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Steady convection—diffusion—-reaction equation

—&Au+b-Vu+cu=f 1inQ,

dJ
u=u, onIP, 88_1:1:g on 'Y

Q CR? d=2,3...bounded domain with a polyhedral
Lipschitz—continuous boundary dQ

P TV c 0Q .. .relatively open, disjoint
IPUTN =0Q, measg_1(I'?) >0

n ...outer unit normal vector to dQ
e > 0 constant, b € WH=(Q)¢, c € L*(Q), f € L*(Q),
up € H'2(TP), g e HV/2(IV), 6 :=c— 2 divb > 6 > 0

{xeQ; (b-n)(x)<0}cI?



Steady convection—diffusion-reaction equation
—&Au+b-Vu+cu=f 1inQ,
du

u=u, onIP, 88_:g on 'Y
n

Weak formulation
Find u € H'(Q) such that u = u;, on I'? and
a(u,v):(f,v)+<g,v>pN VVEV)

where V:i={veH!'(Q);v=0 onTP"},
a(u,v) =€ (Vu,Vv)+ (b-Vu,v) + (cu,v)

3 unique weak solution



Discrete problem

I, ... triangulation of Q consisting of closed shape—regular
cells T (simplices, quadrilaterals or hexahedra)
with usual compatibility properties

M, ... coarse triangulation constructed by coarsening the
triangulation 7, such that each macro—element M € .,
is the union of one or more neighboring cells T € 9,.
Elements of .#}, are non—overlapping and
shape—reqgular, hyy <Chy VT € 9, M € 4, withT C M

W, C H'(Q) ...FE space on %,

Vi, =W,NV

D;, ...discontinuous FE space on .#,

7, ... orthogonal L? projection of L*(Q) onto Dy,

Ky, :=id — m, .. .fluctuation operator



Discrete problem

Find u, € W, such that u, — u;, € V,, and (ﬁbh‘rD ~ Up)

an(un,vi) = (f,vn) + (g va)rv Vv, eV,

sp(u,v) = Z Ty sy (U, V), Ty > 0
Me.#,
and
sy (u,v) = (kp(b-Vu),x,(b-Vv))y ... SD-based LPS
or

sp(u,v) = (6, Vu, K,Vv)y ... gradient-based LPS



Two variants of LPS

One-level approach: .7, = 9,

spaces W, /Dy, : P,f NH' (Q)/P1.7,
””” NH'(Q)/P-1,
(

bub ﬂHl Q)/Qk—l,%

Two—level approach: .7, is obtained by a refinement of .,

spaces Wy,/Dy:  Pogz NH'(Q)/Pi 1.4,
Qk,ﬁh NH' (‘Q)/Pk—l,://h
Or,7, "H' (Q)/ k1.4,

can be viewed as one—level approach for simplicial meshes



Inf—sup condition
(Vh7 Qh)M

3B >0: inf sup >B VYMe. #,
an€DR(M) , ey, (M) thuo,M HQhHo,M

where Y,(M) = Hy (M) N {v|yy5 vie € Wi}

Necessary condition: dimY,(M) > dimD;,(M)

Sufficient condition: by - Dy(M) C Y, (M) VM e 4,

and all macro—elements in .#), are affine equivalent
to a reference element T

Dy C B,z for some m € Ny
by are generated by a reference bubble function
beC(TYnHN(T), b>0, b#0

simplest choice: Y, (M) = by, - D,(M) (smallest possible dim.)



Meshes for the two—level approach




Residual-based stabilizations (RBS)

The most popular residual-based stabilization is the
SUPG method by Brooks, Hughes (1982):

Find u;, € W), such that u, —u;, € V,, and
a(up, vi) +(Rp(un), 0b-Vy) = (f,vn) +(&va)ry -~ Vv € Vi,
where  Ry(u) =—€eAu+b-Vu+cu—f

Advantages: robust, easy to implement,
accurate away from layers

Drawbacks: non—symmetric, second—order derivatives

LPS: symmetric,
operations discretization and optimization commute



Assumptions and notation

WhDPk,yhﬂHl(Q.) or WhDQk,yhﬂHl(Q)

approximation property of x: vied{0,... k}:
hl

i VaEL(Q),qly € H (M) VM € .4,

1K1 ql|o,m <Ce 7

inverse inequality: |val; < tehy valloy VM € My, Vv €W,
(W = k)

local projection norm:

| 1/2
5 Il (b ) 2§ v+ su(v, V))

1VIlep = <8IV\1Q+!G

Then a,(v,v)=|||||lzp VveEV = Junique u,



General error estimate

1/2
|Ju—un||[p < inf (Huwh\%,rNﬂL Y. Cullu—wy !%,M,*>
Me.#,

wp, EW;?

© sup sp(u,vp)
vpeVy, H’vhH‘LP

W}? = {Wh EWni wi—upy, € Vh},

I Mx = ‘W‘I,M+“kh1\_4l [w)

if sy are SD—based
Crr = (1+B71)" (Mng 4 iy 1>+ [[D1IG o pa i g Mg

Ay = IIlaX{&‘, ™ ||b

w 0.M

O 0o}

If 537 are gradient—based
Cu = (14 B)" (s + gy + IDNIG o pr P 1" 2 )

Ay = max{€, Ty} .



