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Abstract Recent results on the numerical analysis of Algebraic Flux Correc-
tion (AFC) finite element schemes for scalar convection-diffusion equations are
reviewed and presented in a unified way. A general form of the method is pre-
sented using a link between AFC schemes and nonlinear edge-based diffusion
schemes. Then, specific versions of the method, that is, different definitions for
the flux limiters, are reviewed and their main results stated. Numerical studies
compare the different versions of the scheme.

1 Introduction

Scalar convection-diffusion equations model the convective and molecular trans-
port of a quantity like temperature or concentration. In applications, the con-
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versity, Sokolovská 83, 18675 Praha 8, Czech Republic
E-mail: knobloch@karlin.mff.cuni.cz

Richard Rankin
School of Mathematical Sciences, University of Nottingham Ningbo China, 199 Taikang East
Road, Ningbo, 315100, China
E-mail: Richard.Rankin@nottingham.edu.cn



2 Gabriel R. Barrenechea et al.

vective transport is usually dominant, which is the case of interest in this
paper.

Here, we consider the steady-state situation, where the mathematical prob-
lem is formulated as follows: Find u : Ω → R such that

− ε∆u+ b · ∇u+ c u = g in Ω , u = uD on ∂Ω , (1)

where Ω ⊂ Rd (d = 2, 3) is a bounded polygonal or polyhedral domain with
a Lipschitz continuous boundary ∂Ω, ε > 0 is a constant diffusion coefficient,
b ∈ W 1,∞(Ω)d is a solenoidal convection field, c ∈ L∞(Ω) is a non-negative
reaction coefficient, g ∈ L2(Ω) is an outer source of the quantity u, and uD ∈
H

1
2 (∂Ω) ∩ C0(∂Ω) is a boundary datum.

A characteristic feature of solutions of (1) is the appearance of layers, i.e.,
of narrow regions where the solution has a large gradient. These regions are
usually so narrow that the layers cannot be resolved by affordable grids. It is
well known that standard discretizations cannot cope with this situation and
they lead to meaningless numerical solutions that are globally polluted with
huge spurious oscillations. The remedy consists in using stabilized discretiza-
tions. In the context of finite element methods, the proposal of the streamline-
upwind Petrov–Galerkin (SUPG) method in [15,22] was the first milestone in
this direction. Solutions computed with this method usually have sharp layers
at the correct position, but there are still non-negligible spurious oscillations
in a vicinity of layers. Since the publication of [15,22] the development and
analysis of stabilized discretizations for convection-dominated equations has
been an active field of research.

In this research, one can distinguish two directions. The first one is the
development of stabilized methods with a provable order of convergence in
appropriate norms. Examples of this direction are the continuous interior
penalty (CIP) method (see, e.g. [16]) and the local projection stabilization
(LPS) method (see [12] for the first application of this method to a convection-
dominated equation). The second direction consists in finding stabilized meth-
ods that compute solutions without spurious oscillations and still with sharp
layers. The property of being free of spurious oscillations can be expressed
mathematically with the satisfaction of the discrete maximum principle (DMP).
Usually, the satisfaction of the DMP is proved by the sufficient condition that
the matrix of a linear discretization1 is an M-matrix. However, it is well known
that, in the limit case ε = 0, there is a barrier of the order of the local dis-
cretization error for linear discretizations with M-matrices: these discretiza-
tions are at most of first order, e.g., see [42, Thm. 4.2.2].

Since the property of being free of spurious oscillations might be of utmost
importance for a method to be applicable in practice, a significant amount
of work has been devoted to the development of such methods. Due to the
order barrier for linear discretizations, nonlinear discretizations became of in-
terest. One further argument in favor of using nonlinear discretizations for

1 A linear discretization of (1) is a discretization that leads to a linear system of equations.
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a convection-dominated problem stems from the fact that most of the ap-
plications in which convection dominates are modeled by nonlinear partial
differential equations. Then, the use of a nonlinear discretization does not
constitute a significant overhead. Since the late 1980s, there have been a num-
ber of proposals to remove the spurious oscillations of the SUPG method by
adding appropriate nonlinear terms. This class of methods is called spurious
oscillations at layers diminishing (SOLD) methods, or shock capturing meth-
ods. A comprehensive review was carried out in the companion papers [25,26],
and the main conclusion of it was that none of the proposed SOLD methods
reduced the spurious oscillations sufficiently well.

Algebraic stabilizations, so-called Algebraic Flux Correction (AFC) schemes,
became of interest to us as a result of numerical assessments of stabilized dis-
cretizations in [5,25,30,29]. The main motivation for the design of AFC meth-
ods is the satisfaction of the DMP. In addition, they provide reasonably sharp
approximations of the layers. In contrast to SOLD methods, which are based
on variational formulations, the main idea of AFC schemes consists in modi-
fying the algebraic system corresponding to a discrete problem, typically the
Galerkin discretization, by means of solution-dependent flux corrections. Con-
sequently, AFC schemes are nonlinear. The basic philosophy of flux correction
schemes was formulated already in [14,43]. Later, the idea was extended to
the finite element context, e.g., in [4,39]. In the last fifteen years, there has
been an intensive development of these methods, e.g., see [33,34,35,36,37].

None of the above references deals with the mathematical analysis of the
AFC methods. In fact, the first contributions to the numerical analysis of
AFC schemes were presented only recently in [9,10,11]. The first paper [9]
focuses on the solvability of the nonlinear scheme, while [10] presents the first
error analysis of the AFC schemes. Interestingly, the paper [10] also presented
negative results, in the sense that it was shown that unless some restrictions
are imposed in the mesh, the numerical scheme may not converge. Finally,
in the recent paper [11] the role of the linearity preservation was studied.
This study is also complemented by the work [8], where a link between the
AFC schemes and a nonlinear edge-based diffusion scheme is presented, and
the linearity preservation of the scheme is also studied in detail. This latter
reformulation offers the applicability of different tools than those used so far
for the analysis of AFC schemes. In particular, it facilitated the a posteriori
error analysis of the AFC method, presented in [2]. Thus, the present paper
aims at providing a review of these works, and performing the analysis in a
unified framework.

The rest of the manuscript is organized as follows. After having introduced
AFC methods in Section 2, a rewriting as an edge diffusion scheme is presented.
A unified analysis is given in Section 3, covering the existence of a solution,
minimal conditions for the validity of the DMP, and finite element error esti-
mates. Three definitions of limiters are provided in Section 4. Strategies for the
solution of the nonlinear problems are discussed in Section 5. Numerical stud-
ies for different limiters used in AFC schemes and the edge diffusion scheme
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proposed in [8] are presented in Section 6. Finally, Section 7 states the most
important open problems in the field of AFC schemes.

2 The model problem and a unified presentation of AFC schemes

The weak formulation of (1) reads: Find u ∈ H1(Ω) such that u|∂Ω = uD,
and

a(u, v) = (g, v)Ω ∀ v ∈ H1
0 (Ω) , (2)

where (·, ·)Ω denotes the inner product in L2(Ω) or L2(Ω)d and the bilinear
form a(·, ·) is given by

a(u, v) = ε(∇u,∇v)Ω + (b · ∇u, v)Ω + (c u, v)Ω . (3)

Thanks to the Poincaré inequality, and the fact that b is solenoidal and c is
non-negative, this problem has a unique solution.

To discretize the problem (1), we introduce the following notation:

– {Th}h>0 denotes a family of shape regular simplicial triangulations of Ω.
– For a given triangulation Th, Eh denotes the set of its internal edges.
– For every edge E ∈ Eh, we denote by hE the length of E and by xE,1, xE,2

the endpoints of E. Furthermore, for every E ∈ Eh, we choose one unit
tangent vector tE . Its orientation is of no importance.

– For every edge E ∈ Eh, we define the neighborhood ωE := ∪{T ∈ Th :
T ∩ E 6= ∅}.

– For a given triangulation Th, {x1, . . . ,xN} is the set of its nodes. We will
assume that the nodes x1, . . . ,xM are the internal nodes, and xM+1, . . . ,xN
are boundary nodes, i.e., the nodes where the Dirichlet boundary condition
is imposed.

– For a node xi, i = 1, . . . , N , we define

Ei := {E ∈ Eh : xi is an endpoint of E} .

– For a node xi, i = 1, . . . , N , we define ∆i := {T ∈ Th : xi ∈ T}.
– For an interior node xi, i = 1, . . . ,M , we define the index set of its neigh-

bors

Si := {j ∈ {1, . . . , N} \ {i} : xi and xj are endpoints of the same

internal edge E ∈ Eh} .

– The finite element spaces used in this work are given by

Vh := {vh ∈ C0(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th} , Vh,0 := Vh ∩H1
0 (Ω) .

– These spaces have standard nodal basis functions denoted by {ϕ1, . . . , ϕN},
uniquely determined by the conditions ϕi(xj) = δij for all i, j = 1, . . . , N .
We further notice that suppϕi = ∆i.
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– The Lagrange interpolation operator ih : C0(Ω)→ Vh is given by

ihv =

N∑
i=1

v(xi)ϕi .

