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Three Different Approaches to LES

Traditional LES (introduced 1960s, e.g., books by Geurts, John, Sagaut)

• resolved + unresolved scales, scale separation via (implicit) filtering

• various models, one widely-used option: (dynamic) subgrid-viscosity model

Three-Scale VMLES (introduced Hughes et al. (2000) + various authors)

• coarse + fine resolved +unres. scales, scale separation via variat. projection

• dominating model option so far: (dynamic) subgrid-viscosity model

Residual-Based VMLES (introduced Calo (2004) + e.g., Bazilevs (2007))

• resolved + unresolved scales, scale separation via variational projection

• modeling: approximate analytical representation -> stabilized methods
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Kolmogorov Energy Spectrum: Traditional LES

ln κ

Subgrid-scale model acting
on all resolved scales
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Kol. Energy Spectrum: Three-Scale VMLES

Subgrid-scale model (directly) only
acting on fine resolved scales

E (κ) ≈ κ−
5
3

ln κ

resolved

3VMLES

ln E (κ)

Coarse resolved 
scales without 
modeling term

coarse unres.fine
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Kol. Energy Spectrum: Residual-Based VMLES

ln κ

Unresolv.-scale approxim.
acting on all resolved scales

E (κ) ≈ κ−
5
3

resolved unres.

RBVMLES

ln E (κ)
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Strong and Weak Formulation of Navier-Stokes

(momentum equ.)

∇ · u = 0 in Ω× ]0, T ] (continuity equ.)

u = g on Γg × ]0, T ]

∂u
∂t +∇ · (u⊗ u)− 2ν∇ · ε (u) +∇p = f in Ω× ]0, T ]

(Dirichlet b.c.)

σ · n = h on Γh × ]0, T ] (Neumann b.c.)

u = u0 in Ω× {0} (initial condition)

where

BM (v;u, p) =
¡
v, ∂u∂t

¢
Ω
+ (v,∇ · (u⊗ u))Ω + (ε (v) , 2νε (u))Ω − (∇ · v, p)Ω

BC (q;u) = (q,∇ · u)Ω

BNS (v, q;u, p) = BM (v;u, p) +BC (q;u) = (v, f)Ω
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3-Scale Velocity Separation

[Hughes et al. (2000), Collis (2001), Gravemeier (2003), …]

fine-scale eq.

unres.-scale eq.

not solved formodel dissipative effect on fine resolved scales

coarse-scale eq.

3-scale separation of velocity weighting/solution functions + funct. spaces:

v = vh + v0h + v̂V = Vh ⊕ V 0h ⊕ V̂ S = Sh ⊕ S 0h ⊕ Ŝ
coarse resolved + fine resolved + unresolved scales

u = uh + u0h + û

BM
¡
vh;uh + u0h + û, ph + p̂

¢
=
¡
vh, f

¢
Ω

BM
¡
v0h;uh + u0h + û, ph + p̂

¢
=
¡
v0h, f

¢
Ω

BM
¡
v̂;uh + u0h + û, ph + p̂

¢
= (v̂, f)Ω

3 subproblems:
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3-Scale Velocity Separation

[Hughes et al. (2000), Collis (2001), Gravemeier (2003), …]

3 subproblems:

BM
¡
vh;uh + u0h + û, ph + p̂

¢
=
¡
vh, f

¢
Ω

BM
¡
v0h;uh + u0h, ph

¢
+
¡
ε(v0h), 2ν0Tε(u

0h)
¢
=
¡
v0h, f

¢
Ω

model. f.-s. eq.

model. c.-s. eq.

not solved formodel dissipative effect on fine resolved scales

Standard Smagorinsky model

3-scale separation of velocity weighting/solution functions + funct. spaces:

v = vh + v0h + v̂V = Vh ⊕ V 0h ⊕ V̂ S = Sh ⊕ S 0h ⊕ Ŝ
coarse resolved + fine resolved + unresolved scales

u = uh + u0h + û

ν0T = (CSh)
2 ¯̄
ε(u0h)

