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Starting point

Consider a BVP problem

Lu = f + BC’s

with variational form

u ∈ V | B(u, v) = L(v) ∀v ∈ V

The basic idea of the VMS method is to split the unknown u as

u = uh + u′, V = Vh ⊕ V ′

where uh belongs to the finite element space Vh and u′ ∈ V ′ is
the subscale. The way to model it defines the particular VMS
approximation.
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Problem for the subscales

The subscale u′ satisfies

B(uh, v ′) + B(u′, v ′) = L(v ′) ∀ v ′ ∈ V ′

which can be written in abstract form as

〈Lu′, v ′〉 = 〈f − Luh, v ′〉 + Boundary terms ∀ v ′ ∈ V ′

Very often, u′ is approximated as

u′ = τP ′(f − Luh)

where P ′ is a projection onto the space of subscales (bubbles,
V⊥

h ,...)
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Application to systems

In the case of systems:

u′ = τ rh, rh = P ′(f − Luh)

u′, rh ∈ Rn, τ ∈ matR(n, n)

The way to obtain τ in this case is completely open. We aim to
Give a (more or less) systematic way to design τ .
Consider the possibility of taking τ always a diagonal
matrix.
Apply these concepts to several problems of interest.
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Problem statement

Suppose u′ restricted to ∂K , K ∈ Ph, is known for all K (u′ = 0
is a possibility). We have to approximate

Lu′ = rh in K + BC’s on ∂K

by

u′ ≈ τ rh in each K

so that

τ ≈ L−1
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Approximate/heuristic Fourier analysis

Let us denote the Fourier transform by .̂ Let k/h be the wave
number, with k dimensionless.
Basic heuristic assumption: u′ is highly fluctuating, and
therefore dominated by high wave numbers k . As a
consequence:

Values of u′ on ∂K can be neglected to approximate u′ in
the interior of K .
The Fourier transform can be evaluated as for functions
vanishing on ∂K (and extended to Rd by zero).

The Fourier-transformed equation for the subscales will be

L̂(k)û′(k) = r̂h(k)
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Scaling

Suppose that Lu = f is written in such a way that
f tu =

∑n
i=1 fiui is dimensionally well defined.

In general, if f , g ∈ rangeL, and u, v ∈ domL,

f tg =
n∑

i=1

figi , utv =
n∑

i=1

uivi

may not be dimensionally meaningful.
Let M be a scaling matrix, symmetric, positive-definite and
possibly diagonal, that makes the products f tMg and utM−1v
dimensionally consistent. Let also

|f |2M = f tMf M-norm of f

|u|2M−1 = utM−1u M−1-norm of u

‖f‖L2
M(K ) =

∫
K
|f |2M
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Main approximation

We propose to obtain τ by imposing ‖L‖L2
M(K ) ≤ ‖τ−1‖L2

M(K ).
We have:

‖Lu‖2
L2

M(K )
=

∫
K
|Lu|2Mdx

≈
∫

Rd
|L̂(k)û(k)|2Mdk

≤
∫

Rd
|L̂(k)|2M |û(k)|2Mdk

= |L̂(k0)|2M
∫

Rd
|û(k)|2Mdk

≈ |L̂(k0)|2M‖u‖2
L2

M(K )
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Our proposal

From the previous approximation, ‖L‖L2
M(K ) ≤ |L̂(k0)|M .

Our proposal is to choose τ such that |L̂(k0)|M = |τ−1|M . In
particular, if

λmax(k0) = max specM−1(L̂(k0)
∗
ML̂(k0))

with λ ∈ specM−1A ⇐⇒ ∃x | Ax = λM−1x , we will require that
τ−1Mτ−1 = λmaxM−1, that is to say

Design condition

Mτ−1 = λ
1/2
max(k0)I ⇐⇒ τ = λ

−1/2
max (k0)M

The components of k0 have to be understood as algorithmic
constants.
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CDR systems

Suppose that

Lu = −∂pKpq∂qu + Ap∂pu + Su
Kpq, Ap, S ∈ matR(n, n)

Then

L̂(k) = kpkqKpq + ikpAp + S

L̂(k)∗ = kpkqK t
pq − ikpAt

p + St

In any case

specM−1(L̂(k0)
∗
ML̂(k0)) ⊂ R+
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Problem statement

Differential form:

−∇ · σ +∇p = f
∇ · u = 0

1
2µ

σ −∇Su = 0

Variational form:
Find u = (u, p,σ) ∈ V = (H1

0 (Ω))d × L2(Ω)/R× (L2(Ω))d×d
sym

such that

B(u, v) = L(v) ∀v ∈ V

B(u, v) := (∇Sv ,σ)− (p,∇ · v) + (q,∇ · u) +
1

2µ
(σ, τ )− (∇Su, τ )

L(v) = 〈f , v〉
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Stabilized finite element method