In addition, we set

ihuD =

N∑
i=M+1

uD(xi)ϕi|∂Ω .

The Galerkin scheme associated to (2) is given as follows: Find uh ∈ Vh
such that uh|∂Ω = ihuD, and

a(uh, vh) = (g, vh)Ω ∀ vh ∈ Vh,0 . (4)

This scheme is well known to lead to inaccurate results on affordable grids.
The first step towards the building of an AFC scheme is the writing of

the Galerkin method (4) in matrix form. For this, we introduce the matrix
A = (aij)

N
i,j=1, where aij = a(ϕj , ϕi). Then, we represent the discrete solution

by a vector U ∈ RN of its coefficients with respect to the basis {ϕ1, . . . , ϕN} of
Vh. Then U ≡ (u1, . . . , uN ) satisfies the following system of linear equations:

N∑
j=1

aij uj = gi , i = 1, . . . ,M , (5)

ui = uD(xi) , i = M + 1, . . . , N , (6)

where gi = (g, ϕi)Ω for i = 1, . . . ,M . Thanks to the ellipticity of a(·, ·) on
Vh,0, the matrix (aij)

M
i,j=1 is positive definite, i.e.,

M∑
i,j=1

ui aij uj > 0 ∀ (u1, . . . , uM ) ∈ RM \ {0} . (7)

Using the matrix A = (aij)
N
i,j=1, we introduce a symmetric artificial diffu-

sion matrix D = (dij)
N
i,j=1 with entries

dij = dji = −max{aij , 0, aji} ∀ i 6= j , dii = −
∑
j 6=i

dij . (8)

The first step of defining an AFC scheme is then to add artificial diffusion
to the algebraic system. More precisely, the problem (4) is replaced by

(AU)i + (DU)i = gi , i = 1, . . . ,M , (9)

ui = uD(xi) , i = M + 1, . . . , N . (10)

In practice, the solution of such a perturbed scheme, which corresponds
to simple upwinding, is too diffusive to be of interest. Then, the aim of AFC
schemes is to localize this added diffusion in such a way that the DMP is
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respected, while the internal and boundary layers are not too smeared. This
requires a finer analysis of the structure of the product DU. Since the row
sums of the matrix D vanish, it follows that

(DU)i =
∑
j 6=i

fij , i = 1, . . . , N ,

where fij = dij (uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . Then, a
further rewriting of (9) reads as follows:

(AU)i +

N∑
j=1

fij = gi , i = 1, . . . ,M ,

ui = uD(xi) , i = M + 1, . . . , N .

The next fundamental step in the building of an AFC scheme is to limit
the fluxes fij . In other words, the idea is to localize the diffusion to the areas
surrounding extrema and layers. To this end, we introduce solution-dependent
correction factors (or flux limiters) βij ∈ [0, 1], and replace system (9) by

N∑
j=1

aij uj +

N∑
j=1

βij(U) dij (uj − ui) = gi , i = 1, . . . ,M , (11)

ui = uD(xi) , i = M + 1, . . . , N . (12)

For βij = 0, the original system (5) is recovered. Hence, intuitively, the coeffi-
cients βij should be as close to 0 as possible to limit the modifications of the
original problem. So far, these coefficients have been chosen in various ways,
and their definition is always based on the fluxes fij . To guarantee that the
resulting scheme is conservative, and to be able to show existence of solutions,
one should require that the coefficients βij are symmetric, i.e.,

βij = βji , i, j = 1, . . . , N .

This requirement also has a mathematical justification. As a matter of fact, in
[9], the possible non-existence of solutions has been shown if this restriction is
ignored. Note that (11) does not involve βij with i ∈ {M+1, . . . , N} and hence
these values can be chosen arbitrarily. We define them by the above symmetry
condition and by the requirement that βij = 0 if i, j ∈ {M + 1, . . . , N}.

2.1 A variational formulation and a rewriting as an edge diffusion scheme

Our starting point is the following variational formulation presented in [10]
for problem (11), (12): Find uh ∈ Vh such that uh|∂Ω = ihuD, and

a(uh, vh) +Dh(uh;uh, vh) = (g, vh)Ω ∀ vh ∈ Vh,0 . (13)
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Here, the nonlinear form Dh(·; ·, ·) is given by

Dh(z; v, w) =

N∑
i,j=1

βij(z) dij (v(xj)− v(xi))w(xi) .

We now rewrite this nonlinear form using the symmetry of dij and βij :

Dh(z; v, w)

=
∑
i>j

βij(z) dij (v(xj)− v(xi))w(xi) +
∑
i<j

βij(z) dij (v(xj)− v(xi))w(xi)

=
∑
i>j

βij(z) dij (v(xj)− v(xi))w(xi) +
∑
i>j

βji(z) dji (v(xi)− v(xj))w(xj)

=
∑
i>j

βij(z) dij (v(xj)− v(xi))(w(xi)− w(xj))

=
∑
E∈Eh

βE(z) |dE | (v(xE,1)− v(xE,2))(w(xE,1)− w(xE,2)) ,

where we have denoted βE = βij = βji and dE = dij = dji for any edge
E ∈ Eh that has the endpoints xi and xj .

Hence, with this rewriting of Dh, we can state the following general form
of an AFC scheme: Find uh ∈ Vh such that uh|∂Ω = ihuD, and

ah(uh;uh, vh) = (g, vh)Ω ∀ vh ∈ Vh,0 , (14)

where ah(z; v, w) = a(v, w) +Dh(z; v, w) with a(·, ·) being defined in (3) and
Dh(·; ·, ·) given by

Dh(z; v, w) =
∑
E∈Eh

βE(z) |dE | (v(xE,1)− v(xE,2))(w(xE,1)− w(xE,2)) . (15)

Since, for any function from Vh, the restriction to any edge E of Eh is a linear
function, one has

Dh(z; v, w) =
∑
E∈Eh

βE(z) |dE |hE (∇v · tE ,∇w · tE)E ∀ v, w ∈ Vh . (16)

From now on we will suppose that, for every edge E ∈ Eh, dE is a real
number, not necessarily linked to the matrix A. This flexibility will allow us
to include a wider class of methods in our presentation.

The solution-dependent limiters βE are still assumed to satisfy βE ∈ [0, 1]
and to assure the solvability of (14) (see the next section), we further make
the following continuity assumption:

Assumption (A1): For any E ∈ Eh, the function βE(uh)(∇uh)|E · tE is a
continuous function of uh ∈ Vh.

It will be shown in Section 4 that the limiters defined in [8,10,11] satisfy
Assumption (A1).
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Remark 1 The fact that the restriction of the functions v and w to the internal
edges is a linear function is what makes it possible to obtain the expression
(16) for Dh. This property also holds for unmapped Q1 finite elements, and
for mapped Q1 finite elements on parallelepipeds, although in that case this
methodology would lead to a completely different method, as the cross-terms
would not be included in the method. The implications of this remark are the
topic of current investigations and are to be reported elsewhere. On a related
note to the previous point, AFC-related schemes using higher order elements
combined with Bernstein basis functions have been developed recently in the
work [38], but the full stability and error analysis of the methods is lacking.

3 General properties of the nonlinear scheme

In this section we present the main results associated to the nonlinear scheme
(14). More precisely, we present results on its solvability, minimal conditions
for the validity of the discrete maximum principle, and a first error estimate
for the method. In the following section the conditions imposed herein will be
checked for different definitions of the limiters βE .

3.1 Existence of solutions

Lemma 1 (Consequence of Brouwer’s fixed-point theorem) Let X be
a finite-dimensional Hilbert space with inner product (·, ·)X and norm ‖ · ‖X .
Let T : X → X be a continuous mapping and K > 0 a real number such that
(Tx, x)X > 0 for any x ∈ X with ‖x‖X = K. Then there exists x ∈ X such
that ‖x‖X < K and Tx = 0.

A proof of Lemma 1 can be found in [40, p. 164, Lemma 1.4]. Now, the existence
of solutions for the nonlinear scheme (14) can be proved.

Theorem 1 (Existence of a solution of (14)) If Assumption (A1) holds,
then there exists a solution uh of (14).

Proof For this proof only, we will consider constants C > 0 that may depend on
the data of (1) and h. In addition, we will make use of a function uh,D ∈ Vh,
which is an extension of the boundary datum ihuD. Let us first define the
nonlinear mapping T : Vh,0 → [Vh,0]′ by

〈Tvh, wh〉 := a(vh + uh,D, wh) +Dh(vh + uh,D; vh + uh,D, wh)− (g, wh)Ω .

Since a(·, ·) is a continuous bilinear form, Assumption (A1) implies that T is
a continuous mapping. Next, from the definition of a(·, ·), it follows that, for
any vh ∈ Vh,0,

a(vh, vh) = ε |vh|21,Ω + (c vh, vh) ≥ ε |vh|21,Ω .
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Moreover, (16) and the fact that βE(vh + uh,D) ≥ 0 give

Dh(vh + uh,D; vh, vh) =
∑
E∈Eh

βE(vh + uh,D) |dE |hE ‖∇vh · tE‖20,E ≥ 0.

