rational LES model

F (gδ) (δ,y) = 1 − ‖y‖2
2

4γ
δ2 + O

`

δ4
´

vs. F (gδ) (δ,y) =
1

1 +
‖y‖2

2

4γ
δ2

+ O
`

δ4
´

−15 −10 −5 0 5 10 15
−0.5

0

0.5

1
FT Gauss
Taylor  
rational

Volker John, University of the Saarland, Saarbrücken, Germany – p.34/116



Models Based on an Approximation in Fourier Space

(cont.)

• subgrid scale term

◦ both approaches u′u′T ≈ 0

◦ blow–up in finite time in numerical simulations, J. (2004)

• use instead
◦ Smagorinsky model (1963), see later for details

u′u′T ≈ −cSδ2 ‖D(u )‖F D(u )

formally of order δ2

◦ Iliescu–Layton model (1998)

u′u′T ≈ −cSδ ‖u − gδ ∗ u ‖2 D(u )

formally of order δ3
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Models Based on an Approximation in Fourier Space

(cont.)

• find approximation (w, r) to (u , p ) such that in (0, T ] × Rd

wt − 2∇ · ((ν + νT )D(w)) + (w · ∇)w

+∇r + ∇ · δ
2

12

“

A
“

∇w∇wT
””

= f

∇ · w = 0

w(0,x) = u0

• turbulent viscosity, eddy viscosity

νT = cSδ
2 ‖D(w)‖F or νT = cSδ ‖w − gδ ∗ w‖2

• LES model
A = 0 : Smagorinsky model (νT = 0 : Navier–Stokes equations)

A = I : Taylor LES model

A = (I − δ2/(24)∆)−1 : rational LES model
◦ inverse of a Helmholtz operator, differential filter
◦ approximation of convolution with Gaussian filter
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2.3.2 Bounded Domain

• restrict equations to Ω

◦ unknown error is committed

• boundary conditions for large scales

◦ unresolved problem

◦ boundary conditions of (u, p) for (w, r) : wrong

Ω

δ u = 0

boundary layer
in fluid region

boundary

exterior
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Boundary Conditions

• slip with friction and no penetration, Galdi, Layton (2000)
◦ problem : determination of friction coefficient
◦ can be given for model problems, J., Layton, Sahin (2004)
◦ numerical experiences: Hoffman (2005, . . .)
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Boundary Conditions

• slip with friction and no penetration, Galdi, Layton (2000)
◦ problem : determination of friction coefficient
◦ can be given for model problems, J., Layton, Sahin (2004)
◦ numerical experiences: Hoffman (2005, . . .)

• boundary treatment in practice, Piomelli, Balaras (2002)

◦ impose some form of law of the wall

◦ solve simplified equations in boundary layer regions
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2.3.3 The Smagorinsky Model

• starting point Boussinesq hypothesis

Turbulent fluctuations are dissipative in the mean.

=⇒ ∇ ·
“

uuT − u u T
”

≈ −∇ · (νT D(u )) + terms inc. in p

νT – eddy viscosity, turbulent viscosity
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The Smagorinsky Model – the Turbulent Viscosity Coeffi-

cient

• rate of dissipation of turbulent energy

ǫ ∼ U3
int

Lint

Lint – integral length scale (characterize the distance over which the fluctuating
velocity field is correlated)
Uint – corresponding velocity scale

• same ansatz for scales of size δ

ǫ ∼
U3

δ

δ

•

=⇒ Uδ ∼ Uint

„

δ

Lint

«1/3
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The Smagorinsky Model – the Turbulent Viscosity Coeffi-

cient (cont.)

• goal of eddy viscosity model: capture dissipation of eddies of size δ

Re(δ) =
δUδ

νT
= 1 =⇒ ǫ ∼

U3
δ

δ
∼ δUδ

U2
δ

δ2
∼ νT

U2
δ

δ2

•

=⇒ νT ∼ ǫ
δ2

U2
δ

∼
U3

δ

δ

δ2

U2
δ

∼ Uδδ ∼ UintL
−1/3
int δ4/3

• assumption
Uint ∼ Lint ‖D(u )‖F

• replacing similarity by equality with an unknown constant

=⇒ νT = cL
2/3
int δ

4/3 ‖D(u )‖F

• Lint is hard to determine, approximate Lint ∼ δ

νT = cSδ
2 ‖D(u )‖F often νT = (c∗Sδ)

2 ‖D(u )‖F
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The Smagorinsky Model – Choice ofcS

• Lilly (1967)

• idea: consider ideal situation and set

〈ǫ〉 = 〈ǫSma〉 , time averages

with

ǫSma ≈
Z

Ω
νT ‖D(w)‖2

F dx =

Z

Ω
cSδ

2 ‖D(w)‖3
F dx = cSδ

2 ‖w‖3
L3

• further assumptions, details in Berselli, Iliescu, Layton (2006):
◦ neglect time averages

◦ ideal turbulence (homogeneous, isotropic)

• use Kolmogorov law

• result: √
cS ≈ 0.17, c∗S = 0.17

• practice: constant too large, results too dissipative
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The Smagorinsky Model – Choice ofcS (cont.)

• dynamic Smagorinsky model cS = cS(t,x), Germano, Piomelli, Moin, Cabot
(1991), Lilly (1992)

• idea (more details in J. (2004)):

◦ use two filters, e.g. δ and 2δ (coarse grid)

◦ filter Navier–Stokes equations with both filters

◦ make Smagorinsky model ansatz for both filtered equations

◦ assume same cS(t,x) for both filters
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The Smagorinsky Model – Choice ofcS (cont.)

• dynamic Smagorinsky model cS = cS(t,x), Germano, Piomelli, Moin, Cabot
(1991), Lilly (1992)

• idea (more details in J. (2004)):

◦ use two filters, e.g. δ and 2δ (coarse grid)

◦ filter Navier–Stokes equations with both filters

◦ make Smagorinsky model ansatz for both filtered equations

◦ assume same cS(t,x) for both filters

• result:
◦ 6 equations for cS(t,x), coefficients depend on (doubled) filtered velocities

with both filters
◦ solve equations in least squares sense
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The Smagorinsky Model – Choice ofcS (cont.)

• practice:
◦ hard to implement
◦ expensive
◦ smoothing in space and time necessary, otherwise very oscillating and

negative turbulent viscosities =⇒ blow up

◦ backscatter of energy possible, since νT < 0 possible
− on the average: energy transferred from large to small scales
− inverse transfer (backscatter) might be significant
=⇒ backscatter should be included in model

◦ values are far from being optimal, Meyers, Sagaut (2006)
◦ very popular until some years ago

Volker John, University of the Saarland, Saarbrücken, Germany – p.44/116



The Smagorinsky Model – Variational Formulation

• velocity and pressure space

V =
n

v ∈ (W 1,3(Ω))d,v = 0 on ∂Ω
o

, Q = L2
0(Ω)

• find (w, r) ∈ V ×Q such that

i) for all t ∈ (0, T ] and all (v, q) ∈ V ×Q

(wt,v) + a(w,w,v) + bs(w,w,v)

+(q,∇ · w) − (r,∇ · v) = (f ,v)

with

a(u,w,v) =
`

(2ν + cSδ
2 ‖D(u)‖F )D(w),D(v)

´

bs(u,w,v) =
1

2
(b(u,w,v) − b(u,v,w))

b(u,v,w) = ((u · ∇)v,w)

cS – constant
ii) w(0,x) = w0(x)
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The Smagorinsky Model – Analysis

• weak equation posseses unique solution

∇w ∈ L3(0, T, L3(Ω))

in 2d and 3d for large data and large time intervals, Ladyzhenskaya (1967)

◦ more known than for Navier–Stokes equations (uniqueness in 3d)
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The Smagorinsky Model – Analysis

• weak equation posseses unique solution

∇w ∈ L3(0, T, L3(Ω))

in 2d and 3d for large data and large time intervals, Ladyzhenskaya (1967)

◦ more known than for Navier–Stokes equations (uniqueness in 3d)

• proof by Galerkin method, Hopf (1951):

◦ consider equation in finite dimensional space

◦ show solvability of this equation

◦ extract a subsequence of the finite dimensional solutions which converges to
a solution of the continuous problem

=⇒ existence of weak solution
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The Smagorinsky Model – Analysis (cont.)

• main analytical tools for uniqueness :
◦ strong monotonicity

`

‖D(u)‖F D(u) − ‖D(v)‖F D(v),D(u − v)
´

≥ C‖D(u − v)‖3
L3(Ω)

◦ local Lipschitz continuity

`

‖D(u)‖F D(u) − ‖D(v)‖F D(v),D(w)
´

≤ C‖D(u − v)‖L3(Ω)‖D(w)‖L3(Ω)

◦ Sobolev imbeddings of W 1,3(Ω)

− more regular function space as for Navier–Stokes equations (W 1,2(Ω))
=⇒ more Sobolev imbeddings for Smagorinsky model
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2.3.4 The k − ǫ Model

• very popular in engineering community

• additional quantities to compute

◦ k – kinetic energy of the turbulence

k =
1

2

D

‚

‚u′
‚

‚

2

2

E

, 〈·〉 space average (filter)

◦ ǫ – rate of dissipation of turbulent energy

ǫ =
ν

2

fi

‚

‚

‚∇u′ +
`

∇u′
´T
‚

‚

‚

2

F

fl

• a number of hypotheses, see Mohammadi, Pironneau (1994)
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Thek − ǫ Model (cont.)

