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Overview

• Diffusion

• Nodal Integration

• Space-time expansion

• Results
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Diffusion I

• Scalar linear heat equation

ut −∆u = 0 (1)

• Standard approach
– Resorting to a first order system (Bassi&Rebay 1997)

ut −∇ ·q = 0

q−∇u = 0
(2)

– ’Classic’ weak formulation for extended system
– We need numerical approximation of the solution u

and q at grid cell boundaries

– For 3D comp. NSE: 15 auxiliary variables are needed
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Diffusion II

• Our approach
– Use the original second order equation
– Classic weak formulation

〈ut ,φ〉Q = 〈∆u,φ〉Q ,

〈ut ,φ〉Q = (∇u ·n,φ)∂ Q −〈∇u,∇φ〉Q

(3)

– second integration by parts (’ultra’ weak formulation)

〈ut ,φ〉Q = (∇u ·n,φ)∂ Q − (u,n ·∇φ)∂ Q + 〈u,∆φ〉Q (4)

– New term strong related to symmetric term in SIP scheme (Nitsche 1971)
– no auxiliary variables

• Can be generalized to non-linear systems if viscous terms have the structure

Ut = ∇ ·F(U,∇U) = ∇ · (D(U)∇U) (5)
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Diffusion III

• We need approximation of u and ∇u ·n at grid cell boundary
– Diffusive generalized Riemann problem (dGRP)

ut −uxx = 0,

u(x,t = 0) =

{
u− + xu−x for x < 0,

u+ + xu−x for x > 0

(6)

– dGRP solution yields numerical approximation

ux
∣∣
∂ Q ≈ η

[[u]]

∆x
+{ux} and u

∣∣
∂ Q ≈ {u} (7)

– Strong relation to the SIP scheme
– η is a known quantity (depends on the order of the DG polynomial)
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Diffusion IV

• Extension to non-linear diffusion systems

Ut − (D(U)Ux)x = 0 (8)

– Linearization of the diffusion matrix

D(U) ≈ D̃ := D({U}) (9)

– Diagonalization of D̃ (’characteristic’ variables)

– Eigenvalues of D̃ are the diffusion coefficients of the decoupled system
– Use dGRP solution for each of the scalar heat equations
– Back transformation to conservative variables yields dGRP approximation

D(U)Ux
∣∣
∂ Q ≈ D̃

(
η

[[U ]]

∆x
+{Ux}

)
and U

∣∣
∂ Q ≈ {U} (10)
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Diffusion V

• SIP approach (Hartmann et al. 2006)

D(U)Ux
∣∣
∂ Q ≈ ηSIPλmax

[[U ]]

∆x
+{D(U)Ux} and U

∣∣
∂ Q ≈ {U} (11)

– For advection diffusion problems with semi definite diffusion matrix

EOCSIP =

{
p+1 for p odd
p for p even

(12)

• Compressible NSE (no diffusion in density equation)
– SIP problem: density jump penalty in density equation
– dGRP solution: if we multiply jump term with diffusion matrix, no direct

penalty term in density equation
⇒dGRP approach yields optimal EOC for comp. NSE equations

• we tested several semi definite advection diffusion systems with same result
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Diffusion VI

• EOC for compressible Navier-Stokes equations
– grid sequence with triangles, quadrilaterals, hanging nodes and curved

elements for h-convergence
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Diffusion VII

• Exact analytical solution
– Choose smooth analytical function
– Insert function into comp. NSE
– Use right hand side as source term
– Solve inhomogeneous comp. NSE

• Results

L2(ρe) EOC L2(ρe) EOC
refinement p=4 p=5

0 1,02E −02 - 2,91E −03 -
1 3,48E −04 4,9 7,31E −05 5,3
2 1,29E −05 4,8 1,07E −06 6,1
3 4,13E −07 5,0 1,65E −08 6,0
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Nodal Integration I

• We choose a modal polynomial representation to simplify p-adaption, modal
filtering and explicit time stepping. Furthermore, orthogonal hierarchical
polynomial trial function are well suited for VMS scale separation.

• Problem: evaluation of the integrals
– L2 stability, if integrals computed exactly: not possible for comp. NSE
– No loss of EOC, if integral evaluation is exact for linear problems
– Standard approach: numerical integration (Gauss)

〈
f1(u),

∂ φ
∂ x1

〉

Q
≈

(p+1)d

∑
j=1

f1(u(χ j))
∂ φ
∂ x1

(χ j)ω j (13)

– Gauss points do not lie on the grid cell surface, therefore can not be
reused for surface integral

– Example: p = 5 hexahedron needs 216 cubature points for volume integral
and 216 cubature points for surface integral (= 432 flux evaluations)
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Nodal Integration II

• Our approach: Nodal integration
– Interpolate pth order polynomial of the non-linear flux f

– Insert into integral and (pre-)integrate exactly

〈
f1(u),

∂ φ
∂ x1

〉

Q
≈

N

∑
i=1

f1(u(ξi))

〈
ψi,

∂ φ
∂ x1

〉

Q
(14)

– number of interpolation points

Nmin =
(p+d)!

d!p!
≤ N ≤ Nmax = (p+1)d (15)

– we can choose int. points that simultaneous support a pth order accurate
interpolation on the surface

– Example: Interpolation for p = 5 hexahedron with N = 105 points
(432 flux evaluations for Gauss approach)
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Nodal integration III

• Interpolation points for p = 5.
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Z

hexahedron with N = 105 pyramid with N = 74
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Nodal integration IV

• Interpolation points for p = 5.
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pentahedron with N = 84 tetrahedron with N = 56
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Space Time Expansion I

• As we aim to perform large scale computations on massive parallel clusters, we
decided to use an explicit time discretization to fully utilize the locality of the
DGM

– Semi discrete DG formulation

〈ut ,φ〉Q = S(u±,∇u±)︸ ︷︷ ︸
surface terms

+ V (u,∇u)︸ ︷︷ ︸
volume terms

(16)

– We simple integrate (16) from time level tn to tn+1

〈
un+1

,φ
〉

Q
= 〈un

,φ〉Q +

tn+1∫

tn

S(u±,∇u±)+V (u,∇u)dt (17)

– We approximate the time integrals with Gauss quadrature

– We need a high order accurate approximation of the solution ũ = ũ(x,t) in
the space time grid cell Q× [tn;tn+1]
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Space Time Expansion II

• We start with a Taylor space time expansion of the approximative solution at
t = tn and x = xB.