Then, the definition of the operator T yields

〈Tvh, vh〉 ≥ ε|vh|21,Ω + a(uh,D, vh) +Dh(vh + uh,D;uh,D, vh)− (g, vh)Ω .

The terms involving uh,D are bounded next. The Cauchy–Schwarz and Poincaré
inequalities lead to

|a(uh,D, vh)| =
∣∣ε(∇uh,D,∇vh)Ω + (b · ∇uh,D, vh)Ω + (c uh,D, vh)Ω

∣∣
≤ ε |uh,D|1,Ω |vh|1,Ω +

√
d ‖b‖∞,Ω |uh,D|1,Ω ‖vh‖0,Ω + ‖c‖∞,Ω ‖uh,D‖0,Ω ‖vh‖0,Ω

≤ C‖uh,D‖1,Ω |vh|1,Ω .

In addition, using the shape regularity of the mesh sequence, βE(·) ≤ 1, and
the local trace inequality, one arrives at

|Dh(vh + uh,D;uh,D, vh)|

=

∣∣∣∣∣ ∑
E∈Eh

βE(vh + uh,D) |dE |hE (∇uh,D · tE ,∇vh · tE)E

∣∣∣∣∣
≤
∑
E∈Eh

|dE |hE ‖∇uh,D · tE‖0,E ‖∇vh · tE‖0,E ≤ C |uh,D|1,Ω |vh|1,Ω .

Finally, the application of the Poincaré and Young inequalities gives

〈Tvh, vh〉 ≥ ε|vh|21,Ω − C ‖uh,D‖1,Ω |vh|1,Ω − ‖g‖0,Ω‖vh‖0,Ω ≥
ε

2
|vh|21,Ω − C0 .

Thus, for vh ∈ Vh,0 such that |vh|1,Ω > (2C0/ε)
1
2 there holds 〈Tvh, vh〉 > 0.

Lemma 1 implies that there exists vh ∈ Vh,0 such that |vh|1,Ω < 2 (C0/ε)
1
2 and

Tvh = 0. In other words, uh := vh + uh,D solves (14). ut

3.2 The Discrete Maximum Principle

In this section we shall formulate general properties of the limiters βE under
which the AFC scheme (14) satisfies the local and global DMP. The local DMP
will be formulated on the patches ∆i defined in Section 2.

To prove the DMP, we make the following general assumption, which is a
reformulation of an analogous assumption introduced in [32].

Assumption (A2): Consider any uh ∈ Vh and any i ∈ {1, . . . ,M}. If uh(xi)
is a strict local extremum of uh on ∆i, i.e.,

uh(xi) > uh(x) ∀ x ∈ ∆i\{xi} or uh(xi) < uh(x) ∀ x ∈ ∆i\{xi} ,

then
ah(uh;ϕj , ϕi) ≤ 0 ∀ j ∈ Si .
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Theorem 2 (Local DMP) Let uh ∈ Vh be a solution of (14) with limiters
βE satisfying Assumption (A2). Consider any i ∈ {1, . . . ,M}. Then

g ≤ 0 in ∆i ⇒ max
∆i

uh ≤ max
∂∆i

u+h , (17)

g ≥ 0 in ∆i ⇒ min
∆i

uh ≥ min
∂∆i

u−h , (18)

where u+h = max{0, uh} and u−h = min{0, uh}. If, in addition, c = 0 in ∆i,
then

g ≤ 0 in ∆i ⇒ max
∆i

uh = max
∂∆i

uh , (19)

g ≥ 0 in ∆i ⇒ min
∆i

uh = min
∂∆i

uh . (20)

Proof Let uh ∈ Vh satisfy (14) and let us denote ui = uh(xi), i = 1, . . . , N .

Then uh =
∑N
j=1 uj ϕj and one has

N∑
j=1

ãij uj = gi , i = 1, . . . ,M , (21)

where

ãij = ah(uh;ϕj , ϕi) , i = 1, . . . ,M , j = 1, . . . , N ,

gi = (g, ϕi)∆i , i = 1, . . . ,M .

Moreover, for i = 1, . . . ,M , one derives

ãii ≥ a(ϕi, ϕi) ≥ ε |ϕi|21,Ω > 0 , (22)

N∑
j=1

ãij = ah(uh; 1, ϕi) = (c, ϕi)∆i ≥ 0 . (23)

These properties follow from the fact that (b ·∇v, v)Ω = 0 for any v ∈ H1
0 (Ω),

Dh(uh;ϕi, ϕi) ≥ 0, and
∑N
j=1 ϕj = 1 in Ω.

Consider any i ∈ {1, . . . ,M} and let g ≤ 0 in ∆i so that gi ≤ 0. Let us

denote Ai =
∑N
j=1 ãij . Since ãij = 0 for any j 6∈ Si ∪ {i}, it follows from (21)

that
Ai ui +

∑
j∈Si

ãij (uj − ui) = gi . (24)

To prove (19), let c = 0 in ∆i and assume that max∆i
uh > max∂∆i

uh.
Since the maximum of uh on ∆i is attained at vertices of the elements of Th

making up ∆i, this means that uh(xi) is the strict maximum of uh on ∆i.
Then Assumption (A2) implies that the sum in (24) is non-negative. Since
Ai = 0 (see (23)) and ãii > 0 (see (22)), there is j ∈ Si such that ãij < 0 and
hence the left-hand side of (24) is positive, which is a contradiction.

For proving (17), it suffices to consider the case Ai > 0. Let us assume that
max∆i

uh > max∂∆i
u+h . Then again max∆i

uh > max∂∆i
uh and also ui > 0.
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Like before, the sum in (24) is non-negative and since Ai ui > 0, the left-hand
side of (24) is positive, which is again a contradiction proving the assertion.

The implications (18) and (20) follow in an analogous way. ut

Theorem 3 (Global DMP) Let uh ∈ Vh be a solution of (14) with limiters
βE satisfying Assumptions (A2) and (A1). Then

g ≤ 0 in Ω ⇒ max
Ω

uh ≤ max
∂Ω

u+h , (25)

g ≥ 0 in Ω ⇒ min
Ω

uh ≥ min
∂Ω

u−h . (26)

If, in addition, c = 0 in Ω, then

g ≤ 0 in Ω ⇒ max
Ω

uh = max
∂Ω

uh , (27)

g ≥ 0 in Ω ⇒ min
Ω

uh = min
∂Ω

uh . (28)

Proof The proof is based on the technique used in [31, Theorems 5.1 and 5.2].
Let uh ∈ Vh satisfy (14) and let g ≤ 0 in Ω. Then the nodal values of uh
satisfy (21) and, due to (7), one has

M∑
i,j=1

vi ãij vj ≥
M∑

i,j=1

vi aij vj > 0 ∀ (v1, . . . , vM ) ∈ RM \ {0} . (29)

Note that

max
Ω

uh = max{ui : i = 1, . . . , N} ,

max
∂Ω

uh = max{ui : i = M + 1, . . . , N} .

Let

s = max{ui : i = 1, . . . , N} , J = {i ∈ {1, . . . , N} : ui = s} .

First, let us show that

ãij ≤ 0 ∀ i ∈ J ∩ {1, . . . ,M}, j 6∈ J . (30)

Let i ∈ J ∩ {1, . . . ,M} and j ∈ Si \ J . Then ãij = aij − βE(uh) |dE | , where
E is the edge with endpoints xi and xj . For any k ∈ N, define the function
ukh = uh +ϕi/k. Then ukh(xi) is the strict maximum of ukh on Ω and hence, in
view of Assumption (A2),

(aij − βE(ukh) |dE |) (uki − ukj ) = ah(ukh;ϕj , ϕi) (uki − ukj ) ≤ 0 ,

where uki = ukh(xi) and ukj = ukh(xj). Since ukh → uh for k →∞, Assumption
(A1) implies that

(aij − βE(uh) |dE |) (ui − uj) ≤ 0 .
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As ui−uj > 0, it follows that ãij ≤ 0. For j 6∈ Si∪{i}, one has ãij = 0, which
completes the proof of (30).

Now we want to prove that the relations (21), (23), (29), and (30) imply

(25) and (27). If c = 0 in Ω and hence
∑N
j=1 ãij = 0 for i = 1, . . . ,M (see

(23)), then (21) still holds if one adds a constant to all components of the

vector (u1, . . . , uN ) so that one can assume that s > 0. If
∑N
j=1 ãij > 0, then

s > 0 can be also assumed since otherwise (25) trivially holds.

Thus, let s > 0 and let us assume that (27) does not hold, which implies
that J ⊂ {1, . . . ,M}. We shall prove that then

∃ k ∈ J : µk :=
∑
j∈J

ãkj > 0 . (31)

Assume that (31) does not hold. Then, applying (23) and (30), one derives for
any i ∈ J

0 ≥
∑
j∈J

ãij ≥ −
∑
j 6∈J

ãij ≥ 0 ,

which gives ∑
j∈J

ãij = 0 ∀ i ∈ J , ãij = 0 ∀ i ∈ J, j 6∈ J .

Thus, the matrix (ãij)i,j∈J is singular and hence there exist real numbers
{vi}i∈J , not all equal to zero, such that

∑
i∈J ãij vi = 0 for j = 1, . . . ,M .