• find approximation (w, r) to (u , p ) and (k, ǫ) such that in (0, T ] × Ω

wt − 2∇ · (νD(w)) + (w · ∇)w + ∇r − ck∇ ·
„

k2

ǫ

“

∇w + ∇wT
”

«

= f

∇ · w = 0

kt + w∇k − ck

2

k2

ǫ

‚

‚

‚∇w + ∇wT
‚

‚

‚

2

F
−∇ ·

„

ck
k2

ǫ
∇k
«

+ ǫ = 0

ǫt + w∇ǫ− c1

2

‚

‚

‚∇w + ∇wT
‚

‚

‚

2

F
−∇ ·

„

cǫ
k2

ǫ
∇k
«

+ c2
ǫ2

k
= 0

+ boundary and initial conditions

• ck, cǫ, c1, c2 – appropriate constants

• coupled system of equations

◦ Navier–Stokes type equations

◦ 2 convection–dominated convection–diffusion equations
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Thek − ǫ Model – Remarks

• original proposal by Launder and Spalding (1972)

• standard model of (almost) all commercial CFD codes

• model not valid near solid walls

• correct boundary conditions for all equations are open problem

• accurate and efficient numerical solution of convection–dominated scalar
equations is active field of research

• only initial steps for numerical analysis available

• a lot of variants proposed, newer proposals by the Cottet, Jiroveanu, Michaux
(2003)
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2.3.5 Approximate Deconvolution Models

• Adams, Stolz, et al. (1999 – 2001)

• approximate deconvolution operator DN of order N :

ϕ = DN (ϕ ) + O
“

δ2N+2
”

for smooth functions ϕ

◦ D0 (ϕ ) = ϕ + O
`

δ2
´

• closure approximation

uuT ≈ DN (u )DN (u )T

• N–th order ADM: find approximation (w, r) to (u , p ) such that in (0, T ] × Ω

wt − 2∇ · (νD(w)) + ∇ · DN (w)DN (w)T + ∇r = f

∇ · w = 0

w(0,x) = u0

+ boundary conditions
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Approximate Deconvolution Models (cont.)

• van Cittert approximate deconvolution operator (1931)

◦ define average by differential filter (Helmholtz filter) A

Aϕ := −δ2∆ϕ + ϕ = ϕ in Ω

+ periodic (or homogeneous) boundary conditions

◦ recursive definition of approximate deconvolution
u0 = u

for n = 1, . . . , N − 1

un+1 = un +
`

u − A−1un
´

end
◦ results

D0 u = u

D1 u = 2u − u

D2 u = 3u − 3 u + u
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Approximate Deconvolution Models (cont.)

• numerical studies: Adams, Stolz, et al. (1999 – )
◦ zeroth–order ADM

• analysis

◦ existence and uniqueness of solution, energy inequalities, Dunca, Epshteyn
(2006), Layton, Lewandowski (2006)

◦ finite element error analysis, Ervin, Layton, Neda (2007), Manica, Merdan
(2007)

◦ energy dissipation, Layton (2007)

◦ conservation laws, Layton, Manica, Neda, Rebholz (2008)
◦ · · ·
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2.3.6 Other Models

• scale similarity models, Bardina, Ferziger, Reynolds (1980)

• Leray regularization model, Leray (1933)

◦ analysis of ADM regularization, Layton, Manica, Neda, Rebholz (2008)

◦ numerical study of different regularizations Geurts, Kuczaj, Titi (2008)

• Navier–Stokes α–model, Camassa–Holm model
◦ analysis and numerical studies Foias, Holm, Titi (2001, 2002)

• Navier–Stokes ω–model
◦ theory of continuous model, Layton, Stanculescu, Trenchea (2008)

◦ finite element analysis, Layton, Manica, Neda, Rebholz (2009)
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2.4 Finite Element Discretizations

• finite element code MooNMD (Mathematics and object–oriented Numerics in
MagDeburg)

• J., Matthies (2004)

Volker John, University of the Saarland, Saarbrücken, Germany – p.55/116



2.4 Finite Element Discretizations

• finite element code MooNMD (Mathematics and object–oriented Numerics in
MagDeburg)

• J., Matthies (2004)

• discretization strategy :
◦ discretization in time
◦ variational formulation and iterative solution of the algebraic equations in each

discrete time
◦ discretization of the linear saddle point problems in each step of the iteration

with an inf–sup stable finite element method
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Temporal Discretization

• second order implicit schemes

◦ Crank–Nicolson scheme (A–stable)

◦ fractional–step θ–scheme (strongly A–stable, more expensive)

• much more accurate than first order schemes, J., Matthies, Rang (2006) for
laminar Navier–Stokes equations
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Temporal Discretization

• second order implicit schemes

◦ Crank–Nicolson scheme (A–stable)

◦ fractional–step θ–scheme (strongly A–stable, more expensive)

• much more accurate than first order schemes, J., Matthies, Rang (2006) for
laminar Navier–Stokes equations

• future: certain Rosenbrock schemes might be of interest
◦ even more accurate
◦ allow simple time step control with imbedded schemes

◦ studies for laminar Navier–Stokes equations: J., Rang (2009, in preparation)
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Linearization of Nonlinear Terms

• convective term
◦ with fixed point iteration (Picard iteration)

(w(n)∇·)w(n) ≈ (w(n−1)∇·)w(n)

w(n−1) – current velocity approximation

◦ more efficient than Newton’s method, J. (2006) for laminar Navier–Stokes
equations

(w(n)∇·)w(n) ≈ (w(n−1)∇·)w(n) +(w(n)∇·)w(n−1)−(w(n−1)∇·)w(n−1)
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Linearization of Nonlinear Terms

• convective term
◦ with fixed point iteration (Picard iteration)

(w(n)∇·)w(n) ≈ (w(n−1)∇·)w(n)

w(n−1) – current velocity approximation

◦ more efficient than Newton’s method, J. (2006) for laminar Navier–Stokes
equations

(w(n)∇·)w(n) ≈ (w(n−1)∇·)w(n) +(w(n)∇·)w(n−1)−(w(n−1)∇·)w(n−1)

• turbulent viscosity, e.g. Smagorinsky term

νT

“

w(n)
”

w(n) ≈ νT

“

w(n−1)
”

w(n)

• LES term, explicit

A
“

∇wk (∇wk)T
”

≈ A
“

∇wk−1 (∇wk−1)T
”
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Discretization of Linear Saddle Point Problems

• inf–sup stable pairs of finite elements (Babuška–Brezzi condition): there is a
constant C independent of the mesh size parameter h s.t.

inf
qh∈Qh

sup
v

h∈V h

`

∇ · vh, qh
´

‚

‚∇vh
‚

‚

L2

‚

‚qh
‚

‚

L2

≥ C

V h – velocity finite element space
Qh – pressure finite element space
(·, ·) – inner product in L2(Ω)
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Discretization of Linear Saddle Point Problems

• inf–sup stable pairs of finite elements (Babuška–Brezzi condition): there is a
constant C independent of the mesh size parameter h s.t.

inf
qh∈Qh

sup
v

h∈V h

`

∇ · vh, qh
´

‚

‚∇vh
‚

‚

L2

‚

‚qh
‚

‚

L2

≥ C

V h – velocity finite element space
Qh – pressure finite element space
(·, ·) – inner product in L2(Ω)

◦ no pressure stabilization necessary

◦ V h, Qh have to be different finite element spaces
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Inf–Sup Stable Pairs of Finite Elements

• experiences with different finite element spaces, J.,Matthies (2001), J. (2002), J.
(2004), J. (2006)

• spaces with continuous pressure (Taylor–Hood spaces)
◦ divergence constraint very inaccurate

◦ linear saddle point problems hard too solve
◦ =⇒ cannot be recommended
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Inf–Sup Stable Pairs of Finite Elements

• experiences with different finite element spaces, J.,Matthies (2001), J. (2002), J.
(2004), J. (2006)

• spaces with continuous pressure (Taylor–Hood spaces)
◦ divergence constraint very inaccurate

◦ linear saddle point problems hard too solve
◦ =⇒ cannot be recommended

• spaces with discontinuous pressure
◦ more accurate
◦ linear saddle point problems much easier too solve

◦ best ratio between accuracy and efficiency: second order velocity, first order
discontinuous pressure =⇒ recommendations:
− hexahedral grids Q2/Pdisc

