
Chapter 7

Finite Element Methods for Second
Order Elliptic Problems

7.1 General Convergence Theorems

Remark 7.1. Motivation. There are many situations that are not covered by
the Ritz or Galerkin theory from Section 4.3 and for which an extension of
these theories are needed.

In Section 5.1, non-conforming finite element spaces were introduced, i.e.,
methods where the finite element space V h is not a subspace of V , which
is the space in the definition of the continuous variational problem. The
property V h �⊂ V is given for the Crouzeix–Raviart and the Rannacher–
Turek element. Another case of non-conformity is given if the domain does
not possess a polyhedral boundary and one has to apply some approximation
of the boundary.

For non-conforming methods, the finite element approach is not longer
a Ritz method. Hence, the convergence proof from Theorem 4.14 cannot be
applied in this case. In addition, in practice, one is interested also in the order
of convergence in other norms than �·�V or one has to take into account that
the values of the bilinear or linear form need to be approximated numerically.
The abstract convergence theorem, which will be proved in this section, allows
the numerical analysis of complex finite element methods. ✷

Remark 7.2. Notations, Assumptions. Let {h > 0} be a set of mesh widths
and let Sh, V h normed spaces of functions which are defined on domains
{Ωh ⊂ Rd}. It will be assumed that the space Sh has a finite dimension
and that Sh and V h possess a common norm �·�h. In the application of the
abstract theory, Sh will be a finite element space and V h is defined so that
the restriction and/or extension of the solution of the continuous problem to
Ωh is contained in V h. The index h indicates that V h might depend on h but
not that V h is finite-dimensional. Strictly speaking, the modified solution of
the continuous problem does not solve the given problem any longer. Hence,
it is natural that the continuous problem does not appear explicitly in the
abstract theory.

113



114 7 Finite Element Methods for Second Order Elliptic Problems

Given the bilinear forms

ah : Sh × Sh → R,
ãh : (Sh + V h)× (Sh + V h) → R.

Let the bilinear form ah be regular in the sense that there is a constantm > 0,
which is independent of h, such that for each vh ∈ Sh there is a wh ∈ Sh

with
��wh

��
h
= 1 so that1

m
��vh

��
h
≤ ah(vh, wh). (7.1)

This condition is equivalent to the requirement that the stiffness matrix A
with the entries aij = ah(φj ,φi), where {φi} is a basis of Sh, is uniformly non-
singular, i.e., its non-singularity is independent of h (eigenvalues are bounded
away from zero uniformly with respect to h). For the second bilinear form,
only its boundedness will be assumed

ãh(u, v) ≤ M �u�h �v�h ∀ u, v ∈ Sh + V h. (7.2)

Let the linear functionals {fh(·)} : Sh → R be given. Then, the following
discrete problems will be considered: Find uh ∈ Sh with

ah(uh, vh) = fh(vh) ∀ vh ∈ Sh. (7.3)

Because the stiffness matrix is assumed to be non-singular, there is a unique
solution of (7.3).

Note the similarities of the whole setup with the assumptions for the The-
orem of Lax–Milgram. In fact, the current setup can be considered as a
generalization of the Lax–Milgram theory. ✷

Theorem 7.3. Abstract finite element error estimate. Let the condi-
tions (7.1) and (7.2) be satisfied and let uh be the solution of (7.3). Then,
the following error estimate holds for each ũ ∈ V h

��ũ− uh
��
h
≤ C inf

vh∈Sh

�
��ũ− vh

��
h
+ sup

wh∈Sh

��ãh(vh, wh)− ah(vh, wh)
��

�wh�h

�

+C sup
wh∈Sh

��ãh(ũ, wh)− fh(wh)
��

�wh�h
(7.4)

with C = C(m,M).

1 note that this condition can be formulated as an inf-sup condition:

0 < m ≤ inf
vh∈Sh

sup
wh∈Sh

ah(vh, wh)��vh
��
h

��wh
��
h
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Proof. Because of (7.1), there is for each vh ∈ Sh a wh ∈ Sh with
��wh

��
h
= 1 and

m
��uh − vh

��
h
≤ ah(uh − vh, wh).

Using the definition of uh from (7.3), one obtains

m
��uh − vh

��
h
≤ fh(wh)− ah(vh, wh) + ãh(vh, wh) + ãh(ũ− vh, wh)− ãh(ũ, wh).

From (7.2) and
��wh

��
h
= 1, it follows that

ãh(ũ− vh, wh) ≤ M
��ũ− vh

��
h
.