Consequently, the matrix (ãij)
M
i,j=1 is singular, which contradicts (29). There-

fore, (31) holds and hence, denoting r = max{ui : i = 1, . . . , N, i 6∈ J} , one
obtains using (21), (30), and (23)

s µk =
∑
j∈J

ãkj uj = gk −
∑
j 6∈J

ãkj uj ≤ gk + r
∑
j 6∈J

(−ãkj) ≤ r µk

(note that the first inequality implies that r > 0). Hence, s ≤ r, which is a
contradiction to the definition of J . Therefore (27) and hence also (25) holds.

The relations (26) and (28) can be proved analogously. ut

Remark 2 The global DMP stated in (27) and (28) assures that the global
maximum (resp. minimum) is attained on the boundary of Ω but does not
exclude that it is also attained at internal nodes. Therefore, it is called weak
DMP. The strong DMP states that the global maximum (resp. minimum) is
attained only on the boundary of Ω and easily follows if c = 0 in Ω and g is
negative (resp. positive). Then one has

g < 0 in Ω ⇒ uh(xi) < max
∂Ω

uh , i = 1, . . . ,M , (32)

g > 0 in Ω ⇒ uh(xi) > min
∂Ω

uh , i = 1, . . . ,M . (33)
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Indeed, if uh(xi) = max∂Ω uh for some i ∈ {1, . . . ,M}, then i ∈ J and hence
it follows from (21), (23), and (30) that

gi =

N∑
j=1

ãij uj =
∑
j 6∈J

ãij (uj − ui) ≥ 0 ,

which is a contradiction. The statement (33) follows analogously.

3.3 An a priori error estimate

The error estimate will be proven using the following mesh-dependent norm.

‖v‖h :=
(
ε |v|21,Ω + c0 ‖v‖20,Ω +Dh(uh; v, v)

) 1
2 ,

where Dh is defined in (15) and c0 := inf essΩ c .

Theorem 4 (Error estimate) Let us suppose that the solution of (2) belongs
to H2(Ω) and that c0 > 0. Then, there exists C > 0, independent of h and the
data of (1), such that

‖u− uh‖h ≤ C
(
ε+ c−10 {‖b‖2∞,Ω + ‖c‖2∞,Ω h2}

) 1
2h |u|2,Ω +Dh(uh; ihu, ihu)

1
2 .

Proof We decompose the error in the usual way u− uh = (u− ihu) + (ihu−
uh) =: ρh + eh. First, we notice that Dh(uh; ρh, ρh) = 0 , and then, standard
interpolation estimates lead to

‖ρh‖h ≤ C(ε+ c0 h
2)

1
2 h |u|2,Ω .

To bound the discrete error eh we use the ellipticity of a(·, ·), the properties
of Dh(·; ·, ·), and the relations (14) and (2) to get

‖eh‖2h≤ a(eh, eh) +Dh(uh; eh, eh)

= a(ihu, eh)−
{
a(uh, eh) +Dh(uh;uh, eh)

}
+Dh(uh; ihu, eh)

= − a(ρh, eh) +Dh(uh; ihu, eh) .

Next, the continuity of a gives

a(ρh, eh) ≤
([
ε

1
2 + c

− 1
2

0

√
d ‖b‖∞,Ω

]
|ρh|1,Ω + c

− 1
2

0 ‖c‖∞,Ω ‖ρh‖0,Ω
)
‖eh‖h

≤ C
(
ε

1
2 + c

− 1
2

0 ‖b‖∞,Ω + c
− 1

2
0 ‖c‖∞,Ω h

)
h |u|2,Ω ‖eh‖h .

Moreover, since Dh(uh; ·, ·) is a symmetric positive semi-definite bilinear form,
it satisfies Cauchy–Schwarz inequality, which gives

Dh(uh; ihu, eh) ≤ Dh(uh; ihu, ihu)
1
2Dh(uh; eh, eh)

1
2 ≤ Dh(uh; ihu, ihu)

1
2 ‖eh‖h .

Combining the above relations proves the result. ut
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A simple estimate of the consistency error Dh(uh; ihu, ihu)
1
2 is given in the

following lemma.

Lemma 2 (Basic estimate of the consistency error) Denoting

Ah = max
E∈Eh

(
|dE |h2−dE

)
,

one has

Dh(uh; ihu, ihu) ≤ C Ah |ihu|21,Ω ∀ uh ∈ Vh, u ∈ C0(Ω) .

If, in particular, dE are defined by (8), then

Dh(uh; ihu, ihu) ≤ C (ε+ ‖b‖∞,Ω h+ ‖c‖∞,Ω h2) |ihu|21,Ω .

Proof Using βE ≤ 1 and the shape regularity of Th implies that

Dh(uh; ihu, ihu) ≤ Ah
∑
E∈Eh

hd−1E ‖∇ihu · tE‖20,E ≤ C Ah |ihu|21,Ω .

If dE is defined by (8) for an internal edge E with endpoints xi and xj , then

|dE | ≤
∑

T∈Th,xi,xj∈T

(
ε |ϕi|1,T |ϕj |1,T + ‖c‖∞,T ‖ϕi‖0,T ‖ϕj‖0,T

+
√
d ‖b‖∞,T {|ϕi|1,T ‖ϕj‖0,T + |ϕj |1,T ‖ϕi‖0,T }

)
≤ C hd−2E

(
ε+ ‖b‖∞,Ω h+ ‖c‖∞,Ω h2

)
,

which finishes the proof. ut

Lemma 2 shows that if dE is defined by (8), then the convergence order of ‖u−
uh‖h is reduced to 1/2 in the convection-dominated case and no convergence
follows in the diffusion-dominated case. It was demonstrated in [10] that these
results are sharp. On the other hand, the results of [8,11] indicate that a better
convergence behaviour in the diffusion-dominated case may be expected if the
AFC scheme is linearity preserving, i.e., if the stabilization originating from the
algebraic flux correction vanishes in regions where the approximate solution
is a polynomial of degree 1. This property can be formulated in terms of the
limiters βE in the following way.

Assumption (A3): The limiters βE possess the linearity-preservation prop-
erty, i.e.,

βE(uh) = 0 if uh|ωE
∈ P1(ωE) ∀ E ∈ Eh .

The linearity preservation leads to an improved bound of the consistency
error provided that the limiters satisfy the following Lipschitz-continuity as-
sumption.

Assumption (A4): For any E ∈ Eh with endpoints xi and xj , the function
βE(uh)(∇uh)|E · tE is Lipschitz continuous in the sense that∣∣∣βE(uh)(∇uh)|E ·tE−βE(vh)(∇vh)|E ·tE

∣∣∣ ≤ C ∑
E′∈Ei∪Ej

∣∣∣(∇(uh−vh))|E′ ·tE′

∣∣∣ ,
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where C > 0 is independent of uh, vh, i, and j.

Lemma 3 (Improved estimate of the consistency error) Let the lim-
iters βE satisfy Assumptions (A3) and (A4). Then

Dh(uh; ihu, ihu) ≤ ε

2
|uh − ihu|21,Ω + C

A2
h

ε
|ihu|21,Ω + ε h2 |u|22,Ω .

Proof The proof is a refinement of the technique used in [8, Theorem 4]. Let
us write Dh =

∑
E∈Eh

DE with

DE(z; v, w) = βE(z) |dE |hE (∇v · tE ,∇w · tE)E .

Then it follows from Assumption (A4) and the shape regularity of Th that,
for any uh, vh, wh ∈ Vh,

|DE(uh;uh, wh)−DE(vh; vh, wh)|

≤ C |dE |h2E
∑

E′∈Ei∪Ej

∣∣∣(∇(uh − vh))|E′ · tE′

∣∣∣ ∣∣∣(∇wh)|E · tE
∣∣∣

≤ C̃ |dE |h2−dE |uh − vh|1,ωE
|wh|1,ωE

. (34)

Consequently,

|Dh(uh;uh, wh)−Dh(vh; vh, wh)| ≤ C Ah |uh − vh|1,Ω |wh|1,Ω .

Like in Lemma 2, one also obtains

|Dh(uh; vh, wh)| ≤ C Ah |vh|1,Ω |wh|1,Ω .

Using the last two estimates and applying Young’s inequality, one obtains

Dh(uh; ihu, ihu) = Dh(uh; ihu− uh, ihu)

+ {Dh(uh;uh, ihu)−Dh(ihu; ihu, ihu)}+Dh(ihu; ihu, ihu)

≤ ε

2
|uh − ihu|21,Ω + C

A2
h

ε
|ihu|21,Ω +Dh(ihu; ihu, ihu) .

To bound the last term, we use the linearity preservation and the Lipschitz
continuity of DE . More precisely, for a given E ∈ Eh, we introduce the function
iEu ∈ P1(ωE) as the unique solution of the problem

(∇iEu,∇ψ)ωE
= (∇u,∇ψ)ωE

∀ψ ∈ P1(ωE) , (iEu, 1)ωE
= (u, 1)ωE

.