Main result for the gradient—based LPS

Assume: u < H'™(Q) forsomel e {1,... k},

upy, Sufficiently accurate,

)
DNl s Fig IDNG o pa
Ty ~ NN < ;

Hi € u,f

\

\

Then

pl+1/2
v —unlllp S —7— lullisr0

hh oy 1 1/2 h'/2
+ﬁ? (1—|—E> (8/ —l—h+ﬁ H“HZH,Q




Main result for the SD-based LPS

Assume: u€ H'T'(Q)forle {1,... k}, uy, suff. accurate,
b|,, € Wh=(M)4 for all M € 4,

4 )

At h3,

Ml Dllg o p EHE

Ty ~ Mmin <

Then
hl—|—1/2
v —unlllp S —7— lullisr0

I 1 1/2 W'/
_I_ﬁ? (14‘3) (8/ ‘|‘W HMHI—H,Q

1
r A 2
e D)7 ops 07 ns | 20\’
’ 2 H“HIH,M
y,

+< ) min«

Me. #, \'ukHbHanoan 00



Stability in the SUPG norm K., Tobiska (2008)

1/2
2 2
[1vlllsur = (ervhrl,g+co||vhuo,g+ y SM\\b-VvhH%,M>
Me.#),

( N

hat h3,

M lDllg oo p M

Oy ~ min <




Inf—sup condition

We assume that there exists a space B C V}, such that

By= € B(M) with  B(M)C Hy(M).
Me. . #,

I1y, ... orthogonal L? projection of L?>(M) onto B(M), M € .,

stronger norm

1/2
vl = (\rvr|%;+ y {6MHHM<b-vV>||%,M+rMsMo»,v)})

Me. #,

Then

Ap\Up, Vj
9B>0:  sup AV S gy e,
vREV), |thm

(B independent of & and &)



Proof of the inf-sup condition

Znly = Oy (b-Vuy) YM e 4, = zn € By, and
(b-Vup,zp)y = Op Iy (b-Vup)|lg e VM € A,

= ah(uh,zh): Z BMHHM(b-Vuh)
Me. #,

+&(Vup, Vzp) + (cup,zn) + Z Tv Sy (Uns Zn)
Me. . #,

oar — G an(un,up)

2
0.M

>3 Y 6w |y (b- Vuy)
Me. #,

= v =27+ (1420w, satisfies ay(up,vy) > |||un]|?

furthermore, |[|zal[| < Clllunl[l = [llualll = BIl[vall

= Inf—=sup condition holds



Relation between the norms ||| - ||| and ||| - |||, pc

Assumptions: b #£0in Q,

all cells of .#), are affine equivalent to T

If s34 are gradient—based and b is constant or
iIf spy are SD—based and b is piecewise polynomial, then

1lvalll = Cllvalllsupg ¥ ve € Wa.

Otherwise, there exists iy > 0 independent of € such that this
iInequality holds for 0 < & < hg. The constant C is positive and
iIndependent of 4 and the data of the problem.



Theorem 1 There exists hg > 0 independent of € such that for
0<h<hg

3 an(Up,vp)
Blllunll|sypc < sup ’

\va u, €V
v, EV), H’VhH‘SUPG

with a positive constant 3 independent of h and €. Ifb is
constant or, in case of SD—based sy, ifb is piecewise
polynomial, then the inf—sup condition holds for any h.

=- The local projection stabilization controls not only the
fluctuations but also the streamline derivatives.

= The above convergence results hold also in the SUPG
norm.



Relation to residual-based stabilizations
K., Lube (2008)

Assumptions:
—divb=0,c=const., T =0, u, =0

— simplicial triangulations

Then V,=V,®B, with V,:= Pe. i, NV

By,:= € Bi(M), Bi(M)C Hy(M)
Me.#,



Gradient—based LPS scheme:

a(uh,vh) + Z TM(K‘th/th, KhVVh)M — (f, vh) Vv, eV,
Me. #,

Note: vy, € Vh = Vy, € [Dh]d = K,Vy, =0

uh:ﬁh+uz, uM::ule VM e 4,

flM(l/tM, VM) -+ ’CM(KMVMM, K‘MVVM) (f Luh,vM)M Yy € Bk(M)

e Lu=—€Au—b-Vu-+t+cu

(Aprupg, Ve ) m
AM . Bk(M) — Bk(M)

= uy = Ay, pu(f — L)
where py, is the orthogonal L? projection from L?*(M) onto By (M)



Residual-based formulation of LPS

a(un,vp)+ Y, (f —Lun,(Ay) "' omL W)y = (f, %) VW €V,
Me. #,

~ “unusual” GLS method (Franca, Valentin (2000))

Theorem 2 There exist positive constants C; and C, such that,
forany M € #), and g € By(M), we have

C\, i) "gllow _ oty
e+ Ty +|bll=gnehm +chly —  lelloys €+ Tut+chy

Proof The most difficult part is to show that there exists y > 0
such that HKMV\/HOM > ?’HVVHO,M Vv € Bry(M),M € ).



Recovering of the SUPG method for k =1

dmB(M)=1 = Aj, represents a multiplicative factor:

(A* )_1 o HbMH%,M
| —
(& + ) 1bm |7 pp +c lloallg g
cine b (1, by ) Ju (1,bpm)m
Then

(f = Lin, (Ay) ™' puL Vn)m

= 8y (bas - Viiy + ¢ty — fur, bag - Vi — ¢V (xm) )t

(labM)]zw
IMI{(€+ ) bl p +cl1ba I 1}

with 6M =



triangulation:
33 x 33 vertices
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SUPG method, 0>
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Gradient-based LPS, Q5“0 / pdisc
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SUPG method, 0>
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SUPG method, 0>
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SD-based LPS, Q50 / pdisc
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SD-based LPS, Q50 / pdisc
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Conclusions

— optimal convergence results with respect to 4 for the LPS
applied to convection—diffusion—reaction problems can be
obtained for the gradient—based variant and, under additional
assumptions, for the SD—-based variant

— the LPS methods are more stable than their coercivity
suggests

— simplicial LPS methods are closely related to residual-based
stabilizations

— LPS methods often do not attain the quality of the SUPG
method