1

− tetrahedral grids Pbubble
2 /Pdisc

1 , Bernardi, Raugel (1985)
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Inf–Sup Stable Pairs of Finite Elements

• experiences with different finite element spaces, J.,Matthies (2001), J. (2002), J.
(2004), J. (2006)

• spaces with continuous pressure (Taylor–Hood spaces)
◦ divergence constraint very inaccurate

◦ linear saddle point problems hard too solve
◦ =⇒ cannot be recommended

• spaces with discontinuous pressure
◦ more accurate
◦ linear saddle point problems much easier too solve

◦ best ratio between accuracy and efficiency: second order velocity, first order
discontinuous pressure =⇒ recommendations:
− hexahedral grids Q2/Pdisc

1

− tetrahedral grids Pbubble
2 /Pdisc

1 , Bernardi, Raugel (1985)

• lowest order elements (Pnc
1 /P0 Crouzeix, Raviart (1973), Qrot

1 /Q0 Rannacher,
Turek (1992))
◦ very inaccurate

◦ important to construct an efficient multigrid solver
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2.5 Finite Element Error Analysis

• Smagorinsky model, J., Layton (2002)

• find (w, r) ≈ (u , p ) such that

wt −∇ · ((2ν + νT )D(w)) + (w · ∇)w + ∇r = f in (0, T ] × Ω

∇ · w = 0 in [0, T ] × Ω

w = 0 in [0, T ] × ∂Ω

w(0,x) = w0 in Ω
Z

Ω
r dx = 0 in (0, T ]

with
νT = a0(δ) + cSδ

2 ‖D(w)‖F , a0(δ) > 0
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2.5 Finite Element Error Analysis

• Smagorinsky model, J., Layton (2002)

• find (w, r) ≈ (u , p ) such that

wt −∇ · ((2ν + νT )D(w)) + (w · ∇)w + ∇r = f in (0, T ] × Ω

∇ · w = 0 in [0, T ] × Ω

w = 0 in [0, T ] × ∂Ω

w(0,x) = w0 in Ω
Z

Ω
r dx = 0 in (0, T ]

with
νT = a0(δ) + cSδ

2 ‖D(w)‖F , a0(δ) > 0

• observations in computations : error independent of ν

• (w, r) ∈ V ×Q – weak solution of the continuous problem

• (wh, rh) ∈ V h ×Qh ⊂ V ×Q – finite element solution
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Goals and Sketch of the Proof

• goals of the analysis :

◦ error estimates for ‖w − wh‖ in appropriate norms independent of ν

◦ use only minimal regularity of solution w ∈ L3(0, T ;W 1,3
0 (Ω))
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• goals of the analysis :

◦ error estimates for ‖w − wh‖ in appropriate norms independent of ν

◦ use only minimal regularity of solution w ∈ L3(0, T ;W 1,3
0 (Ω))

• Sketch of the proof :

1. prove stability of w,wh with constants independent of ν in various norms
◦ use w,wh as test functions
◦ standard estimates (Poincaré, Korn, Young)
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Goals and Sketch of the Proof

• goals of the analysis :

◦ error estimates for ‖w − wh‖ in appropriate norms independent of ν

◦ use only minimal regularity of solution w ∈ L3(0, T ;W 1,3
0 (Ω))

• Sketch of the proof :

1. prove stability of w,wh with constants independent of ν in various norms
◦ use w,wh as test functions
◦ standard estimates (Poincaré, Korn, Young)

2. introduce appropriate approximation w̃ ∈ V h of w and split the error

w − wh = (w − w̃) + (w̃ − wh) = η − φh

=⇒ η : approximation error (independent of the problem)
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Sketch of the Proof (cont.)

3. prove differential inequality

d

dt
‖φh(t)‖ + non-negative terms ≤ g(t) + c(t)‖φh(t)‖γ

g(t), c(t) bounded by approximation errors and data independent of ν

◦ long estimates (here is the work)
◦ standard estimates
◦ Sobolev imbeddings
◦ strong monotonicity

◦ local Lipschitz continuity
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Sketch of the Proof (cont.)

3. prove differential inequality

d

dt
‖φh(t)‖ + non-negative terms ≤ g(t) + c(t)‖φh(t)‖γ

g(t), c(t) bounded by approximation errors and data independent of ν

◦ long estimates (here is the work)
◦ standard estimates
◦ Sobolev imbeddings
◦ strong monotonicity

◦ local Lipschitz continuity

4. Gronwall’s lemma
◦ show g(t), c(t) ∈ L1(0, T )

◦ show γ = 1

◦ Gronwall’s lemma

‖φh(t)‖ + non-negative terms ≤ exp

„Z t

0
c(τ)dτ

«„

‖φh(0)‖ +

Z t

0
g(τ)dτ

«

=⇒ ‖φh(t)‖ bounded by data and approximation errors independent of ν
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Final Estimate

‖w − wh‖2
L∞(0,T ;L2(Ω))

+ ‖∇ · (w − wh)‖2
L2(0,T ;L2(Ω))

+(ν + Ca0(δ)) ‖D(w − wh)‖2
L2(0,T ;L2(Ω))

+ δ2‖D(w − wh)‖3
L3(0,T ;L3(Ω))

≤ C exp
“

‖c(t, δ)‖L1(0,T )

”

‖(w − wh)(0,x)‖2
L2(Ω)

+C inf
w̃∈V h

div
∩W1,3(Ω),qh∈Qh

F(w − w̃, r − qh, δ)

with approximation error F(w − w̃, r − qh, δ)

error ≤ constant · approximation error

where the constant is independent of ν
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Finite Element Error Analysis – Remarks

• analysis possible for different boundary conditions (slip with friction and no
penetration)

• similar finite element error analysis possible for Taylor LES model (Iliescu, J.,
Layton (2002))

◦ strong monotonicity if cS sufficiently large

◦ Taylor LES model only a local perturbation

• numerical examples support analysis
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Finite Element Error Analysis – Remarks

• analysis possible for different boundary conditions (slip with friction and no
penetration)

• similar finite element error analysis possible for Taylor LES model (Iliescu, J.,
Layton (2002))

◦ strong monotonicity if cS sufficiently large

◦ Taylor LES model only a local perturbation

• numerical examples support analysis

• open problems

◦ ν–independent estimate for a0(δ) = 0

- only global estimates used so far
- cSδ

2 ‖D(w)‖F > 0 cannot be ensured for each point in Ω

- if there are points with cSδ2 ‖D(w)‖F = 0, global estimates cannot be
better than for Navier–Stokes equations

◦ finite element error analysis for rational LES model
- difficulty: strong monotonicity open, rational LES model is a global

perturbation
- result for small data/time, Berselli, Galdi, Iliescu, Layton (2002)
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2.6 A Numerial Study

• Goal : LES models have been derived for the approximation of (u , p ) – how good
is that achieved ?
◦ Smagorinsky model

◦ rational LES model with different subgrid scale terms
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2.6 A Numerial Study

• Goal : LES models have been derived for the approximation of (u , p ) – how good
is that achieved ?
◦ Smagorinsky model

◦ rational LES model with different subgrid scale terms

• mixing layer problem in 2d

1−1

−1

1

x

y

σ0

W∞

W∞
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Setup of the Mixing Layer Problem

• initial velocity

w0 =

0

@

W∞tanh
„

2y

σ0

«

0

1

A+ noise

with
σ0 = 1/14, W∞ = 1, viscosity ν−1 = 140000

• Re =
σ0W∞

ν
= 10000

• Galerkin FEM : appr. 3 000 000 d.o.f. in space

• LES : appr. 45 000 d.o.f. in space

• Q2/Pdisc
1 finite element discretisation
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Comparison of the Vorticity ofuh andw
h

• Smagorinsky model

• first vortex pairing too late

• second vortex pairing somewhat too late, symmetric

• delay before the last vortex pairing, much too late

• speed of rotation of final vortex too slow
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• first vortex pairing too late

• second vortex pairing somewhat too late, symmetric

• delay before the last vortex pairing, much too late

• speed of rotation of final vortex too slow

• rational LES model with Smagorinsky sgs term

• first vortex pairing somewhat too early

• period up to second vortex pairing computed very badly
• second vortex pairing much too late

• delay before last vortex pairing, occurs much too late

• speed of rotation of final vortex too slow
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• delay before the last vortex pairing, much too late

• speed of rotation of final vortex too slow

• rational LES model with Smagorinsky sgs term

• first vortex pairing somewhat too early

• period up to second vortex pairing computed very badly
• second vortex pairing much too late

• delay before last vortex pairing, occurs much too late

• speed of rotation of final vortex too slow

• rational LES model with Iliescu-Layton sgs term

• first vortex pairing somewhat too early
• second vortex pairing somewhat too late, but non-symmetric

• no delay before last vortex pairing

• speed of rotation of final vortex too slow
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Comparison of the Vorticity ofuh andw
h