Using standard finite element approximation results (see [18]), iEu satisfies

|u− iEu|1,ωE
≤ C hE |u|2,ωE

. (35)

Outside ωE , the function iEu can be arbitrarily extended to a function from
Vh. In view of Assumption (A3), one has DE(iEu; iEu, ihu) = 0 and hence,
using (34), (35), and the shape regularity of Th, one obtains

DE(ihu; ihu, ihu) = DE(ihu; ihu, ihu)−DE(iEu; iEu, ihu)

≤ C |dE |h2−dE |ihu− iEu|1,ωE
|ihu|1,ωE

≤ C̃ |dE |h3−dE |u|2,ωE
|ihu|1,ωE

.
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This implies that

Dh(ihu; ihu, ihu) ≤ C Ah h |u|2,Ω |ihu|1,Ω ≤
C2A2

h

4 ε
|ihu|21,Ω + ε h2 |u|22,Ω ,

which completes the proof. ut

4 Various definitions of the limiters

4.1 The Kuzmin limiter

In this section we review the results obtained when implementing the method
with the definition of the limiters proposed in [34]. In that work, the algorithm,
originally proposed by Zalesak in [43] was adapted to the steady-state case,
and exploited further. We refer then to this limiter as the Kuzmin limiter. This
limiter has been used in numerous works, for example [5,10], where a detailed
study of its performance for the convection-diffusion equation is carried out.
The numbers dE in the definition of Dh are given by (8) in this case.

After having presented the Kuzmin limiter, we will show that it satisfies
Assumption (A1) and, under an additional assumption on the matrix A, also
Assumption (A2). Consequently, the nonlinear problem (14) possesses a solu-
tion and satisfies the discrete maximum principle. It was demonstrated in [11,
Ex. 7.2] with the help of a numerical example that the AFC scheme with the
Kuzmin limiter is not linearity preserving in general.

The definition of the coefficients for the Kuzmin limiter relies on the values
P+
i , P−i , Q+

i , Q−i computed for i = 1, . . . ,M by

P+
i :=

∑
j ∈ Si

aji ≤ aij

f+ij , P−i :=
∑
j ∈ Si

aji ≤ aij

f−ij , Q+
i := −

∑
j∈Si

f−ij , Q−i := −
∑
j∈Si

f+ij ,

(36)
where fij = dij (uj − ui), f

+
ij = max{0, fij}, and f−ij = min{0, fij}. These

values can be computed by performing a loop over all internal edges. After
this loop, one defines

R+
i := min

{
1,
Q+
i

P+
i

}
, R−i := min

{
1,
Q−i
P−i

}
, i = 1, . . . ,M . (37)

If P+
i or P−i vanishes, we define R+

i := 1 or R−i := 1, respectively. At Dirichlet
nodes, these quantities are also set to be 1, i.e.,

R+
i := 1 , R−i := 1 , i = M + 1, . . . , N . (38)

Then, for any i, j ∈ {1, . . . , N} such that aji ≤ aij , we set

αij :=

R+
i if fij > 0 ,

1 if fij = 0 ,
R−i if fij < 0 ,

αji := αij . (39)
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The final step consists in defining βE := 1− αij for any internal edge E ∈ Eh
having the endpoints xi, xj .

There is an obvious ambiguity in the definition of βE if aij = aji. This
ambiguity does not influence the resulting method if min{aij , aji} ≤ 0 since
then dE = 0 and the respective term with βE does not occur in (15). To fulfill
the condition min{aij , aji} ≤ 0, which also assures the DMP (cf. Lemma 5),
it may help to replace the matrix corresponding to the reaction term by a
lumped diagonal matrix, see [10].

Lemma 4 The Kuzmin limiter satisfies Assumption (A1).

Proof Let E be an internal edge that connects the nodes xi and xj . Then it
suffices to show that αij(uh)(uj − ui) is a continuous function of uh ∈ Vh.
Because of βE(u) = βij = βji, αij = αji, we can restrict these considerations
to the situation that aji ≤ aij . Moreover, it suffices to consider dij < 0 since
otherwise αij ≡ 1.

As first case, ūh ∈ Vh such that fij(ūh) > 0 will be considered. Then
ūi > ūj and hence fij(uh) > 0 in a neighborhood of ūh. Using (39), (37), and
(36), we obtain

αij(uh) = R+
i =

min{P+
i , Q

+
i }

fij + P̃+
i

with P̃+
i =

∑
k ∈ Si

aki ≤ aik, k 6= j

f+ik . (40)

The numerator and the denominator are continuous functions and by assump-
tion, the denominator is positive in a neighborhood of ūh. Hence αij is a
continuous function at ūh. In the same way, we get for the case fij(ūh) < 0
first that ūi < ūj and second the representation formula

αij(uh) = R−i =
min{−P−i ,−Q

−
i }

|fij | − P̃−i
with P̃−i =

∑
k ∈ Si

aki ≤ aik, k 6= j

f−ik . (41)

Using exactly the same reasoning as above, we conclude that αij is continuous
at ūh in this case.

The last case is fij(ūh) = 0 which leads to αij(ūh)(ūj − ūi) = 0. Since
αij is bounded by definition, αij(uh)(uj − ui)→ 0 as uj → ui. Consequently,
αij(uh)(uj − ui) is continuous at ūh. ut

Remark 3 In [10] it was shown that the terms αij(uh)(uj − ui) are even
Lipschitz-continuous. The proof of this property is based on the represen-
tations (40) and (41) of the coefficients αij . The sums in these representa-
tions are Lipschitz-continuous and then one can show that the function which
is obtained by multiplying these representations with (uj − ui) is Lipschitz-
continuous, too.

Lemma 5 Let the matrix of the system (5) satisfy

min{aij , aji} ≤ 0 ∀ i = 1, . . . ,M , j = 1, . . . , N , i 6= j . (42)

Then the Kuzmin limiter satisfies Assumption (A2).
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Proof Consider any uh ∈ Vh, i ∈ {1, . . . ,M}, and j ∈ Si. Let ui := uh(xi) be
a strict local extremum of uh in ∆i. We want to prove that

aij + (1− αij(uh)) dij ≤ 0 . (43)

If aij ≤ 0, then (43) holds since (1− αij(uh)) dij ≤ 0. If aij > 0, then aji ≤ 0
due to (42) and hence aji ≤ aij and dij = −aij < 0. Thus, if ui > uk for
any k ∈ Si, then fij > 0 and fik ≥ 0 for k ∈ Si, so that αij = R+

i = 0.
Similarly, if ui < uk for any k ∈ Si, then fij < 0 and fik ≤ 0 for k ∈ Si, so
that αij = R−i = 0. Since aij + dij ≤ 0, one concludes that (43) holds. ut

4.2 A limiter leading to linearity preservation and DMP on general meshes
(BJK limiter)

Here we present a limiter recently proposed in [11] using some ideas of [35].
This limiter is designed in such a way that the AFC scheme satisfies the
discrete maximum principle and linearity-preservation property on arbitrary
meshes, which is a substantial improvement in comparison with the Kuzmin
limiter. Like in the previous section, the numbers dE used in (15) are given by
(8).

The definition of the limiter again relies on local quantities P+
i , P−i , Q+

i ,
Q−i which are now computed for i = 1, . . . ,M by

P+
i :=

∑
j∈Si

f+ij , P−i :=
∑
j∈Si

f−ij ,

Q+
i := qi (ui − umax

i ) , Q−i := qi (ui − umin
i ) ,

where again fij = dij (uj − ui) and

umax
i := max

j∈Si∪{i}
uj , umin

i := min
j∈Si∪{i}

uj , qi := γi
∑
j∈Si

dij ,

with fixed constants γi > 0. Then one defines the quantities R+
i and R−i again

by (37) and (38) and one sets

α̃ij :=

R+
i if fij > 0 ,

1 if fij = 0 ,
R−i if fij < 0 ,

i, j = 1, . . . , N .

Finally, the limiters are defined by βE := 1 − min{α̃ij , α̃ji} for any internal
edge E ∈ Eh having the endpoints xi, xj .

Lemma 6 The above limiter satisfies Assumptions (A1) and (A2).
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Proof The validity of Assumption (A1) follows analogously as in the proof
of Lemma 4. Let us prove Assumption (A2). Consider any uh ∈ Vh, i ∈
{1, . . . ,M}, and j ∈ Si and assume that ui := uh(xi) is a strict local extremum
of uh in ∆i. Then we want to prove that

aij + (1−min{α̃ij(uh), α̃ji(uh)}) dij ≤ 0 . (44)

If dij = 0, then aij ≤ 0 and hence (44) holds. Thus, let us assume that dij < 0.
If ui > uk for any k ∈ Si, then fij > 0 and umax

i = ui so that P+
i > 0, Q+

i = 0
and α̃ij = R+

i = 0. Since aij + dij ≤ 0, one obtains (44). If ui < uk for any
k ∈ Si, (44) follows analogously. ut

The constants γi can be adjusted in such a way that the linearity-preservation
assumption (A3) is satisfied. In fact, it suffices to use such constants that

ui − umin
i ≤ γi (umax

i − ui) ∀ u ∈ P1(Rd) . (45)

It was proved in [11] that (45) holds with γi = 1 if the patch ∆i is symmetric
with respect to the vertex xi, and with

γi =

max
xj∈∂∆i

|xi − xj |

dist(xi, ∂∆conv
i )

in general, where ∆conv
i is the convex hull of ∆i.

