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Outline

! Two ways to improve a variational method:

! Improve the variational formulation, e.g., stabilization, VMS

! Improve the discrete spaces, e.g., FEM, NURBS

! Isogeometric Analysis

! Incompressible Navier-Stokes Equations:

! Large Eddy Simulation inspired VMS turbulence theory

! Residual-based turbulence modeling

! Numerical Examples

! Forced isotropic turbulence (Re!=164)

! Channel flow (Re"= 395 to 950)

! Weak versus strong Dirichlet boundary conditions

! Fluid-structure interaction

! Concluding Remarks



Isogeometric Analysis

• Based on technologies (e.g., NURBS) from computational
geometry used in:

– Design

– Animation

– Graphic art

– Visualization

• Includes standard FEA as a special case, but offers other
possibilities:

– Precise and efficient geometric modeling

– Simplified mesh refinement

– Superior approximation properties

– Integration of design and analysis

Isogeometric Analysis
(NURBS, T-Splines, etc.)

FEA

h-, p-refinement

k-refinement



B-Splines

B-spline Basis Functions
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B-spline basis functions

of order 0, 1, 2 for a

uniform knot vector:

    ! = {0,1,2,3,4,…}
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Quadratic (p=2) basis functions for an

open, non-uniform knot vector:

! = {0,0,0,1,2,3,4,4,5,5,5}



- control points - knots
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- control points - knots
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- control points - knots
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Cubic p-refined Curve

Cubic basis

- control points - knots
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Quartic basis



NURBS

Non-Uniform Rational B-splines

 Circle from 3D Piecewise Quadratic Curves
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Mesh

Control net

Toroidal Surface

Mesh

Control net

h-refined Surface



Mesh

Control net

Further h-refined

Surface

Mesh

Control net

Toroidal Surface



Mesh

Control net

Cubic p-refined

Surface

Mesh

Control net

Quartic p-refined

Surface



   Control Net                Mesh

Variation Diminishing Property

Lagrange polynomials NURBS

p=7

p=5

p=3

p=7

p=5

p=3

Control points

Nodes



Finite Element Analysis and Isogeometric Analysis

! Compact support

! Partition of unity

! Affine covariance

! Isoparametric concept

! Patch tests satisfied

Pure Advection
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(1) $ # / k = u,   phase speed is a constant

(2) $ k = 2n% / L, n = 0,1,2,…

Problem:

Solutions take the form:



Pure Advection Phase Error

Pure Diffusion Phase Error

p
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Advection Skew to Mesh:  Problem Setup

u=0

u=0

u=0

u=1

u=1

#

a = (a cos#, a sin# )

$ = $ I

a = 1, $ = 10-6

Advection Skew to Mesh at 45º

20 x 20  element mesh

33 x 33 control variables (dof) 

•  SUPG formulation

•  NURBS: p =15 (14 continuous derivatives)



Cahn-Hilliard Equation (1957)

• Applications:

– Phase segregation of binary alloys

– Image processing

– Planet formation

– Growth of tumors

– Etc.

• Spatial derivatives of order four

Cahn-Hilliard Equation

Conservation of mass:

Dynamics driven by variational derivative of energy:

Cahn-Hilliard equation:
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Remarks

1. Periodic boundary conditions assumed

2. Galerkin method

3. Ck-continuous B-splines, k ! 1

Variational Formulation

Cahn-Hilliard Equation



Numerical Results:  " = 3000, c = 0.63

C1-continuous quadratics (642)

_

Numerical Results:  " = 6000, c = 0.63

C3-continuous quartics (642)

_



 3D Numerical Results (1283)

c = 0.75c = 0.63



Incompressible Navier-Stokes Equations
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Variational Space-Time Formulation
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Variational Multiscale Formulation

Finite dimensional subspace
Standard FE, spectral or NURBS space, etc.