¯̄
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BM
¡
v0h;uh + u0h, ph

¢
+
¡
ε(v0h), 2ν0Tε(u

0h)
¢
=
¡
v0h, f

¢
Ω

Add PSPG Term: Circumventing LBB

[Hughes et al. (1986)]

BM
¡
vh;uh + u0h, ph

¢
=
¡
vh, f

¢
Ω

Modeled coarse- and fine-scale momentum equation:

Modeled continuity equation:

BC
¡
qh;uh

¢
+
¡∇qh, τRM

¡
uh, ph

¢¢
= 0

Two modeling terms: fine-scale subgrid-viscosity term and PSPG term
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Practical Solution Strategies: Overview

Source: V. Gravemeier, The variational multiscale method for laminar and turbulent flow, 
Archives of Computational Methods in Engineering - State of the Art Reviews 13 (2006) 249-324
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Multigrid Approaches to (VM)LES

• Early geometric multigrid approaches to traditional LES, e.g., by Voke

(1989) and Terracol et al. (2001) (also Sagaut et al. (2006))

• Volume-agglomeration method within finite volume / finite element

formulation for scale separation in three-scale VMLES by Koobus and 

Farhat (2004)

challenging grid-based macro-cell agglomeration procedure via dual grid

(Lallemand et al. (1992))

• Geometric multigrid method within finite volume formulation for scale

separation in three-scale VMLES by Gravemeier (2006)

generation and maintenance of an additional grid required

• Related method by John & Kaya (2005), John et al. (2006): L2-projection 

using two grids
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Multigrid Ingredients

5 items are required:

1) A couple of grids or levels

2) A system of equations on each grid/level

3) Some approximate solution technique 
on each grid/level (relaxation)

4) A way to get from one grid/level to 
another (restriction / prolongation)

5) An algorithm or preconditioner
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Variants of Algebraic Multigrid (AMG) Methods

• Classical AMG (“Ruge-Stüben-AMG”) <-> Aggregation-based AMG

• Smoothed Aggregation AMG (SA-AMG) introduced by Vanek et al. 

(1996), optimal method for solution of elliptic problems, but 

inadequate for hyperbolic problems

• Plain Aggregation AMG (PA-AMG) better suited for hyperbolic

problems, but sub-optimal when elliptic parts play a considerable

role (e.g., in diffusion-dominated regions)

• Recent approach in form of a Petrov-Galerkin SA-AMG by Sala and 

Tuminaro (2008) for solving non-symmetric linear equation

systems
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Plain and Smoothed Aggregation AMG

Aggregations due to connectivity/strength of connections of matrix entries:

(Tentative) prolongation operator matrix:

P̂iI = 1 if i-th entry in I-th aggregate, else P̂iI = 0

Potential smoothing: P = SP̂ with smoother S

Restriction:

R = PT

P̂
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BM
¡
v0h;uh + u0h, ph

¢
+
¡
ε(v0h), 2ν0Tε(u

0h)
¢
=
¡
v0h, f

¢
Ω

Reminder: Scale-Separated N-S Equations

BM
¡
vh;uh + u0h, ph

¢
=
¡
vh, f

¢
Ω

Modeled coarse- and fine-scale momentum equation:

Modeled continuity equation:

BC
¡
qh;uh

¢
+
¡∇qh, τRM

¡
uh, ph

¢¢
= 0

Two modeling terms: fine-scale subgrid-viscosity term and PSPG term
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Multigrid Scale-Separated N-S Equations

Modeled coarse- and fine-scale momentum equation:

Modeled continuity equation:

BC
¡
qh;uh

¢
+
¡∇qh, τRM

¡
uh, ph

¢¢
= 0

u = u3h + uδh + ûv = v3h + vδh + v̂Multigrid scale separation:

uh

[Harten (1996)]

BM
¡
v3h;u3h + uδh, ph

¢
=
¡
v3h, f

¢
Ω

BM
¡
vδh;u3h + uδh, ph

¢
+
¡
ε(vδh), 2νδhT ε(uδh)