Lemma 7 The above limiter satisfies Assumption (A3).

Proof Consider any i ∈ {1, . . . ,M}. Since R+
i (uh) and R−i (uh) depend on uh

only through uh|∆i
, it suffices to verify that, for any uh ∈ P1(Rd), one has

R+
i (uh) = R−i (uh) = 1. One obtains using (45)

P+
i =

∑
j ∈ Si

uj < ui

dij (uj − ui) ≤
∑
j∈Si

dij (umin
i − ui) ≤

∑
j∈Si

dij γi (ui − umax
i ) = Q+

i

and hence R+
i = 1. Similarly, one obtains R−i = 1. ut

Remark 4 Note that large values of the constants γi cause that more limiters
αij will be equal to 1 and hence less artificial diffusion is added, which makes it
possible to obtain sharp approximations of layers. On the other hand, however,
large values of γi’s also cause that the numerical solution of the nonlinear
algebraic problem becomes more involved.
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4.3 A limiter based on the variation of the discrete solution (BBK limiter)

In this section we review briefly the limiter presented in [8] and its main results.
This limiter, also referred to as smoothness-based viscosity, has its origin in
the finite volume literature (see, e.g., [24] and [23]), and has also been used
(although in a slightly modified way) in the recent work [20].

The numbers dE in the definition of Dh are given by dE = γ0 h
d−1
E , where

γ0 is a fixed parameter, dependent on the data of (1). The limiters βE , E ∈ Eh,
are given by the following algorithm: for wh ∈ Vh, one defines ξwh

as the unique
element in Vh whose nodal values are given by

ξwh
(xi) :=


∣∣∣∑j∈Si

(
wh(xi)− wh(xj)

)∣∣∣∑
j∈Si
|wh(xi)− wh(xj)|

, if
∑
j∈Si

|wh(xi)− wh(xj)| 6= 0 ,

0, otherwise .

Then, on each E ∈ Eh, βE is defined by

βE(wh) := max
x∈E

[
ξwh

(x)
]p

, p ∈ [1,+∞) . (46)

The value for p determines the rate of decay of the numerical diffusion with
the distance to the critical points. A value closer to 1 adds more diffusion in
the far field, while a larger value makes the diffusion vanish faster, but on
the other hand, increasing p may make the nonlinear system more difficult to
solve. In our experience, values up to p = 20 are considered safe to use (see [8]
for a detailed discussion). In this section we will detail the proof of the results
using p = 1, but these extend to p > 1 without difficulty (see [8] for details).

Two remarks can be rapidly made about this definition of the limiter. First,
if a function vh has en extremum at an internal node xi, and E ∈ Ei, then
βE(vh) = 1. This will be of paramount importance for the satisfaction of the
DMP. Moreover, for meshes which have a certain structure, the method is
linearity preserving, i.e., Assumption (A3) holds. More precisely, we will say
that a mesh is symmetric with respect to its inner nodes if, for every node xi,
and every j ∈ Si, there exists k ∈ Si such that xk−xi = −(xj−xi). So, if the
mesh is symmetric with respect to its internal nodes, if E ∈ Eh has endpoints
xi and xj , and vh ∈ P1(ωE), then∑

l∈Si

(
vh(xi)− vh(xl)

)
= 0 and

∑
l∈Sj

(
vh(xj)− vh(xl)

)
= 0 ,

which gives βE(vh) = 0. So, the method does not add extra diffusion in smooth
regions, whenever the mesh is sufficiently structured.

Remark 5 In [8, Remark 1] a process to generate a method which is linearity
preserving on general meshes is described. It involves a minimization process
per node to determine a set of weights. The same results that hold for the
method presented in this work hold for that variant.
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The next result states that the limiter defined in (46) satisfies Assump-
tions (A1), (A2), and (A4).

Lemma 8 The limiter defined in this section satisfies Assumptions (A1) and
(A4). Moreover, if the triangulation Th is such that

(∇ϕj ,∇ϕi)Ω ≤ 0 , i = 1, . . . ,M , j = 1, . . . , N ,

and γ0 ≥ C0‖b‖∞,Ω +C1 ‖c‖∞,Ω h (where C0 and C1 are two constants inde-
pendent of h, but large enough), then Assumption (A2) is fulfilled, too.

Proof To prove (A1) and (A4), let uh, vh ∈ Vh. First, in [8, Lemma 1] the
following result is proven: for any internal node xi the following holds

|ξuh
(xi)− ξvh(xi)| ≤ 4

∑
E′∈Ei

hE′ |∇(uh − vh) · tE′ |∑
E′∈Ei

hE′

(
|∇uh · tE′ |+ |∇vh · tE′ |

) .
Let us now suppose that, for E ∈ Eh having endpoints xi,xj , βE(uh) = ξuh

(xi)
and βE(vh) = ξvh(xj). Then, using that 0 ≤ ξvh(xi) ≤ 1 one obtains

βE(uh)∇uh · tE − βE(vh)∇vh · tE ≤
(
ξuh

(xi)− ξuh
(xj)

)
∇uh · tE

+ |ξuh
(xj)| |∇(uh − vh) · tE |+ |ξuh

(xj)− ξvh(xj)| |∇vh · tE |

≤
(
ξuh

(xi)− ξuh
(xj)

)
∇uh · tE + 5

∑
E′∈Ej

|∇(uh − vh) · tE′ | .

In a completely analogous way one obtains

βE(uh)∇uh · tE − βE(vh)∇vh · tE
≤
(
ξvh(xi)− ξvh(xj)

)
∇uh · tE + 5

∑
E′∈Ei

|∇(uh − vh) · tE′ | .

Thus, since ξuh
(xi)− ξuh

(xj) ≥ 0 and ξvh(xi)− ξvh(xj) ≤ 0,

βE(uh)∇uh · tE − βE(vh)∇vh · tE
≤ min

{(
ξuh

(xi)− ξuh
(xj)

)
∇uh · tE ,

(
ξvh(xi)− ξvh(xj)

)
∇uh · tE

}
+ 5

∑
E′∈Ei∪Ej

|∇(uh − vh) · tE′ |

≤ 5
∑

E′∈Ei∪Ej

|∇(uh − vh) · tE′ | ,

which proves Assumption (A4) and hence also (A1).

To prove (A2) let us suppose that uh, solution of (14), has an extremum
at the internal node xi. Let j ∈ Si, and let E ∈ Eh be the edge with endpoints
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xi and xj . Then, as was mentioned earlier, βE(uh) = 1. Thus, using the shape
regularity of the mesh, one obtains

ah(uh;ϕj , ϕi) = ε(∇ϕj ,∇ϕi)Ω + (b · ∇ϕj , ϕi)Ω
+ (c ϕj , ϕi)Ω + γ0 βE(uh)hdE (∇ϕj · tE ,∇ϕi · tE)E

≤ C0 ‖b‖∞,Ω hd−1E + C1 ‖c‖∞,Ω hdE − γ0hd−1E

= (C0 ‖b‖∞,Ω + C1 ‖c‖∞,Ω h− γ0)hd−1E ,

and Assumption (A2) follows. ut
It follows from Lemma 2 that the consistency error Dh(uh; ihu, ihu) can

be bounded as follows:

Dh(uh; ihu, ihu) ≤ C γ0 h |ihu|21,Ω .

Moreover, if the mesh is symmetric with respect to its internal nodes, then
Lemma 3 implies that the following bound holds for the consistency error

Dh(uh; ihu, ihu) ≤ ε

2
|uh − ihu|21,Ω + C γ20

h2

ε
|ihu|21,Ω + ε h2 |u|22,Ω .

Thus, the method with the definition of the limiters from this section converges
for every regular mesh, and, in addition, in the case in which the limiters are
linearity preserving, the convergence order increases from O(h

1
2 ) to O(h).

4.4 Related recent work

We finish this section by mentioning that, to the research reviewed in this
paper, work has been done in parallel, e.g., in [7,6,19,20]. In those references, a
stabilizing term similar to the one defined in (15) is added to the formulation,
and referred to as the Graph Laplacian. The stabilizing mechanism of the
methods presented in those works and the ones reviewed in this manuscript
are very similar. There are, nevertheless, significant differences in the limiters
βE , some of the results obtained in terms of the satisfaction of the discrete
maximum principle, and the linearity preservation of the final schemes.

For example, in [6] the emphasis is in the regularization of the limiter
proposed there (related to the BBK one) in order to make the limiter differen-
tiable, to allow the use of Newton’s method to solve the nonlinear system. The
regularization proposed in there used regularization parameters that had an
impact on the performance of the method. In addition, although the results
concerning the discrete maximum principle were not too different from the
ones reviewed in this work, the linearity preservation was not guaranteed for
the regularized limiters. In [20] the definition of the limiter (non-differentiable
this time) is modified using generalized barycentric coordinates in order to
make it differentiable on meshes for which the support of basis functions is
convex.
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A final important difference between the works reviewed in this paper and
the above-mentioned references consists in the emphasis. While the papers
just quoted deal with first order hyperbolic systems, the results reviewed in
this paper deal with the convection-diffusion equation. The presence of the
Laplacian in the partial differential equation makes the method satisfy very
different properties, especially on non-Delaunay meshes, as it can be seen in
[10] where an example of non-convergence was given for the Kuzmin limiter.