SplitSplit

Original problem becomes:
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Variational Multiscale Method

     

Exact Theory    

(U) B(W ,U + !U ) = W ,F( )
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B( !W ,U + !U ) = !W ,F( )
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Turbulence Modeling Theory

Set  U ' U
h  and W 'W

h  in (U),
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!(uh, !R (U h))) = W

h,F( )
where !F

! ( !F  is the only approximation.  The projector P :U )U  

            is fundamental; see H.-Sangalli, SIAM  J. Num. Anal., 2007.

Variational Multiscale Method
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Fine-scale 

operator

PDE system

 residual

Viscous flux residual

IC residual

Fine-Scale Equations

Exact Solution for the Fine Scales

     

Assumption (inspired by LES)

       !F (uh,0) = 0,  and if !R (U h) is "small",  !F (uh, !R (U h)) is "small" 
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Residual-Driven Turbulence Modeling

    

Green’s operator approximation
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Inspiration from Stabilized Methods 
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Residual-Driven Turbulence Modeling
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Discrete “Conservative” Form

Galerkin

terms

Multiscale

Terms

    

w
h(T ! ),uh(T ! )( )

"
!

#w
h

#t
,uh

$

%&
'

()
Q

+ *s
w

h,2+ *s
u

h( )
Q
+ qh,* ,uh( )

Q
! * ,w h,ph( )

Q

! *w
h,uh -u

h( )
Q

! w
h(0+ ),uh(0! )( )

"
! w

h,f( )
Q

!
#w

h

#t
+* , 2+ *s

w
h( ) +*qh, .u

$

%&
'

() !Q
! * ,w h, .p( )

!Q

! *w, .u -u
h
+u

h - .u + .u - .u( )
!Q

   
Fine-scale approximation:   !u = "#

M
r

M
and !p = "#

C
r
C

Comparison with Classical Stabilized Methods

   

0 = B(W h,U h) ! W
h,F( ) " Galerkin terms

+ B
1
(W h, #U ) + B

2
(W h, #U ,U h) " Classical stabilization

+ B
2
(W h,U h, #U ) + B

2
(W h, #U , #U ) "Non-classical stabilization

Remarks

• These terms omitted in classical stabilized methods

• Extension of the ideas of SUPG, GLS and MS

• No eddy viscosity

Coarse-scale equationCoarse-scale equation



Forced Isotropic Turbulence

! NURBS (B-splines)

! Linears (standard hexahedral finite elements), C0

! Meshes: 323, 643, 1283 , 2563

! Quadratics, C1

! Meshes: 323, 643, 1283

! Cubics, C2

! Meshes: 323, 643

! Uniform mesh in all three directions

! Statistics:

! Energy spectra

! Third-order structure functions

! Forcing of three lowest modes of the velocity field at each

instant

! Power input kept constant (Pinput = 62.8)

! Samples taken ~0.4 Teddy apart

  
S

3
=  u(x +  r ) - u(x)( )

3

Periodic NURBS (B-spline) Basis Functions

Linears

Quadratics

Cubics



Vorticity isosurfaces and streamlines



Vorticity isosurfaces and streamlines



Energy Spectra Re!=164 (h-refinement)



Energy Spectra Re!=164 (k-refinement)

Energy Spectra and Third-order Structure Function

Re!=164

Energy pile-up for spectral method (cf. Guermond)  
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Turbulent Channel Flow at

Re=395

• Meshes of 323 and 643 elements

• Hyperbolic tangent stretching

• NURBS

• h-and k-refinement

• Domain size:  2# x 2 x 2#/3

• Comparison with DNS of Moser, Kim,
and Mansour (1999)