• Smagorinsky model

• first vortex pairing too late

• second vortex pairing somewhat too late, symmetric

• delay before the last vortex pairing, much too late

• speed of rotation of final vortex too slow

• rational LES model with Smagorinsky sgs term

• first vortex pairing somewhat too early

• period up to second vortex pairing computed very badly
• second vortex pairing much too late

• delay before last vortex pairing, occurs much too late

• speed of rotation of final vortex too slow

• rational LES model with Iliescu-Layton sgs term

• first vortex pairing somewhat too early
• second vortex pairing somewhat too late, but non-symmetric

• no delay before last vortex pairing

• speed of rotation of final vortex too slow

rational LES model with Iliescu-Layton sgs term best in this example
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Further Numerical Studies with Rational LES model

• turbulent driven cavity 2D, 3D: Iliescu, J., Layton, Matthies, Tobiska (2003)

• turbulent channel flows: Fischer, Iliescu (2003, 2004)

• turbulent flow around a cylinder: J., Kindl, Suciu (2009, preprint)

• geophysical flows: Fischer, Iliescu, Ozgokmen (2009)

• rational LES model seldom used
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2.7 Summary

• analysis and modeling

◦ commutation errors arise, partially analyzed, important near boundaries
◦ boundary conditions open

◦ Smagorinsky model with constant cS well analyzed (existence, uniqueness of
solution, finite element errors)
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2.7 Summary

• analysis and modeling

◦ commutation errors arise, partially analyzed, important near boundaries
◦ boundary conditions open

◦ Smagorinsky model with constant cS well analyzed (existence, uniqueness of
solution, finite element errors)

• practical application of LES models
◦ many models proposed, used

◦ Smagorinsky model (and variants) very popular, but often too diffusive

• Literatur
◦ best reference: Sagaut (2006)

◦ more mathematical: J. (2004), Berselli, Iliescu, Layton (2006)
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3 Variational Multiscale (VMS)

Methods
3.1 Motivation and Derivation

3.2 Practical Realizations and Experiences

3.3 Bubble VMS Methods

3.4 A Finite–Element Projection–Based VMS Method

3.5 A Numerical Study – the Turbulent Flow Around a Cylinder

3.6 Summary and Outlook
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3.1 Motivation and Derivation

• motivation: definition of large scales by spatial averaging leads to problems (in
particular at the boundary)

• goal: define large scales in a different way
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3.1 Motivation and Derivation

• motivation: definition of large scales by spatial averaging leads to problems (in
particular at the boundary)

• goal: define large scales in a different way

• ideas:
◦ define scales by projections into function spaces

VMS methods are based on variational formulation of underlying equation

◦ model for influence of unresolved small scales acts directly only on resolved
small scales (many VMS models)

• three scale decomposition of the flow (many VMS models)

◦ (resolved) large scales, should be simulated

◦ resolved small scales, should be simulated, too
◦ unresolved small scales

• based on ideas for simulation of multiscale problems from Hughes (1995),
Guermond (1999)

• first connection to turbulent flows: Hughes, Mazzei, Jansen (2000)
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Motivation and Derivation (cont.)

• three scale VMS method

• starting point: variational form of the Navier–Stokes equations

• V =
`

H1
0 (Ω)

´3, Q = L2
0 (Ω)

• find u : [0, T ] → V, p : (0, T ] → Q satisfying for all (v, q) ∈ V ×Q

(ut,v) +
`

2Re−1D(u),D(v)
´

+ ((u · ∇)u,v) − (p,∇ · v) + (q,∇ · u) = (f ,v)

and u (0,x) = u0 (x) ∈ V
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Motivation and Derivation (cont.)

• three scale VMS method

• starting point: variational form of the Navier–Stokes equations

• V =
`

H1
0 (Ω)

´3, Q = L2
0 (Ω)

• find u : [0, T ] → V, p : (0, T ] → Q satisfying for all (v, q) ∈ V ×Q

(ut,v) +
`

2Re−1D(u),D(v)
´

+ ((u · ∇)u,v) − (p,∇ · v) + (q,∇ · u) = (f ,v)

and u (0,x) = u0 (x) ∈ V

• short form of variational equation

A (u; (u, p) , (v, q)) = F (v)

• three scale decomposition
◦ large scales (u, p)

◦ resolved small scales (ũ, p̃)

◦ unresolved small scales (u′, p′)
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Motivation and Derivation (cont.)

• find u = u + ũ + u′ : [0, T ] → V, p = p+ p̃+ p′ : (0, T ] → Q s.t. for all
(v, q) ∈ V ×Q

A (u; (u, p) , (v, q)) + A (u; (ũ, p̃) , (v, q)) + A
`

u;
`

u′, p′
´

, (v, q)
´

= F (v) ,

A (u; (u, p) , (ṽ, q̃)) + A (u; (ũ, p̃) , (ṽ, q̃)) + A
`

u;
`

u′, p′
´

, (ṽ, q̃)
´

= F (ṽ) ,

A
`

u; (u, p) ,
`

v′, q′
´´

+A
`

u; (ũ, p̃) ,
`

v′, q′
´´

+A
`

u;
`

u′, p′
´

,
`

v′, q′
´´

= F
`

v′
´
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Motivation and Derivation (cont.)

• find u = u + ũ + u′ : [0, T ] → V, p = p+ p̃+ p′ : (0, T ] → Q s.t. for all
(v, q) ∈ V ×Q

A (u; (u, p) , (v, q)) + A (u; (ũ, p̃) , (v, q)) + A
`

u;
`

u′, p′
´

, (v, q)
´

= F (v) ,

A (u; (u, p) , (ṽ, q̃)) + A (u; (ũ, p̃) , (ṽ, q̃)) + A
`

u;
`

u′, p′
´

, (ṽ, q̃)
´

= F (ṽ) ,

A
`

u; (u, p) ,
`

v′, q′
´´

+A
`

u; (ũ, p̃) ,
`

v′, q′
´´

+A
`

u;
`

u′, p′
´

,
`

v′, q′
´´

= F
`

v′
´

• ideas and assumptions
◦ neglect equation with test function (v′, q′)
◦ assume

A
`

u;
`

u′, p′
´

, (v, q)
´

= 0

(direct influence of unresolved scales onto the large scales negligible)
◦ model influence of the unresolved scales onto the small resolved scales:

A
`

u;
`

u′, p′
´

, (ṽ, q̃)
´

≈ B (u; (u, p) , (ũ, p̃) , (ṽ, q̃))
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Motivation and Derivation (cont.)

• find (u, ũ, p, p̃) ∈ V × Ṽ ×Q× Q̃ s.t. for all (v, ṽ, q, q̃) ∈ V × Ṽ ×Q× Q̃

A (u + ũ; (u, p) , (v, q)) +A (u + ũ; (ũ, p̃) , (v, q)) = F (v)

A (u + ũ; (u, p) , (ṽ, q̃)) +A (u + ũ; (ũ, p̃) , (ṽ, q̃))

+B (u + ũ; (u, p) , (ũ, p̃) , (ṽ, q̃)) = F (ṽ)
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Motivation and Derivation (cont.)

• find (u, ũ, p, p̃) ∈ V × Ṽ ×Q× Q̃ s.t. for all (v, ṽ, q, q̃) ∈ V × Ṽ ×Q× Q̃

A (u + ũ; (u, p) , (v, q)) +A (u + ũ; (ũ, p̃) , (v, q)) = F (v)

A (u + ũ; (u, p) , (ṽ, q̃)) +A (u + ũ; (ũ, p̃) , (ṽ, q̃))

+B (u + ũ; (u, p) , (ũ, p̃) , (ṽ, q̃)) = F (ṽ)

• parameters:

◦ spaces (V ,Q)

◦ spaces (Ṽ , Q̃)

◦ model B (u; (u, p) , (ũ, p̃) , (ṽ, q̃))
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Motivation and Derivation (cont.)

• find (u, ũ, p, p̃) ∈ V × Ṽ ×Q× Q̃ s.t. for all (v, ṽ, q, q̃) ∈ V × Ṽ ×Q× Q̃

A (u + ũ; (u, p) , (v, q)) +A (u + ũ; (ũ, p̃) , (v, q)) = F (v)

A (u + ũ; (u, p) , (ṽ, q̃)) +A (u + ũ; (ũ, p̃) , (ṽ, q̃))

+B (u + ũ; (u, p) , (ũ, p̃) , (ṽ, q̃)) = F (ṽ)

• parameters:

◦ spaces (V ,Q)

◦ spaces (Ṽ , Q̃)

◦ model B (u; (u, p) , (ũ, p̃) , (ṽ, q̃))

• often B (u; (u, p) , (ũ, p̃) , (ṽ, q̃)) – Smagorinsky model
◦ influence of Smagorinsky model is controlled with appropriate choice of

spaces
◦ in contrast to control with cS(t,x) as in dynamic Smagorinsky LES model
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3.2 Practical Realizations and Experi-

ences
• Hughes, Mazzei, Oberai, Wray (2001)

◦ Fourier spectral method
◦ scale separation by wave numbers

◦ two static Smagorinsky–type models
◦ homogeneous isotropic turbulence

◦ Result: VMS in better agreement with DNS data than, e.g., dynamic
Smagorinsky LES method
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3.2 Practical Realizations and Experi-

ences
• Hughes, Mazzei, Oberai, Wray (2001)

◦ Fourier spectral method
◦ scale separation by wave numbers

◦ two static Smagorinsky–type models
◦ homogeneous isotropic turbulence

◦ Result: VMS in better agreement with DNS data than, e.g., dynamic
Smagorinsky LES method

• Hughes, Oberai, Mazzei (2001)
◦ streamwise and spanwise: Fourier spectral method

wall–normal: spectral method (Legendre polynomials)

◦ two static Smagorinsky–type models

◦ turbulent channel flow at Reτ ∈ {180, 395}
◦ Result: VMS produced in general better results than dynamic Smagorinsky

LES method
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Practical Realizations and Experiences (cont.)