5 Iterative schemes for solving the nonlinear problem

Consider the weak formulation (13) and the equivalent formulation (11), (12)
in matrix-vector notation. For simplicity, we will restrict the discussion to
the case of homogeneous boundary conditions. These formulations represent
a nonlinear problem since the coefficients βij depend on the finite element
solution uh. Applying an iterative scheme for solving the nonlinear problem,
our experience is that usually damping is necessary to achieve convergence.

Let u
(m)
h , m ≥ 0, be a given approximation of uh.

A fixed point iteration can be defined as follows. In a first step, a finite

element function ũ
(m+1)
h is computed by solving: Find ũ

(m+1)
h ∈ Vh,0 such that

a
(
ũ
(m+1)
h , vh

)
+Dh

(
u
(m)
h ; ũ

(m+1)
h , vh

)
= (g, vh)Ω ∀ vh ∈ Vh,0 . (47)

The matrix-vector form of (47) is

N∑
j=1

aij ũ
(m+1)
j +

N∑
j=1

β
(m)
ij dij

(
ũ
(m+1)
j − ũ(m+1)

i

)
= gi , i = 1, . . . ,M ,

(48)

ũ
(m+1)
i = 0 , i = M + 1, . . . , N ,

where β
(m)
ij = βij

(
u(m)

)
. In the iterations (47) and (48), the matrix of the

problem changes in each iteration.

It is also possible to perform a fixed point iteration in such a way that only
the right-hand side changes. Using the relation

N∑
j=1

βijdij(uj − ui) =

N∑
j=1

dijuj − ui
N∑
j=1

dij︸ ︷︷ ︸
=0

−
N∑
j=1

(1− βij)dij(uj − ui),
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one can consider instead of (48) the iteration

N∑
j=1

(aij + dij) ũ
(m+1)
j = gi +

N∑
j=1

(
1− β(m)

ij

)
dij

(
u
(m)
j − u(m)

i

)

= gi +

N∑
j=1

(
1− β(m)

ij

)
f
(m)
ij , i = 1, . . . ,M , (49)

ũ
(m+1)
i = 0 , i = M + 1, . . . , N .

Using a sparse direct solver, then the matrix of (49) has to be factorized
only once and in all subsequent iterations, only the solutions of the triangular
systems have to be computed.

Another approach for solving the nonlinear problem is a (damped) Newton
method. Let us consider as starting point for deriving this method the matrix-
vector formulation (11), (12). Let the i-th equation be written in the form

Fi(u) =

N∑
j=1

aijuj +

N∑
j=1

βij(u)dij(uj − ui)− gi = 0, i = 1, . . . ,M,

then the intermediate solution in Newton’s method is computed by solving

DF
(
u(m)

)
ũ
(m+1)
h = DF

(
u(m)

)
u
(m)
h − F

(
u(m)

)
, (50)

where DF
(
u(m)

)
is the Jacobian, which can be computed by applying the

product rule and the chain rule, and observing that the derivative of the limiter
with respect to the Dirichlet nodes is not needed since these values are fixed

DFi(u)[v]

=

N∑
j=1

aijvj +

N∑
j=1

βij(u)dij(vj − vi) +

N∑
j=1

(
M∑
k=1

∂βij
∂uk

(u)vk

)
dij(uj − ui)

=

N∑
j=1

aijvj +

N∑
j=1

βij(u)dijvj −

 N∑
j=1

βij(u)dij

 vi

+

M∑
j=1

(
N∑
k=1

∂βik
∂uj

(u)dik(uk − ui)

)
vj .

Hence, the entries of the matrix that has to be inverted in (50) are given by

DF
(
u(m)

)
ij

=


aij + β

(m)
ij dij +

N∑
k=1

∂β
(m)
ik

∂uj
dik

(
u
(m)
k − u(m)

i

)
if i 6= j,

aii −
N∑
j=1
j 6=i

β
(m)
ij dij +

N∑
k=1

∂β
(m)
ik

∂ui
dik

(
u
(m)
k − u(m)

i

)
if i = j,
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for i = 1, . . .M , j = 1, . . . N . The last N−M rows have just the diagonal entry
1. The derivatives of the limiter with respect to the solution are needed. These
derivatives depend on the particular limiter that is used in the simulations.
Note that the derivation presented above requires smoothness of the limiters.
If this property is not given, a possible approach consists in modifying the
limiters such that they become sufficiently smooth, as is proposed in [6] for
a transport equation. The exploration of strategies for applying Newton-type
methods to (modified) AFC schemes for convection-diffusion-reaction equa-
tions is currently ongoing and will be reported elsewhere.

Let ω(m+1) ∈ [ω0, 1], ω0 > 0, be a damping factor. The next iterate is given
by

u
(m+1)
h = u

(m)
h + ω(m+1)

(
ũ
(m+1)
h − u(m)

h

)
.

The choice of appropriate damping parameters is essential for the efficiency of
the iteration. In [26], an automatic strategy for adapting the parameter during
the iteration is described. In [5], the use of the so-called Anderson acceleration,
proposed in [3,41], is advocated. The Anderson acceleration stores vectors from
previous iterations and builds with them second order information.

6 Numerical studies

6.1 The Hemker example

We will consider the so-called Hemker example, which was proposed in [21].
It models the convection of temperature from a hot circle (2d cylinder) in a
channel. The convection field is constant. There are exponential layers at the
circle and interior layers downstream from the circle. The Hemker problem can
be considered as a standard benchmark problem for convection-diffusion equa-
tions. It was used in [5] for comparing a number of stabilized discretizations.
Here, the same setup as in this paper will be considered.

This problem is defined in Ω = {(−3, 9)× (−3, 3)}\{(x, y) : x2 +y2 ≤ 1},
the coefficients are b = (1, 0)T , c = 0, g = 0, and the boundary conditions are
given by

u(x, y) =

{
0, for x = −3,
1, for x2 + y2 = 1,

and ε∇u·n = 0 , elsewhere on the boundary.

In [5], a reference solution on a fine grid containing 48252416 degrees of free-
dom on a Q1 mesh (for details, see [5]) was computed for ε = 10−4, see Fig. 1.
Quantities of interest defined in [5] are the magnitude of the over- and under-
shoots, the difference to the reference solution on selected cut lines, and the
smearing of the interior layer at a certain cutline downstream from the cylin-
der. For the concrete definition of these quantities see [5].

The simulations were performed with P1 finite elements on two types of
grids, see Fig. 2. Grid 1 is aligned downstream to the convection and it has
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Fig. 1 Hemker example: Reference solution for ε = 10−4 on a fine grid.

Fig. 2 Hemker example: Grid 1 (left) and Grid 2 (right), both level 0.

edges at the position where the interior layer is expected. The stopping crite-
rion for the nonlinear iteration was based on the Euclidean norm of the residual
vector, which should be smaller or equal than 10−13 (#dof)

1
2 , where #dof is

the number of degrees of freedom (including Dirichlet nodes) on the respective
grid. As initial iterate, a function that vanishes on all degrees of freedom was
used. The linear systems were solved with the sparse direct solver UMFPACK,
[17]. The simulations were performed with the code MooNMD [28].

By construction of the Hemker example, the solution takes values in [0, 1].
The first quantity of interest from [5] considers the violation of this range by the
numerical solutions. Since the AFC methods satisfy the DMP, it is expected
that there are no violations if the nonlinear problems are solved exactly. In
fact, we could observe in the numerical results only negligible violations of the
order of the stopping criterion for the iteration of the nonlinear problem.

Another quantity of interest studies the smearing of the interior layer at x =
4, see Fig. 3. It can be seen that the smearing introduced by the BJK limiter
is always smaller than with the Kuzmin limiter. In particular, on the aligned
Grid 1, the results with the BJK limiter are much better. This statement is
supported by considering the error to the reference solution at the cutline
x = 4, see Fig. 4. To compute the errors, 10001 equidistant points were taken
on the cutline and the vector e contains the differences of the reference solution
and the numerical solution in these points. The errors in the Euclidean norm
‖e‖2 and the maximum norm ‖e‖∞ are given.

At the cutline y = 1, the results obtained with both limiters are similar,
compare Fig. 5. The negative peak of the error is at the circle in a neighbor-
hood of the point (0, 1). In this neighborhood, there is the transition from the
exponential layer to the interior layer.