Neglecting interelement boundary terms, the stabilized finite
element problem is

B(uh, vh) + (∇Svh,σ
′)− (p′,∇ · vh) +

1
2µ

(σ′, τ h) = L(vh)

where the subscales are solution of

−∇ · σ′ +∇p′ = ru := P ′(f +∇ · σh −∇ph)

∇ · u′ = rp := P ′(−∇ · uh)

1
2µ

σ′ −∇Su′ = rσ := P ′(− 1
2µ

σh +∇Suh)
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Approximation to the subscales I

Let us consider u = (u1, u2, p, σ11, σ12, σ22) (d = 2) . The first
point is to choose matrix M. If [·] denotes a dimensional group:

[ru]2
[

h2

µ2

]
= [rp]2 = [rσ]2, [u′]2

[
µ2

h2

]
= [p′]2 = [σ′]2

We may take

M = diag (m, m, 1, 1, 1, 1) , m :=
h2

µ2
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Approximation to the subscales II

Let us consider matrix τ of the form

τ = diag(τu, τu, τp, τσ, τσ, τσ)

We will show that τu, τp and τσ are uniquely determined by
dimensionality.
It can be checked that the eigenvalue of the problem

ML̂(k0)
t
ML̂(k0)x = λx ,

has dimensions [λ] = [µ]−2, and therefore

Mτ−1Mτ−1 = diag
(
τ−2

u m2, τ−2
u m2, τ−2

p , τ−2
σ , τ−2

σ , τ−2
σ

)
has to have all the diagonal entries of dimension [µ]−2.



Introduction General idea Just scaling Waves in shallow waters Stokes-Darcy problem MHD problem Summary

Approximation to the subscales III

Being µ the only parameter of the equation, this immediately
implies that

Taus for the three field Stokes problem

τu = αu
h2

µ
, τp = αp2µ, τσ = ασ2µ

where αu, αp and ασ are dimensionless constants that play the
role of the algorithmic parameters of the formulation.
The subscales are given by

u′ = αu
h2

µ
ru

p′ = αp2µrp

σ′ = ασ2µrσ
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Problem statement

Differential equations:

∂tη + H∇ · u + εu0 · ∇η = fη
∂tu + g∇η + εu0 · ∇u = f u

Convection matrices:

A1 =

εu0,1 H 0
g εu0,1 0
0 0 εu0,1

 , A2 =

εu0,2 0 H
0 εu0,2 0
g 0 εu0,2


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Scaling

The differential equations need to be scaled prior to writing the
variational from of the problem. The scaling matrix may be
taken as

S =

 g
H 0 0
0 1 0
0 0 1


In this case:

v tSf =
g
H

ξfη + vfu, [
g
H

ξfη] = [vfu] = L2T−3

f tSf =
g
H

f 2
η + f 2

u , [
g
H

f 2
η ] = [f 2

u ] = L2T−4

Therefore M = I once the equations have been scaled.
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Stabilization parameters

The spectrum of the scaled differential operator is

specS

(
L̂(k0)∗SL̂(k0)

)
={(

ε(k0 · u0) +
√

gH|k0|
)2

, ε2(k0 · u0)
2,

(
ε(k0 · u0)−

√
gH|k0|

)2
}

If we take τ = diag(τη, τu, τu) then

specS(τ−1Sτ−1) = {τ−2
η , τ−2

u , τ−2
u }

from where

Taus for the shallow water waves

τη = τu =
h

C1ε|u0|+ C2
√

gH
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Stabilized formulation

The final formulation is

0 =
g
H

(∂tηh, ξh)− g(uh,∇ξh)−
g
H

(εu0ηh,∇ξh)−
g
H

(fη, ξh)

+(∂tuh, vh) + g(∇ηh, vh) + (εu0 · ∇uh, vh)− (f u, vh)

+τ
g
H

(P ′(∂tηh + H∇ · uh + εu0 · ∇ηh − fη), H∇ · vh + εu0 · ∇ξh)

+τ(P ′(∂tuh + g∇ηh + εu0 · ∇uh − f u), g∇ξh + εu0 · ∇vh)

In blue: Galerkin terms
In red: stabilization terms
In green: scaling coefficients
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Problem statement

Differential equations:

−ν∆u + σu +∇p = f
∇ · u = g

Variational form:

B([u, p], [v , q]) = L([v , q]) ∀[v , q]

where

B([u, p], [v , q]) = ν(∇u,∇v) + σ(u, v)− (p,∇ · v) + (q,∇ · u)

L([v , q]) = 〈f , v〉+ 〈g, q〉
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Stabilized finite element problem

The final discrete stabilized problem is:

Bs([uh, ph], [vh, qh]) = Ls([vh, qh])

where:

Bs([uh, ph], [vh, qh]) = B([uh, ph], [vh, qh])