• Holmen, Hughes, Oberai, Wells (2004)

◦ Aim: sensitivity of VMS method with respect to scale partition (in terms of
wave numbers)

◦ static and dynamic Smagorinsky model

◦ turbulent channel flow at Reτ ∈ {180, 395}
◦ Results:

◦ VMS methods better than dynamic Smagorinsky LES method
◦ static VMS methods are highly accurate at appropriate partition ratios
◦ dynamic VMS method relatively insensitive to the scale separation
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Practical Realizations and Experiences (cont.)

• Ramakrishnan, Collis (2004)
◦ streamwise and spanwise: Fourier spectral method

wall–normal: second order FVM
◦ scale separation only streamwise and spanwise: planar VMS (PVMS)

◦ static Smagorinsky model

◦ turbulent channel flow at Reτ ∈ {180, 590}
◦ Result: PVMS consistently outperformed the dynamic Smagorinsky LES

method
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Practical Realizations and Experiences (cont.)

• Ramakrishnan, Collis (2004)
◦ streamwise and spanwise: Fourier spectral method

wall–normal: second order FVM
◦ scale separation only streamwise and spanwise: planar VMS (PVMS)

◦ static Smagorinsky model

◦ turbulent channel flow at Reτ ∈ {180, 590}
◦ Result: PVMS consistently outperformed the dynamic Smagorinsky LES

method

• Ramakrishnan, Collis (2004); Collis, Ramkrishnan (2005)

◦ discontinuous Galerkin discretization: local VMS method
◦ scale separation by polynomial degree

◦ no turbulence model used (grids fine enough)

◦ turbulent channel flow at Reτ ∈ {180, 395}
◦ Result: p–refinement better than h–refinement
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Practical Realizations and Experiences (cont.)

• Gravemeier, Wall, Ramm (2004, 2005)

◦ finite elements
◦ bubble functions for ũ, bubble VMS method, see Section 3.3
◦ additional grad–div stabilization in large scale momentum equation

◦ dynamic Smagorinsky model
◦ driven cavity at Re = 10000

◦ Results: good mean velocity; less good second order statistics
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Practical Realizations and Experiences (cont.)

• Gravemeier, Wall, Ramm (2004, 2005)

◦ finite elements
◦ bubble functions for ũ, bubble VMS method, see Section 3.3
◦ additional grad–div stabilization in large scale momentum equation

◦ dynamic Smagorinsky model
◦ driven cavity at Re = 10000

◦ Results: good mean velocity; less good second order statistics

• Gravemeier (2006, 2007)

◦ projection–based VMS method, see Section 3.4, with second–order FVM
◦ two–level method
◦ additional viscous term in the momentum equation for the large scales

◦ turbulent channel flow at Reτ ∈ {180, 590}
turbulent flow in a diffuser

◦ Result: VMS with constant Smagorinsky model better than VMS with dynamic
Smagorinsky model and dynamic Smagorinsky LES method
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Practical Realizations and Experiences (cont.)

• two–scale VMS method, Calo (2004), Bazilevs, Calo, Cottrell, Hughes, Reali,
Scovazzi (2007)

• scale decomposition with projector P : V → V , U = (u, p) into two scales

U := P (U), Ũ := (I − P )(U), V = V ⊕ Ṽ

• write coupled equation as in three–scale VMS method

• rewrite (and linearize) equation for small scale test functions

A
“

Ũ ; Ũ , Ṽ
”

+ A
“

U ; Ũ , Ṽ
”

+ A
“

Ũ ;U, Ṽ
”

= F
“

Ṽ
”

− A
“

U ;U, Ṽ
”

=
“

res(U), Ṽ
”

• formal representation

Ũ = F̃
`

U, res(U)
´

How to approximate F̃ : V
′
∗ → V ′?
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A Two–Scale VMS Method (cont.)

• assume ε =
‚

‚res(U)
‚

‚

Ṽ ∗
small, perturbation series Ũ =

∞
X

k=1

εkŨk

• inserting in linearized equation with small scale test functions

A
“

Ũ1;U, Ṽ
”

+A
“

U ; Ũ1, Ṽ
”

= (ε−1res(U), Ṽ )

A
“

Ũk;U, Ṽ
”

+A
“

U ; Ũk, Ṽ
”

= −
k−1
X

i=1

A
“

Ũi; Ũk−i, Ṽ
”

, k ≥ 2

How to solve this recursively defined system?
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A Two–Scale VMS Method (cont.)

• assume ε =
‚

‚res(U)
‚

‚

Ṽ ∗
small, perturbation series Ũ =

∞
X

k=1

εkŨk

• inserting in linearized equation with small scale test functions

A
“

Ũ1;U, Ṽ
”

+A
“

U ; Ũ1, Ṽ
”

= (ε−1res(U), Ṽ )

A
“

Ũk;U, Ṽ
”

+A
“

U ; Ũk, Ṽ
”

= −
k−1
X

i=1

A
“

Ũi; Ũk−i, Ṽ
”

, k ≥ 2

How to solve this recursively defined system?

• formally with small–scale Green’s operator G̃U : Ṽ ∗ → Ṽ

Ũ1 = G̃U

“

(ε−1res(U), Ṽ )
”

, Ũk = G̃U

 

−
k−1
X

i=1

A
“

Ũi; Ũk−i, Ṽ
”

!

, k ≥ 2

• G̃U can be represented by P and classical Green’s operator (Hughes, Sangalli
(2007))
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A Two–Scale VMS Method (cont.)

• practice: truncate series at k = 1

Ũ ≈ εŨ1 = G̃U

““

res(U), Ṽ
””
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A Two–Scale VMS Method (cont.)

• practice: truncate series at k = 1

Ũ ≈ εŨ1 = G̃U

““

res(U), Ṽ
””

• practice: approximate small–scale Green’s operator

◦ large scales defined by finite element function Uh = U

◦ K – mesh cell

Ũ ≈ G̃U

““

res(Uh), Ṽ
””

|K ≈ τKres(Uh)|K , τ|K ∈ R4×4

linear, local approximation

• small scales are approximated by product of τ and the large scale residual
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A Two–Scale VMS Method (cont.)

• additional terms in momentum equation

◦ Streamline–Upwind Petrov–Galerkin (SUPG) term

X

K∈T h

“

τmresm(Uh), (uh · ∇)vh + ∇qh
”

K

◦ grad–div term
X

K∈T h

“

τc∇ · uh,∇ · vh
”

K

◦ two further terms with residuals

• features:
◦ no eddy viscosity model
◦ parameters in the additional terms

• extension of residual–based stabilized methods for Navier–Stokes equations

• numerical studies
◦ Calo, Hughes et al. (2004 – )

◦ Gravemeier, Wall (2008), some improvements of two–scale VMS method
compared to standard stabilized finite element methods
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Practical Realizations and Experiences (cont.)

• Algebraic Multigrid VMS method, Gravemeier (2008 – ),

◦ algebraic scale separation by an algebraic multigrid

◦ turbulent flow around a cylinder, see Section 3.5:
better than dynamic Smagorinsky LES model and two–scale VMS method
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Practical Realizations and Experiences (cont.)

• Algebraic Multigrid VMS method, Gravemeier (2008 – ),

◦ algebraic scale separation by an algebraic multigrid

◦ turbulent flow around a cylinder, see Section 3.5:
better than dynamic Smagorinsky LES model and two–scale VMS method

• projection–based finite element VMS method, J., Kaya, Kindl (2005 – )

◦ see Section 3.4
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Practical Realizations and Experiences (cont.)