Finally, the costs for solving the nonlinear problems is studied. In the used
code, only the fixed point iteration (49) is implemented. Either, the selection
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Fig. 3 Hemker example: Width of the interior layer at x = 4.
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Fig. 4 Hemker example: Errors to the cutline at x = 4, left level 3 (nearly 10000 d.o.f.s),
right level 5 (nearly 150000 d.o.f.s).
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Fig. 5 Hemker example: Errors to the cutline at y = 1, left level 3 (nearly 10000 d.o.f.s),
right level 5 (nearly 150000 d.o.f.s).

of the damping parameter as described in [26] can be used or the Anderson
acceleration with l > 0 vectors and a fixed damping parameter ω. Results are
presented for ω = 0.5 and l = 5, 10, 25 vectors in the Anderson acceleration.
The numbers of iterations that were necessary for solving the nonlinear prob-
lems are illustrated in Fig. 6. It can be seen that generally fewer iterations
were needed for the Kuzmin limiter. On the structured grid, the variant with
25 vectors in the Anderson acceleration needed often the smallest number of
iterations and the fixed point iteration with an adaptive selection of the damp-
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Fig. 6 Hemker example: Number of iterations for solving the nonlinear problems, for ω =
0.5, l = 5, 10, 25 vectors in the Anderson acceleration, on Grid 1 (left), Grid 2 (right); 100 000
iterations means that the stopping criterion was not reached.

ing parameter needed most iterations. But on the unstructured grid, there is
no clear picture. Using many vectors in the Anderson iteration did even re-
sult in failing to reach the stopping criterion on certain levels. For example,
results have been obtained for other values of the damping parameter ω (not
reported here due to space restrictions). More precisely, the use of ω = 0.25
gave similar results to the ones shown in Fig. 6, needing a few more iterations
in most cases. Using ω = 0.7, we observed that the stopping criterion was not
reached in many more cases than for ω = 0.5.

Altogether, these results show a bottleneck of AFC schemes that can hope-
fully be reduced or cured by using more advanced methods.

6.2 Illustration of the smearing of layers

A motivation for studying convection-diffusion equations in channel geometries
comes from the simulation of population balance systems in chemical engineer-
ing. For experiments, chemical engineers often use long and thin pipes. That
means, the diameter of the pipes is of the order of a few millimeters or centime-
ters and the length of the order of several meters. There are several specific
properties when considering convection-diffusion equations in pipes or chan-
nels. First, a preferred flow direction exists. Second, the grids are eventually
aligned with the flow direction and third, the mesh cells might be anisotropic.
For convection-dominated problems there is the experience that it is of advan-
tage to align the grid with the convection. In the literature, one finds already
observations that report notable smearing of layers for algebraic stabilizations
in examples where the grid is aligned to the convection, e.g., in [29,13].

This example considers a straight 2d channel, where the convection is a
constant vector pointing into the direction of the channel. Let Ω = (0, 10) ×
(0, 1) and let ε = 10−10, b = (1, 0)T , c = g = 0 be the coefficients of the
problem. The boundary condition is of impulse in a center strip at the inlet of
the domain and there is a homogeneous Neumann boundary condition at the
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Fig. 7 Transport of an impulse: initial grid, level 0.

Fig. 8 Transport of an impulse: Solution obtained with the SUPG method on level 0.

Fig. 9 Transport of an impulse: Solutions obtained with the Kuzmin limiter on levels 0
(left) and 1 (right).

outlet:

u =


1 x = 0, y ∈ [0.375, 0.625],

0 x = 0, y 6∈ [0.375, 0.625],

0 y = 0 or y = 1,

ε∇u · n = 0 on x = 10, y ∈ (0, 1).

Because of the very small diffusion coefficient, one expects that the initial
condition is transported from the inlet to the outlet.

The coarsest grid is presented in Fig. 7. There are horizontal lines at both
positions where the inlet condition has its jumps. The same stopping criterion
for the solution of the nonlinear problem as in the Hemker example was used.

Applying the SUPG method, one obtains a solution with sharp layers in the
whole channel and with basically no spurious oscillations already on level 0,
compare Fig. 8. In contrast, the solutions computed with the AFC schemes
showed a notable smearing of the layers, in particular the solutions obtained
with the Kuzmin limiter, see Fig. 9. One can see that the layers become sharper
when refining the grid. The solutions computed with the BJK limiter are con-
siderably more accurate than those obtained with the Kuzmin limiter, compare
Figs. 9 and 10. We could observe that the solution for the Kuzmin limiter on
level 3 looks similarly accurate as the solution of the BJK limiter on level 1.

The deeper understanding of the reasons for the smearing effect and the
finding of remedies are open problems. So far, the probably best explanation
is given in [29]. Algebraic stabilizations are by construction multi-dimensional
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Fig. 10 Transport of an impulse: Solutions obtained with the BJK limiter on levels 0 (left)
and 1 (right).

schemes, i.e., there is no dimensional splitting in the construction of the lim-
iters. Such a splitting would be of advantage in this example since it is basically
one-dimensional. However, the limiters see the layers of the solution that are
vertical to the convection and they do not recognize that it is not necessary
to introduce notable diffusion for preventing spurious oscillations.

6.3 A three-dimensional example

LetΩ = Ω1\Ω2 withΩ1 = (0, 5)×(0, 2)×(0, 2) andΩ2 = (0.5, 0.8)×(0.8, 1.2)×
(0.8, 1.2). We consider problem (1) with ε = 10−5, b = (1, `(x), `(x))T where
`(x) = (0.19x3 − 1.42x2 + 2.38x)/4, uD = 1 on ∂Ω1, c = g = 0, and uD = 0
on ∂Ω2. An initial mesh containing 842 elements was generated using gmsh
and adaptively refined to a mesh containing 1,308,237 elements by using an
SUPG method combined with the a posteriori error estimator from [1]. This
adaptively refined mesh was then used to obtain approximations using various
AFC methods. The nonlinear problems were solved using the damped fixed
point algorithm from [26, Figure 12], and the initial guess was obtained using
a standard unstabilized Galerkin approximation.

Slices along the plane z = 1 of the solution obtained with the differ-
ent methods are shown in Figs. 11 – 14. To obtain a reference solution, we
pursued this approach further and obtained a sequence of adaptively refined
meshes using the same error estimator until a highly refined mesh, contain-
ing 135,408,953 elements, was built. A highly accurate (although not fully
resolved) SUPG solution was computed in this mesh, and a slice of this so-
lution along the plane z = 1 is presented in Fig. 15. Finally, in Fig. 16, we
compare all these approximations and depict the cross section of them on the
line y = z = 1.

There is a slight violation of the DMP for the method with the Kuzmin
limiter. This violation is due to the fact that the mesh does not respect the
hypotheses under which the DMP can be shown, cf. Lemma 5. For this mesh
we have found violations of this condition, which explains the numerical results
and confirms the sharpness of the analytical results. The boundary and inner
layers are significantly sharper for the method with the BJK limiter, although
this comes at the price of having to perform significantly more fixed point
iterations than with the other methods. In fact, for this example the method
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Fig. 11 The 3d example: The slice at z = 1 of the approximation obtained using the SUPG
method on an adaptively refined mesh containing 1,308,237 elements.

Fig. 12 The 3d example: The slice at z = 1 of the approximation obtained using the BBK
method. It took 166 iterations for the Euclidean norm of the residual in the damped fixed
point algorithm to be less than the tolerance of 10−6.

Fig. 13 The 3d example: The slice at z = 1 of the approximation obtained using the BJK
method. It took 1117 iterations for the Euclidean norm of the residual in the damped fixed
point algorithm to be less than the tolerance of 10−6.

using the Kuzmin limiter took 70 iterations to reach convergence, while the
method using the BBK limiter took 166 iterations, and the use of the BJK
limiter took 1117 iterations to reach convergence. As was mentioned earlier,
the BJK and Kuzmin limiters provide sharper profiles than the BBK one.
This has been observed not only in this example. This behavior seems to
be related to the equal weight given to all fluxes by the construction of the
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Fig. 14 The 3d example: The slice at z = 1 of the approximation obtained by the Kuzmin
limiter. It took 70 iterations for the Euclidean norm of the residual in the damped fixed
point algorithm to be less than the tolerance of 10−6.

Fig. 15 The 3d example: The approximations obtained using the SUPG method on an
adaptively refined mesh containing 135, 408, 953 elements.

Fig. 16 The 3d example: The approximations shown in Figures 11 (SUPG), 12 (BBK), 13
(BJK), 14 (Kuz) and 15 (Reference) on the line y = z = 1.

BBK limiter, different from the Kuzmin one (essentially, an upwind limiter),
and the BJK limiter, which has the flux associated to the local extremum as
main ingredient, and also includes some explicit mesh information to make it
linearity preserving.

7 Open problems

The improvement of AFC schemes and the further development of their anal-
ysis have been listed in [27] among the most important open problems for
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H1-conforming finite elements for convection-diffusion equations. Some con-
crete issues are the following. It was shown by means of a numerical example
that the general a priori estimate given in [10] is sharp. However, one can
observe for the Kuzmin limiter and the BJK limiter higher orders of conver-
gence than proved in [10], at least on special grids. So far, there is no concrete
characterization of the necessary properties of such grids and no correspond-
ing analysis. A priori analysis of AFC schemes for anisotropic grids remains
an open problem. In addition, numerical analysis of AFC schemes for time-
dependent equations is not available. Last but not least, efficient numerical
methods for solving the nonlinear problems have to be developed.
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36. Dmitri Kuzmin and Matthias Möller. Algebraic flux correction I. Scalar conservation
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