– Used 256 x 193 x 192 spectral functions

Instantaneous streamwise velocity isosurfaces and streamlines



NURBS (B-spline) Basis Functions Normal to Wall

Linear

Quadratic

Cubic



Turbulent channel 

flow at Re=395

Quadratic NURBS

h-refinement

Turbulent channel 

flow at Re=395

Cubic NURBS

h-refinement



Turbulent channel 

flow at Re=395

323 mesh

k-refinement

 Note the increase in

 accuracy from

 linear to quadratic

Turbulent channel 

flow at Re=395

643 mesh

k-refinement

Both quadratics and

cubics are very accurate



    Turbulent channel flow at Re=590, 643 mesh

Quadratic elements

p = 2 FEM

p = 2 NURBS

Periodic inflow

Fluid domain

Solid wall

From Wall ’06, Tezduyar ’07

  Balloon Containing an Incompressible Fluid

(Re = 4 x 105)



(a) Top view (b) Bottom view

Balloon Containing an Incompressible Fluid

! Quadratic NURBS for both solid and fluid

! Boundary layer meshing



Movie goes here

Balloon Containing an Incompressible Fluid
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Weak Boundary Conditions

• Wall-bounded turbulent flows

• Discontinuous Galerkin methodology used to
enforce no-slip Dirichlet conditions weakly

• Turbulent channel flow
– Quadratic NURBS

– Re = 395
• 323 mesh, stretched and uniform, 2# x 2 x 2#/3

• DNS: 256 x 193 x 192, spectral, 2# x 2 x #

– Re = 950
• 643 mesh, stretched and uniform, 4# x 2 x 4#/3

• DNS: 3072 x 385 x 2304, spectral, 8# x 2 x 3#

Weak Dirichlet BC Formulation
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Penalty Term
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h $ element size in the wall-normal direction

Original formulation (purely numerical):

New formulation (based on wall function ideas ):
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,  y = normal distance from the wall

Turbulent channel 

flow at Re=395

Stretched mesh of

323 elements

Weak approaches strong

in the limit of vanishing

wall-normal mesh size,

thus results are similar



Turbulent channel 

flow at Re=395

Uniform mesh of

323 elements

Weak attains accuracy

in the core of the flow

despite the coarseness

of the boundary layer

mesh

Turbulent channel 

flow at Re=950

Stretched mesh of

643 elements

Weak approaches strong 

in the limit of vanishing 

wall-normal mesh size, 

thus results are similar



Turbulent channel 

flow at Re=950

Uniform mesh of

643 elements

Weak is a considerable

improvement over strong

when the boundary layer 

is not resolved 

Conclusions:  Weak BC

• Weak BC

– At least as accurate as strong in all cases

– Much more accurate mean flow velocity than strong when the

boundary layer is under-resolved

– Should be the default strategy

• The law of the wall version is slightly more accurate than the

purely numerical version

• It may be possible to improve the weak BC further



Conclusions:  VMS

! VMS is a rational framework for LES turbulence modeling

! Fine-scale fields are approximated

! No eddy viscosities

! Numerics and modeling are inextricably interlinked

! Very good results in all cases

! Approximation properties of NURBS appear to be partially

responsible for accuracy of results

! C1 quadratic NURBS are a good combination of accuracy and

efficiency

VMS:  The Future

• Stabilized methods may be viewed as historical stepping stones
leading to VMS

• A mathematical theory of fine-scale approximations is needed

• Each fine-scale approximation is a new and different turbulence
model

• Even the simplest seems effective

• It should get better

• Extending the VMS formulation of turbulence modeling to other
situations, such as RANS, etc.

• How far can it go?



Latest Research

• Google “UT Austin ICES” and click on

“Research” to find all my preprints.



Turbulent 

channel

Asymmetric

diffuser

2

7.4

4# 5 42 58

r = 19.4

r = 19.4

!
wall

!
wall

!
out

!
in

!
wall

Periodic BC

Channel outflow = Diffuser inflow

Turbulent Flow in an Asymmetric Diffuser

•  C1-continous quadratic NURBS elements

•  Uniform 302 x 64 x 64 mesh (i.e., no stretching)

•  Weakly enforced no-slip boundary condition