• Algebraic Multigrid VMS method, Gravemeier (2008 – ),

◦ algebraic scale separation by an algebraic multigrid

◦ turbulent flow around a cylinder, see Section 3.5:
better than dynamic Smagorinsky LES model and two–scale VMS method

• projection–based finite element VMS method, J., Kaya, Kindl (2005 – )

◦ see Section 3.4

Summary

• VMS methods in general better than dynamic Smagorinsky LES method

• static VMS methods work well
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3.3 Bubble VMS Methods

• standard finite element spaces (V
h
, Q

h
) for large scales

• finite element spaces (Ṽ h, Q̃h) for resolved small scales necessary

◦ higher resolution than (V
h
, Q

h
) since small scales

=⇒ higher order finite elements or refined mesh
◦ solution of equations for resolved small scales must not be too expensive

=⇒ decouple finite elements to get local problems
=⇒ use bubble functions for velocity

Ṽ h ⊂
n

v : v ∈
`

H1
0

´3
,v = 0 on faces of the mesh cells

o

• idea in Hughes, Mazzei, Jansen (2000)
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Bubble VMS Methods (cont.)

• Gravemeier (2003), Gravemeier, Wall, Ramm (2004,2005), . . .

• strategy:

1. simplify resolved small scale equation:
◦ model

p̃ = τK∇ · uh =⇒
X

K∈T h

(τK∇ · uh,∇ · vh)

grad–div stabilization in large scale equation
◦ neglect resolved small scale continuity equation

2. solve resolved small scale equation for velocity with residual free bubble
(RFB) functions, using current approximation on (u, p)

3. solve large scale equations with result from step 2 and grad–div stabilization

• implementation:

◦ (V
h
, Q

h
) = Q1/Q1 or P1/P1

◦ solve bubble equations using Q1 finite elements
◦ ≈ 4 × 4 × 4 local meshes

• similar method studied in J., Kindl (2009)
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Bubble VMS Methods (cont.)

• bubble VMS method without model for small scale pressure blows up in finite time,
J., Kindl (2009)

• high effort in implementation

• our conclusions:
◦ bubble VMS methods not worth to be considered
◦ two–scale VMS method seems to be more attractive alternative
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Bubble VMS Methods (cont.)

• bubble VMS method without model for small scale pressure blows up in finite time,
J., Kindl (2009)

• high effort in implementation

• our conclusions:
◦ bubble VMS methods not worth to be considered
◦ two–scale VMS method seems to be more attractive alternative

• Unphysical property of bubble–VMS methods
◦ resolved small scales bound to the mesh cells, no interactions between

resolved small scales across mesh cell boundaries

does not reflect physical reality

◦ impact of this property on numerical results not known
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3.4 A Finite–Element Projection–Based

VMS Method
• J., Kaya (2005), based on ideas from Layton (2002)

• (V h, Qh) – conform velocity–pressure finite element spaces fulfilling the inf–sup
condition for all resolved scales

• LH – finite dimensional space of symmetric tensor–valued functions in L2(Ω)d×d

(large scale space)
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3.4 A Finite–Element Projection–Based

VMS Method
• J., Kaya (2005), based on ideas from Layton (2002)

• (V h, Qh) – conform velocity–pressure finite element spaces fulfilling the inf–sup
condition for all resolved scales

• LH – finite dimensional space of symmetric tensor–valued functions in L2(Ω)d×d

(large scale space)

• find uh : [0, T ] → V h, ph : (0, T ] → Qh, GH : [0, T ] → LH :

(uh
t ,v

h) + (2Re−1D(uh),D(vh)) + ((uh · ∇)uh,vh)

−(ph,∇ · vh) + (νT (D(uh) − GH),D(vh)) = (f ,vh) ∀ vh ∈ V h

(qh,∇ · uh) = 0 ∀ qh ∈ Qh

(GH − D(uh),LH) = 0 ∀ LH ∈ LH

νT (t,x) ≥ 0 – turbulent viscosity, turbulence model
GH = PLH D(uh) – L2–projection

• same idea as in local projection stabilization (LPS) schemes for stabilizing
convection–dominated equations
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Properties of the Projection–Based VMS Method

• three scale decomposition:

◦ (resolved) large scales

◦ resolved small scales
◦ unresolved small scales

• turbulence model acts directly only on the resolved small scales
modeling the influence of unresolved small scales

• indirect influence onto large scales by coupling of resolved small and large scales
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• turbulence model acts directly only on the resolved small scales
modeling the influence of unresolved small scales
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• parameters of the VMS method

◦ LH
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Properties of the Projection–Based VMS Method

• three scale decomposition:

◦ (resolved) large scales

◦ resolved small scales
◦ unresolved small scales

• turbulence model acts directly only on the resolved small scales
modeling the influence of unresolved small scales

• indirect influence onto large scales by coupling of resolved small and large scales

• parameters of the VMS method

◦ LH

◦ νT

• finite element error analysis: J., Kaya (2008); J., Kaya, Kindl (2008)
follows the approach of the analysis for Smagorinsky model

• similar approach with finite volume methods by Gravemeier (2006)
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How to Choose the Large Scale SpaceL
H ?

• standard bases for velocity–pressure finite element spaces

• here: LH defined on the same grid:

LH = span

8

>

<

>

:

0

B

@

lHj 0 0

0 0 0

0 0 0

1

C

A
,
1

2

0

B

@

0 lHj 0

lHj 0 0

0 0 0

1

C

A
,
1

2

0

B

@

0 0 lHj
0 0 0

lHj 0 0

1

C

A
,

0

B

@

0 0 0

0 lHj 0

0 0 0

1

C

A
,
1

2

0

B

@

0 0 0

0 0 lHj
0 lHj 0

1

C

A
,

0

B

@

0 0 0

0 0 0

0 0 lHj

1

C

A

9

>

=

>

;

j = 1, . . . , nL

• two–level method (for convection–diffusion equations), J., Kaya, Layton (2006)
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How to Choose the Large Scale SpaceL
H ? (cont.)

• coupled system

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

A11 A12 A13 BT
1 G̃11 G̃12 G̃13 0 0 0

A21 A22 A23 BT
2 0 G̃22 0 G̃24 G̃25 0

A31 A32 A33 BT
3 0 0 G̃33 0 G̃35 G̃36

B1 B2 B3 0 0 0 0 0 0 0

G11 0 0 0 M 0 0 0 0 0

G21 G22 0 0 0 M
2

0 0 0 0

G31 0 G33 0 0 0 M
2

0 0 0

0 G42 0 0 0 0 0 M 0 0

0 G52 G53 0 0 0 0 0 M
2

0

0 0 G63 0 0 0 0 0 0 M

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

uh
1

uh
2

uh
3

ph

gH
11

gH
12

gH
13

gH
22

gH
23

gH
33

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

fh
1

fh
2

fh
3

0

0

0

0

0

0

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

• 7 additional matrices
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How to Choose the Large Scale SpaceL
H ? (cont.)

• condensation

0

B

B

B

@

Ã11 Ã12 Ã13 BT
1

Ã21 Ã22 Ã23 BT
2

Ã31 Ã32 Ã33 BT
3

B1 B2 B3 0

1

C

C

C

A

0

B

B

B

@

uh
1

uh
2

uh
3

ph

1

C

C

C

A

=

0

B

B

B

@

fh
1

fh
2

fh
3

0

1

C

C

C

A

Ã11 = A11 − G̃11M
−1G11 − 1

2
G̃24M

−1G42 − 1

2
G̃36M

−1G63

...

Ã33 = A33 − G̃36M
−1G63 − 1

2
G̃11M

−1G11 − 1

2
G̃24M

−1G42

• goal: sparsity pattern of Ãαβ same like Aαβ
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How to Choose the Large Scale SpaceL
H ? (cont.)

• conditions on LH :
◦ support of each basis function of LH only one mesh cell

◦ basis of LH is L2–orthogonal

=⇒ discontinuous finite element spaces with bases of piecewise Legendre
polynomials

• simulations found in the literature: J., Kaya (2005), J., Roland (2007), J., Kindl
(2008)

◦ LH(K) = P0(K) for all mesh cells K

◦ LH(K) = Pdisc
1 (K) for all mesh cells K
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How to Choose the Large Scale SpaceL
H ? (cont.)