ũ(x,t) =
p

∑
j=1

[(t − tn)∂t +(x− xB) ·∇ ] j u
∣∣
(xB,tn)

(18)

• We want that ũ(x,t = tn) = un(x), thus the pure space derivatives are already
available from the DG polynomial

• The mixed space-time and pure time derivatives are approximated using the
so-called Cauchy-Kowalewskaya procedure:

– Example: Burgers equation ut = −uux

utx = −u2
x −uuxx

utt = −utux −uuxt

utt = −(−uux)ux −u(−u2
x −uuxx)

· · ·

(19)
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Space Time Expansion III

• The local time stepping feature
– We drop global time levels tn and introduce the local time level tni for every

grid cell Qi

– We can use the STE approach, just change integration limits to the grid
cells local times

〈
un+1

,φ
〉

QI

= 〈un
,φ〉Qi

+

tni+1∫

tni

S(u±,∇u±)+V (u,∇u)dt (20)

– The RHS of the STE-DG formulation consists of 2 parts:

· The space-time volume integral needs only local data from the own
grid cell. Using the Taylor expansion, this part could be easily
evaluated using the approximation ũ at the space-time Gauss points.

· The space-time surface integral needs more care , as not only local
data, but also data from the adjacent grid cells is needed for the
numerical fluxes.
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Local Time Stepping I

• To get a stable, high order accurate time consistent and conservative scheme,
every grid cell has to satisfy the following evolve condition

t i
ni+1 ≤ min{t i−1

ni−1+1,t
i+1
ni+1+1}

ti

t=0

t

t

i−1

i+1

i−1 iQ Q Q i+1

1

1

1
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Local Time Stepping II

• To get a stable, high order accurate time consistent and conservative scheme,
every grid cell has to satisfy the following evolve condition

t i
ni+1 ≤ min{t i−1

ni−1+1,t
i+1
ni+1+1}

fi−1/2

ti

ti

t=0

t

t
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Local Time Stepping III

• To get a stable, high order accurate time consistent and conservative scheme,
every grid cell has to satisfy the following evolve condition

t i
ni+1 ≤ min{t i−1

ni−1+1,t
i+1
ni+1+1}

ti

ti

fi−1/2
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Local Time Stepping IV

• To get a stable, high order accurate time consistent and conservative scheme,
every grid cell has to satisfy the following evolve condition

t i
ni+1 ≤ min{t i−1

ni−1+1,t
i+1
ni+1+1}

ti

tifi−1/2

ti

t=0

t

t

i−1

i+1
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Local Time Stepping V

• Visualization of the local time stepping algorithm

– 1D Euler equations
– Irregular grid
– As the problem is nonlinear, the local time steps depend on the solution!

– Local time stepping space-time grid

• p-adaptation fully integrated in local time stepping algorithm

• p-adaptation STE-DG scheme fully parallelized and combined with dynamic
load balancing

• first tests indicate excellent speed up and scale up efficiency for O(1000)
processors

• more evaluations and applications are needed...
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Result I

• Linear Stability Theory

– Shear layer (M1 = 0.5, M2 = 0.25 and Re1 = 500)
– 2D compressible Navier-Stokes equations
– ≈ 180.000 DOF p = 6 STE-DG

x

y

100 200 300
-20

0

20



University of Stuttgart IAG
Gregor Gassner Page 23

Result I

• Linear Stability Theory
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Result II

• Flow past a sphere (M = 0.1, ReD = 300)

boundary layer p = 5, vortex street p = 4, far field p = 1 (≈ 1.2 Mio. DOF)
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Result II

• Flow past a sphere (M = 0.1, ReD = 300)

– Drag, lifting coefficients and Strouhal number

Cd ∆Cd Cl ∆Cl Str

0.673 0.0031 −0.065 0.015 0.135

Tomboulides 1993 0.671 0.0028 − − 0.136

Johnson&Patel 1999 0.656 0.0035 −0.069 0.016 0.137
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Result II

• Flow past a sphere (M = 0.1, ReD = 300)

– Vortex detection using λ2 criterion

(a) λ2 iso surface
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Outlook

• Hybrid unstructured 3D Code

• Explicit, arbitrary high order accurate in space and time, well suited for high
performance computing

• Time accurate local time stepping

• p-adaptation in space and time

• Current Task: combine VMS-LES with STE-DG scheme
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Parallelization I

• Scale up test, constant load per processor (150.000 DOF)

nP 1 8 64 512 2197

wallclock time(s) 803 816 818 834 851

efficiency (%) 100.0 98.5 98.2 96.4 94.5

• Speed up test: Shear layer (180.000 DOF)

nP 50 100 400

Nb DOF/proc ∼ 3600 ∼ 1800 ∼ 900

efficiency (%) 100.0 101.0 98.1

• Blast Wave Problem with p-adaptation
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