+ τp
∑

K

〈∇·uh,∇·vh〉K

+ τu
∑

K

〈−ν∆uh + σuh +∇ph, ν∆vh − σvh +∇qh〉K

+ τf

∑
E

〈 [[ nph − ν∂nuh ]] , [[ nqh + ν∂nvh ]] 〉E

Ls([vh, qh]) = L([vh, qh])

+ τp
∑

K

〈g,∇·vh〉K + τu
∑

K

〈f , ν∆vh − σvh +∇qh〉K
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Scaling

Noting the dimensional relationships:

[f ] = [
ν

`2 + σ][u] +
1
[`]

[p]

[g] =
1
[`]

[u]

we may take as scaling matrix

M = diag(muI3, mp)

mu =
( ν

`2 + σ
)−1

, mp =
( ν

`2 + σ
)
`2

which satisfies

[f ]2mu = [g]2mp = [u]2m−1
u = [p]2m−1

p
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Stabilization parameters

Let τ = diag(τu, τu, τp) (in 2D). Imposing the design condition

τ = λ
−1/2
max (k0)M

it is found that

Taus for the Stokes-Darcy problem

τp = c1ν
h2

`2 + c2σ`h

τu = (c1ν + c2σ`h)−1h2

It can be argued that τf = τu/h, that is to say:

τf = (c1ν + cu
2σ`h)−1h
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Convergence in the Darcy limit (Badia and Codina)

Method A B C
` = h L0 L2

0/h

‖eu‖ hk+1 + hl hk+1/2 + hl+1/2 hk + hl+1

Original Suboptimal Quasi-optimal Suboptimal
‖eu‖ hk+1 + hl hk+1 + hl+1 hk + hl+1

Via duality Suboptimal Optimal Suboptimal
‖ep‖ hk+1 + hl hk+1/2 + hl+1/2 hk + hl+1

Original Suboptimal Quasi-optimal Suboptimal
‖ep‖ hk+2 + hl+1 hk+1 + hl+1 hk + hl+1

Via duality Optimal Optimal Suboptimal
‖∇ · eu‖ hk + hl−1 hk + hl hk + hl+1

Suboptimal Optimal Optimal
‖∇ep‖ hk+1 + hl hk + hl hk−1 + hl

Optimal Optimal Suboptimal
k , l Optimal k + 1 = l k = l k = l + 1
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Problem statement

Differential equations:

a · ∇u − ν∆u +∇p +
1

µmρ
b × (∇×B) = f u

∇·u = 0

−∇×(u × b) +
1

µmσ
∇×∇×B +∇r = f B

∇·B = 0

Variational form:

B(u, v) = (v , a · ∇u) + ν(∇v ,∇u)− (p,∇·v) + (q,∇·u)

+
1

µmρ
(B,∇×(v × b))− 1

µmρ
(C,∇×(u × b))

+
1

µmρ

1
µmσ

(∇×C,∇×B) +
1

µmρ
(∇r , C)− 1

µmρ
(∇s, B)
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Stabilization terms

The following terms have to be added to the Galerkin ones
(ASGS formulation):

τ1(a · ∇v + ν∆v +∇q +
1

µmρ
b × (∇×C),

a · ∇u − ν∆v +∇p +
1

µmρ
b × (∇×B))

+ τ2(∇·v ,∇·u)

+ τ3(−
1

µmρ
∇×(v × b)− 1

µmρ

1
µmσ

∇×∇×C +
1

µmρ
∇s,

− 1
µmρ

∇×(u × b) +
1

µmρ

1
µmσ

∇×∇×B +
1

µmρ
∇r)

+ τ4(
1

µmρ
∇·C,

1
µmρ

∇·B)
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Stabilization parameters

Multiplying the equations for B by 1
µmρ , introducing a scaling

matrix M and applying the design condition τ = λ
−1/2
max (k0)M it

is found that

Taus for the MHD problem

τ1 =

(
α +

√
α

γ
β

)−1

, τ2 = h2τ−1
1

τ3 =

(
γ +

√
γ

α
β

)−1

(µmρ)2, τ4 = h2τ−1
3

where

α :=
a
h

+
ν

h2 , β :=
1

µmρ

b
h

, γ :=
1

µmρ

1
µmσ

1
h2
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Summary and conclusions

The process we have proposed consists of:
Scaling the differential equations with a (diagonal) matrix
M so that f tMg and utM−1v are dimensionally consistent.
Fourier transforming the differential operator to obtain L̂.
Choosing τ diagonal.
Applying the design condition:

τ = λ
−1/2
max (k0)M

This process has been applied to several problems of interest
(three field formulation of the Stokes problem, waves in shallow
waters, Stokes-Darcy problem, MHD problem). In all cases, the
resulting finite element formulation turns out to be stable and
optimally convergent in appropriate norms.
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THANK YOU!
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