• conditions on LH :
◦ support of each basis function of LH only one mesh cell

◦ basis of LH is L2–orthogonal

=⇒ discontinuous finite element spaces with bases of piecewise Legendre
polynomials

• simulations found in the literature: J., Kaya (2005), J., Roland (2007), J., Kindl
(2008)

◦ LH(K) = P0(K) for all mesh cells K

◦ LH(K) = Pdisc
1 (K) for all mesh cells K

• goal: method should determine local coarse space LH(K) a posteriori such that

◦ LH(K) is a small space where flow is strongly turbulent
⇐⇒ turbulence model has large influence

◦ LH(K) is a large space where flow is less turbulent
⇐⇒ turbulence model has little influence
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Adaptive Large Scale Space

• assumption: local turbulence intensity reflected by size of local resolved small
scales
◦ size of resolved small scales large =⇒ many unresolved scales can be

expected

◦ size of resolved small scales small =⇒ little unresolved scales can be
expected

• compute the deformation tensor of the large scales GH

◦ computation is not necessary for static LH

◦ additional matrices to assemble in comparison to static LH
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Adaptive Large Scale Space

• assumption: local turbulence intensity reflected by size of local resolved small
scales
◦ size of resolved small scales large =⇒ many unresolved scales can be

expected

◦ size of resolved small scales small =⇒ little unresolved scales can be
expected

• compute the deformation tensor of the large scales GH

◦ computation is not necessary for static LH

◦ additional matrices to assemble in comparison to static LH

• define indicator of the size of the resolved small scales in mesh cell K

ηK =
‖GH − D(uh)‖L2(K)

‖1‖L2(K)

=
‖GH − D(uh)‖L2(K)

|K|1/2
, K ∈ T h

◦ size of the resolved small scales does not depend on size of mesh cell

◦ size of the mesh cell scales out
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Adaptive Large Scale Space

• assumption: local turbulence intensity reflected by size of local resolved small
scales
◦ size of resolved small scales large =⇒ many unresolved scales can be

expected

◦ size of resolved small scales small =⇒ little unresolved scales can be
expected

• compute the deformation tensor of the large scales GH

◦ computation is not necessary for static LH

◦ additional matrices to assemble in comparison to static LH

• define indicator of the size of the resolved small scales in mesh cell K

ηK =
‖GH − D(uh)‖L2(K)

‖1‖L2(K)

=
‖GH − D(uh)‖L2(K)

|K|1/2
, K ∈ T h

◦ size of the resolved small scales does not depend on size of mesh cell

◦ size of the mesh cell scales out

• compare ηK to some reference value

◦ similar to a posteriori error estimation and mesh refinement
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Adaptive Large Scale Space (cont.)

• reference values

◦ mean value at current time η :=
1

no. of cells

X

K∈T h

ηK

◦ time average of mean values ηt :=
1

no. of time steps

X

time steps

η

◦ linear combination ηt/2 :=
η + ηt

2
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Adaptive Large Scale Space (cont.)

• reference values

◦ mean value at current time η :=
1

no. of cells

X

K∈T h

ηK

◦ time average of mean values ηt :=
1

no. of time steps

X

time steps

η

◦ linear combination ηt/2 :=
η + ηt

2

• local spaces (V h = Q2 or V h = Pbubble
2 )

◦ LH(K) = 0 = P00(K) turbulence model influences locally all resolved
scales

◦ LH(K) = P0(K)

◦ LH(K) = P1(K)

◦ LH(K) = P2(K) set νT (K) = 0, locally no turbulence model
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Adaptive Large Scale Space (cont.)

• procedure:
◦ choose three values

0 ≤ C1 ≤ C2 ≤ C3

◦ choose a mean value η
◦ choose a frequency of updating the large scale space

nupdate

◦ in every nupdate–th step:
compute ηK and determine the local large scale space

LH(K) = Pdisc
2 (K), νT (K) = 0 if ηK ≤ C1η

LH(K) = Pdisc
1 (K) if C1η < ηK ≤ C2η

LH(K) = P0(K) if C2η < ηK ≤ C3η

LH(K) = P00(K) if C3η < ηK
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3.5 A Numerical Study – the Turbulent

Flow Around a Cylinder
• domain and coarse grid

• vortex street (iso–surfaces of the velocity)

• statistically periodic flow

• Re = 22000, (inflow, diameter of cylinder, viscosity)
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3.5 A Numerical Study – the Turbulent

Flow Around a Cylinder
• domain and coarse grid

• vortex street (iso–surfaces of the velocity)

• statistically periodic flow

• Re = 22000, (inflow, diameter of cylinder, viscosity)

• Q2/Pdisc
1 , no. of d.o.f.: 522 720 velocity, 81 920 pressure

• Crank–Nicolson scheme with ∆t = 0.005

• static Smagorinsky model for νT :

νT = 0.01(2hK,min)2‖D(uh)‖F

hK,min shortest edge of K
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Turbulent Flow Around a Cylinder atRe = 22000 (cont.)

• characteristic values of the flow
◦ lift coefficient cl
◦ drag coefficient cd
◦ Strouhal number St
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Turbulent Flow Around a Cylinder atRe = 22000 (cont.)

• characteristic values of the flow
◦ lift coefficient cl
◦ drag coefficient cd
◦ Strouhal number St

• time–averaged values and rms values (25 periods)

C1 C2 C3 mean nupdate c̄l cl,rms c̄d cd,rms St

VMS with LH = P0 0.010 1.10 2.55 0.16 0.138
VMS with LH = Pdisc

1 -0.007 1.24 2.57 0.21 0.137

0.2 0.5 2 η 1 -0.018 1.12 2.49 0.20 0.135
0.2 0.75 2 η 1 -0.009 1.29 2.57 0.14 0.142
0.2 1.0 2 η 1 0.016 1.05 2.49 0.15 0.136
0.2 1.25 2 η 1 0.005 1.33 2.57 0.20 0.138

0.2 0.5 2 ηt/2 1 -0.042 1.36 2.54 0.23 0.144
0.2 0.75 2 ηt/2 1 -0.003 1.24 2.60 0.12 0.136
0.2 1.0 2 ηt/2 1 -0.055 1.36 2.59 0.13 0.140
0.2 1.25 2 ηt/2 1 0.011 1.53 2.62 0.22 0.143

experiments 0.7–1.4 1.9–2.1 0.1–0.2 0.132
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Turbulent Flow Around a Cylinder atRe = 22000 (cont.)

• typical snapshots

Volker John, University of the Saarland, Saarbrücken, Germany – p.98/116



Turbulent Flow Around a Cylinder atRe = 22000 (cont.)

• typical snapshots

• results with adaptive large scale space and good parameters better than with
uniform large scale space

C1 ≈ 0.2, C2 ∈ {0.5, 1}, C3 ∈ {2, 3}, η, nupdate = 1

• different mean values lead to rather different results

• increase of nupdate leads to worse results
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3.6 Summary and Outlook

• VMS is attractive alternative to LES

• bubble VMS methods not to be recommended

• current approaches:

◦ two–scale VMS method (Hughes et al.)

◦ algebraic Multigrid VMS method (Gravemeier et al.)

◦ projection–based finite element VMS method (J. et al.)

• literature: review Gravemeier (2006)
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3.6 Summary and Outlook

• VMS is attractive alternative to LES

• bubble VMS methods not to be recommended

• current approaches:

◦ two–scale VMS method (Hughes et al.)

◦ algebraic Multigrid VMS method (Gravemeier et al.)

◦ projection–based finite element VMS method (J. et al.)

• literature: review Gravemeier (2006)

• projection–based finite element VMS method

◦ adaptive VMS method is able to adapt large scale space to local intensity of
the turbulence

◦ further studies of parameters of the method (C1, C2, C3, nupdate) necessary

◦ mathematical analysis for supporting parameter choice necessary

◦ method can be extended to tetrahedral meshes and Pbubble
2 /Pdisc

1 finite
element (J., Kindl, Suciu (Preprint 2009))

◦ add adaptivity in space and time
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4 Further Aspects

4.1 Finite Element Error Estimates for Time–Averaged Quantities

4.2 Solving the Algebraic Systems
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4.1 Analysis of Temporal Mean Values for

Turbulent Flows
• J., Manica, Layton (2007)

• homogeneous Dirichlet boundary conditions

• temporal mean value of a quantity q

< q >= lim sup
T→∞

1

T

Z T

0
q(t) dt

• studied for energy dissipation rate per volume

ε(u) =
Re−1

|Ω |
‖∇u(·, t) ‖2

and kinetic energy

k(u) =
1

2|Ω | ‖u(·, t)‖2

• Galerkin finite element discretization (continuous–in–time) with inf–sup stable finite
element spaces (V h, Qh)
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Analysis of Temporal Mean Values for Turbulent Flows:

Large Data

• initial results for u obtained with Hopf construction

lim
T→∞

1

T
‖u(T )‖2 = 0, lim

T→∞

1

T
‖uh(T )‖2 = 0 =⇒ lim

T→∞

1

T
‖(u − uh)(T )‖2 = 0

proof for continuous solution:

◦ for finite–dimensional subspaces take solution in this subspace as test
function

◦ stability estimate =⇒ solution in this subspace has finite kinetic energy

◦ limit: dimension of subspace → ∞
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Analysis of Temporal Mean Values for Turbulent Flows:

Large Data

• initial results for u obtained with Hopf construction

lim
T→∞

1

T
‖u(T )‖2 = 0, lim

T→∞

1

T
‖uh(T )‖2 = 0 =⇒ lim

T→∞

1

T
‖(u − uh)(T )‖2 = 0

proof for continuous solution:

◦ for finite–dimensional subspaces take solution in this subspace as test
function

◦ stability estimate =⇒ solution in this subspace has finite kinetic energy

◦ limit: dimension of subspace → ∞
• energy dissipation rate

< ε(u) > ≤ 1

|Ω|
< (f ,u) >≤ Re

|Ω|
‖f‖2

L∞(0,∞;H−1)