¢
=
¡
vδh, f

¢
Ω

νδhT = (CSh)
2 ¯̄ε(uδh)¯̄
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PSPG-Stabilized N-S Matrix Formulation

mP

f

K

G

C

Mu−P
Mp−P Ph

=Uh
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Extended AVM3 Formulation

mP

f

RfRKP RK

K

KP G

CCP

MFSSV

Mu−PP Mu−P
Mp−P

≈ 4% RG U3h

δUh

Ph

=100%
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Remarks

• Extended AVM3 formulation based on plain aggregation AMG: projective

scale separation into coarse and fine (velocity) scales purely algebraically

without need for an additional discretization

• Restriction of subgrid-viscosity matrix to fine scales by simply omitting it

in level-transfer process

• Based on “ML” multigrid software package by Sandia NL, development of 

routine for generation of level-transfer operator matrices

• Multigrid solvers may beneficially exploit a priori separation of linear 

equation system into blocks containing different scales

Future work!

• Here: development and use of analogous re-condensed system, solving 

linear equation system using “standard” AMG solver
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Re-Condensed AVM3 Formulation

mP

f

K

G

C

Mu−P
Mp−P Ph

=

Generate scale-separating matrix: S = PR

Uh

[I− S]MFSSV [I− S]
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Analyis of Scale Separation: 1D Model Problem

• Uniform discretization, periodic boundary conditions

• Linear finite elements

• Represents linearized, constant-coefficient model

(vh, ∂tu
h)Ω + (∂xδv

h, ∂xδu
h)Ω = 0

• Understand properties of scale separation from model equation 
(here already in variational FE formulation):
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• 1D model gives discrete ODE system:

• Also investigated: “one-sided” projection (computational efficiency)  

• Compare operators for          for various scale separations:
– PA—AMG
– SA—AMG
– projective/smoothed geometric multigrid (P/S-GMG-2)

• Include comparison to standard (all-scale) subgrid-viscosity term

ODE system

Kdiff

d
dtMU

h = [I− S]Kdiff [I− S]Uh

d
dtMU

h = Kdiff [I− S]Uh
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Eigenvalues (h=1/60) 

Eigenvalues govern temporal evolution of model:

projective scale separation smoothed scale separation
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The Competitors

(1) Traditional LES with dynamic Smagorinsky model (DSM) + PSPG

(2) Residual-Based Variational Multiscale Method (RBVMM)

Besides PSPG term, the following stabilization terms are included:

a) SUPG term

b) grad-div term (bulk viscosity term, LSIC,…)

c) cross-stress term

d) Reynolds-stress term

(according to Bazilevs et al. (2007), transient + viscous stab. terms omitted)
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Parameter Definitions

[Deardorff (1970), Franca and Valentin (2000), Barrenechea and Valentin (2002)]

ξ1 =
4νcT∆t
mkh2 ξ2 =

mkkuhkh
2ν

τM =
1

1
cT∆t

·max(ξ1,1)+ 4ν
mkh

2 ·max(ξ2,1)

τC =
kuhkh
2 ·min (ξ2, 1)

SUPG, PSPG, cross-stress, and Reynolds-stress terms:

grad-div term: ξ2 =
mkkuhkh

2ν

Smagorinsky model parameter: CS = 0.1
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Overview: Turbulent Flow Problems

Homogeneous turbulent flows (0 directions of inhomogeneity)

Turbulent flows featuring 1 spatial direction of inhomogeneity

Turbulent flows featuring 2 spatial directions of inhomogeneity

Turbulent flows being completely inhomogeneous

[Sagaut (2006)]
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Overview: Turbulent Flow Problems

Homogeneous turbulent flows (0 directions of inhomogeneity)

Turbulent flow in a channel

Turbulent flows featuring 2 spatial directions of inhomogeneity

Turbulent flows being completely inhomogeneous
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Turbulent Flow in a Channel: Geometry
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Channel: Numerical Setup

∆t+ =
∆tu2τ
ν = 0.79

Reτ =
uτδc
ν = 395

h+1 = 77.56

h+2,min = 1.32

h+2,max = 67.78
h+3 = 25.85

• Reynolds number based on wall-shear velocity:

• Generalized-α time integration scheme:

• 32 linearly interpolated finite elements in each spatial direction

• hyperbolic refinement in wall-normal direction towards walls

• Channel dimensions: L1 × L2 × L3 = 2πδc × δc × 2
3πδc

ρ∞ = 0.5,
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Channel: Mean Streamwise Velocity
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Channel: RMS Streamwise Velocity
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Channel: RMS Wall-Normal Velocity
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Channel: RMS Spanwise Velocity
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Overview: Turbulent Flow Problems

Homogeneous turbulent flows (0 directions of inhomogeneity)

Turbulent flows featuring 1 spatial direction of inhomogeneity

Turbulent flows featuring 2 spatial directions of inhomogeneity

Turbulent recirculating flow in a lid-driven cavity
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Turbulent Flow in a Lid-Driven Cavity

Review of this flow problem:

Shankar and Deshpande (2000)

Experimental study:

Prasad and Koseff (1989)

DNS study of Kolmogorov scales:

Deshpande and Milton (1998)

Some LES studies: Zang et al. (1993), Bouffanais et al. (2007), …
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Cavity: Numerical Setup

• Reynolds number based on top-lid velocity:

• Crank-Nicolson time integration scheme:

• 32 linearly interpolated finite elements in each spatial direction

• refinement towards walls in x1- and x2-direction (min. length: 0.01)

• Cavity with spanwise aspect ratio (SAR) 1.0:

Re = 10, 000

Ω = [0, 1]× [0, 1]× [0, 1]

∆t = 0.1

• Initial run time: 5 Tcav, statistical evaluation period: 5 Tcav

• here: grad-div term added to AVM3 and DSM for improv. convergence
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Cavity: Mean Velocity in x1-direction vs. x2
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Cavity: RMS Velocity in x2-direction vs. x1
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Cavity: Reynolds-Stress Component 12 vs. x1
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Computing Times

CPU Time AVM3 RBVMM DSM

Channel, Reτ=180, 323 elements 1.00 1.06 1.28

Channel, Reτ=395, 323 elements 1.00 1.30 1.16

Channel, Reτ=590, 643 elements 1.00 1.03 1.42

Cavity, Re=3,200, 323 elements 1.00 1.60 2.50

Cavity, Re=10,000, 323 elements 1.00 1.56 2.53

(normalized by computing time for AVM3)
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Conclusions

• Proposed method: algebraic variational multiscale-
multigrid method (AVM3) for three-scale VMLES of turbulent 
flows

• Crucial features: projective scale separation in a purely 
algebraic way using plain aggregation AMG level-transfer 
operators enables

efficient implementation
preservation of eigenvectors corresponding to low frequencies 
(standard models and smoothed scale separation damp low-
frequency waves)

• Computational evaluation: comparison to residual-based 
VMLES and traditional dynamic Smagorinsky model for two 
(three) turbulent flow cases

• Accuracy: AVM3 provides best results for all test cases, 
from mean flow values to highly sensitive Reynolds-stress 
components

• Efficiency: AVM3 also computationally most efficient 
approach for all test cases
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Outlook

• Exploitation of “block-separated” extended AVM3 matrix 
formulation for efficient solution approach

• Further investigation of potential combinations of residual-
based two-scale and three-scale VMLES

• Grad-div term – angel or devil?

• Comprehensive computational evaluation for “turbulent 
obstacle course”

• Further steps towards LES of turbulent combustion
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Outlook: Turbulent Obstacle Course

Homogeneous turbulence is currently not of particular interest to us!

Outlook: Turbulent flow past a square-section cylinder

Turbulent recirculating flow in a lid-driven cavity

Turbulent flow in a channel
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Outlook: Turbulent Obstacle Course

Outlook: Turbulent flow past a square-section cylinder

• Reynolds number: Re = 22, 000

• Flow domain and boundary conditions:
Rodi et al. (1997): “Status of LES: Results of a Workshop”

• 103,680 elements; C-N: ∆t = 0.075

some early results
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Cylinder: Mean Streamwise Velocity
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