< ε(uh) > =
1

|Ω| < (f ,uh) >≤ Re

|Ω| ‖f‖
2
L∞(0,∞;H−1)

◦ energy (in)equality

◦ results from above
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Analysis of Temporal Mean Values for Turbulent Flows:

Large Data

• estimate for pressure error

‖ < p− ph > ‖ ≤ Re−1

βh

“

1 + 2M Re2‖f‖L∞(0,∞;H−1)

”

< ‖∇(u − uh)‖2 >1/2

+

 

1 +

√
3

βh

!

inf
qh∈Qh

lim sup
T→∞

‖ < p− qh >
T

‖

◦ βh – discrete inf–sup constant

◦ M – norm of the convective operator
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Analysis of Temporal Mean Values for Turbulent Flows:

Large Data

• estimate for pressure error

‖ < p− ph > ‖ ≤ Re−1

βh

“

1 + 2M Re2‖f‖L∞(0,∞;H−1)

”

< ‖∇(u − uh)‖2 >1/2

+

 

1 +

√
3

βh

!

inf
qh∈Qh

lim sup
T→∞

‖ < p− qh >
T

‖

◦ βh – discrete inf–sup constant

◦ M – norm of the convective operator
◦ error equation

◦ take test function independent of time in the error equation
◦ standard estimates
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Analysis of Temporal Mean Values for Turbulent Flows:

Large Data

• estimate for the velocity error

< ε(u − uh) >

≤ C inf
ũ∈Y

h

< ε(u − ũ) > +Re < ‖(u − ũ)t‖2
−1 >

+Re3 < ‖u − uh‖2/3‖∇u ‖4/3‖∇(u − ũ)‖4/3 >

+Re3 < ‖u − uh‖2‖∇(u − ũ)‖4 > + < Re‖u‖ ‖∇u‖ ‖∇ (u − ũ)‖2 >
i

+C inf
qh∈Qh

h

ν−1 < ‖p− qh‖2 >
i

+ CRe3 < ‖∇u‖4‖u − uh‖2 > .

◦ Y ⊂ V h

◦ estimate not closed because of last term on the right hand side

◦ proof based on error equation, error splitting and standard estimates
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Analysis of Temporal Mean Values for Turbulent Flows:

Large Data

• estimate for the velocity error

< ε(u − uh) >

≤ C inf
ũ∈Y

h

< ε(u − ũ) > +Re < ‖(u − ũ)t‖2
−1 >

+Re3 < ‖u − uh‖2/3‖∇u ‖4/3‖∇(u − ũ)‖4/3 >

+Re3 < ‖u − uh‖2‖∇(u − ũ)‖4 > + < Re‖u‖ ‖∇u‖ ‖∇ (u − ũ)‖2 >
i

+C inf
qh∈Qh

h

ν−1 < ‖p− qh‖2 >
i

+ CRe3 < ‖∇u‖4‖u − uh‖2 > .

◦ Y ⊂ V h

◦ estimate not closed because of last term on the right hand side

◦ proof based on error equation, error splitting and standard estimates

◦ closed estimate possible with higher regularity assumptions (then uniqueness
of weak solution)
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Analysis of Temporal Mean Values for Turbulent Flows:

Small Body Forces

• closed estimate possible with assumption that solution becomes stationary for
T → ∞
uniqueness of the way to reach the stationary limit not assumed

< ε(u − uh) >≤ C

"

inf
v

h∈Vh
Re−1‖∇(u∗ − vh)‖2 + inf

qh∈Qh
Re‖p∗ − qh‖2

#

(u∗, p∗) – solution of stationary problem
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Analysis of Temporal Mean Values for Turbulent Flows:

Small Body Forces

• closed estimate possible with assumption that solution becomes stationary for
T → ∞
uniqueness of the way to reach the stationary limit not assumed

< ε(u − uh) >≤ C

"

inf
v

h∈Vh
Re−1‖∇(u∗ − vh)‖2 + inf

qh∈Qh
Re‖p∗ − qh‖2

#

(u∗, p∗) – solution of stationary problem

• additional estimates for:
◦ drag and lift coefficient for flows around obstacles

◦ energy dissipation rate for shear flows
behaves accordingly to the Kolmogorov law

< ε(uh) >≤ C
U3

L

if grid at the wall is sufficiently fine
U – characteristic velocity scale
L – characteristic length scale
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4.2 Solving the Algebraic Systems – Cou-

pled Multigrid Methods
• multigrid methods for the (coupled) saddle point problems

A
 

u

p

!

=

 

A B

C 0

! 

u

p

!

=

 

f

g

!

• components of a multigrid method

◦ smoother: simple iterative method for damping the highly oscillating error
components

◦ restriction: restricts the residual from level l to level l − 1

◦ prolongation: prolongation of correction from level l − 1 to level l

◦ coarse grid solver: direct or iterative solver on level 0
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Smoother for Saddle Point Problems

• main difficulty: smoother because of zero–block in the system matrix

• Vanka smoother
◦ based on solution of local problems, Vanka (1986)

◦ smoothing property provable if A s.p.d., C = BT for additive Vanka smoother
(block Jacobi method), Zulehner (2002)

◦ multiplicative Vanka smoother (block Gauss–Seidel method) more efficient

◦ no theory for multiplicative Vanka smoother
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Multiplicative Vanka Smoother

• decomposition of velocity d.o.f.Vh and pressure d.o.f. Qh

Vh = ∪J
j=1Vhj , Qh = ∪J

j=1Qhj

• Aj matrix block A which is connected to Whj = Vhj ∪Qhj

Aj =

 

Aj Bj

Cj 0

!

∈ Rdim(Whj)×dim(Whj)

• one application of multiplicative Vanka smoother: for j = 1, . . . , J

 

u

p

!

j

:=

 

u

p

!

j

+ A−1
j

  

f

g

!

−A
 

u

p

!!

j

• strategy:

◦ choose Qhj

◦ Vhj all velocity d.o.f. which are connected to pressure d.o.f. in Qhj
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Mesh Cell Oriented Vanka Smoother

• discontinuous pressure approximation

• Whj : all d.o.f. which are connected to one mesh cell

• J : number of mesh cells

Q2

Pdisc
1
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Pressure Node Oriented Vanka Smoother

• continuous pressure approximation

• dimQhj = 1 for all j

• J : number of pressure d.o.f.

P2

P1
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Size of Local Systems

• mesh cell oriented Vanka smoother

2d 3d
velo pressure total velo pressure total

Qnc
1 /Q0 (R/T) 4 1 9 6 1 19

Q2/Pdisc
1 9 3 21 27 4 85

Q3/Pdisc
2 16 6 38 64 10 202

Pnc
1 /P0 (C/R) 3 1 7 4 1 13

• same size for all mesh cells
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Size of Local Systems (cont.)

• pressure node oriented Vanka smoother

2d 3d
velo pressure total velo pressure total

Q2/Q1 25 1 51 125 1 376
Q3/Q2 49 1 99 343 1 1030
P2/P1 19 1 39 65 1 196
P3/P2 37 1 75 175 1 526
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The Multiple Discretization Multilevel Method (md ml)

• coupled multigrid methods with Vanka smoother:

◦ very efficient for lowest order non–conforming finite element discretizations
(Turek (1999); J., Tobiska (2000))

◦ less efficient for higher order finite element discretizations (J., Matthies (2001))
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The Multiple Discretization Multilevel Method (md ml)

• coupled multigrid methods with Vanka smoother:

◦ very efficient for lowest order non–conforming finite element discretizations
(Turek (1999); J., Tobiska (2000))

◦ less efficient for higher order finite element discretizations (J., Matthies (2001))

• Construct a multigrid method for higher order finite element discretizations which is
based on lowest order non–conforming finite element discretizations !!
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The Multiple Discretization Multilevel Method (cont.)

• both multilevel approaches

with upwind
higher order

higher order

higher order

higher order

multiple discretisation multilevel approach

geometry multigrid discretisation level

standard multigrid approach

level

L

L-1

1

0

geometry multilevel discretisation

L

L-1

0

1

higher order

lowest order non-conforming

lowest order non-conforming

lowest order non-conforming

with upwind

with upwind

with upwind
lowest order non-conforming

L+1

• md ml: convergence of W–cycle for A s.p.d., C = BT , Braess–Sarazin smoother:
J., Knobloch, Matthies, Tobiska (2002)
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Summary of Our Experiences

• higher order discretizations in space and time necessary for accurate simulations

• low order discretizations are important tools in the construction of multilevel
solvers for systems coming from higher order discretizations

• system are much more complicated to solve for higher order discretizations

• multiple discretization multilevel methods as preconditioner of stable Krylov
subspace method currently an efficient approach

• flexible Krylov subspace methods necessary (flexible GMRES, Saad (1993))

• systems easier to solve for discontinuous pressure approximations

• similar observations for the steady state Navier–Stokes equations, J. (2002)
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Thank you for your attention !

http://www.math.uni-sb.de/ag/john/
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