Rearranging the terms appropriately and using
��wh/

��wh
��
h

��
h
= 1 yields

m
��uh − vh

��
h
≤ M

��ũ− vh
��
h
+ sup

wh∈Sh

��ãh(vh, wh)− ah(vh, wh)
��

��wh
��
h

+ sup
wh∈Sh

��ãh(ũ, wh)− fh(wh)
��

��wh
��
h

. (7.5)

Applying the triangle inequality

��ũ− uh
��
h
≤

��ũ− vh
��
h
+

��uh − vh
��
h
,

inserting the estimate (7.5), and taking into account that vh was chosen arbitrarily, so that
the infimum can be taken, gives (7.4). �

Remark 7.4. To Theorem 7.3.

• An important special case of this theorem is the case that the stiffness
matrix is uniformly positive definite, i.e., the condition

m
��vh

��2
h
≤ ah(vh, vh) ∀ vh ∈ Sh, ∀ h. (7.6)

is satisfied. Dividing (7.6) by
��vh

��
h
reveals that condition (7.1) is implied

by (7.6).
• If the continuous problem is also defined with the bilinear form ãh(·, ·),
then

sup
wh∈Sh

��ãh(vh, wh)− ah(vh, wh)
��

�wh�h
can be considered as consistency error of the bilinear forms, i.e., it mea-
sures the difference between the bilinear forms used in the continuous and
discrete problem, and the term

sup
wh∈Sh

��ãh(ũ, wh)− fh(wh)
��

�wh�h
as consistency error of the right-hand sides.

✷
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Theorem 7.5. First Strang2 lemma Let Sh be a conforming finite element
space, i.e., Sh ⊂ V , with �·�h = �·�V and let the space V h be independent of
h. Consider a continuous problem of the form

ãh(u, v) = f(v) ∀ v ∈ V,

then the following error estimate holds

��u− uh
��
V
≤ C inf

vh∈Sh

�
��u− vh

��
V
+ sup

wh∈Sh

��ãh(vh, wh)− ah(vh, wh)
��

�wh�V

�

+C sup
wh∈Sh

��f(wh)− fh(wh)
��

�wh�V
.

Proof. The statement of this theorem follows directly from Theorem 7.3. �

7.2 Finite Element Method with the Non-Conforming
Crouzeix–Raviart Element

Remark 7.6. The continuous problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded
domain with Lipschitz boundary. Let

Lu = f in Ω, u = 0 on ∂Ω, (7.7)

where the operator is given by

Lu = −∇ · (A∇u)

with A = AT and

A(x) = (aij(x))
d
i,j=1, aij ∈ W 1,p(Ω), p > d. (7.8)

It will be assumed that there are two positive real numbers m,M such that

m �ξ�22 ≤ ξTA(x)ξ ≤ M �ξ�22 ∀ ξ ∈ Rd,x ∈ Ω. (7.9)

Hence, A(x) is positive definite for all x ∈ Ω, so that the operator L is
elliptic, see Definition 1.18. From the Sobolev inequality, Theorem 3.51, it
follows that aij ∈ L∞(Ω). With

a(u, v) =

�

Ω

(A(x)∇u(x)) ·∇v(x) dx

and the Cauchy–Schwarz inequality, one obtains

2 Gilbert Strang, born 1934
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|a(u, v)| ≤ �A�L∞(Ω)

�

Ω

|∇u(x) ·∇v(x)| dx ≤ C �∇u�L2(Ω) �∇v�L2(Ω)

(7.10)
for all u, v ∈ H1

0 (Ω). In addition, it follows from (7.9) that

m �∇u�2L2(Ω) ≤ a(u, u) ∀ u ∈ H1
0 (Ω). (7.11)

Hence, the bilinear form is bounded and elliptic. Using the Theorem of Lax–
Milgram, Theorem 4.5, it follows that for given f ∈ H−1(Ω) there es a unique
weak solution u ∈ H1

0 (Ω) of

a(u, v) = f(v) ∀ v ∈ H1
0 (Ω). (7.12)

✷

Remark 7.7. Assumptions and the discrete problem. The non-conforming
Crouzeix–Raviart finite element P nc

1 was introduced in Example 5.30. To
simplify the presentation, it will be restricted here on the two-dimensional
case. In addition, to avoid the estimate of the error coming from approximat-
ing the domain, it will be assumed that Ω is a convex domain with polygonal
boundary. It can be shown that in this case the boundary is Lipschitz. In
addition, it is assumed that f ∈ L2(Ω) and aij ∈ W 1,∞(Ω).

Let {T h} be a family of regular triangulations of Ω with triangles. Let
P nc
1 (nc – non-conforming) denote the finite element space of piecewise linear

functions that are continuous at the midpoints of the edges. This space is
non-conforming if it is applied for the discretization of a second order elliptic
equation since the continuous problem is given in H1

0 (Ω) and the functions
of H1

0 (Ω) do not possess jumps. The functions of P nc
1 have generally jumps,

see Figure 7.1, and they are not weakly differentiable. In addition, the space
is also non-conforming with respect to the boundary condition, which is not
satisfied exactly. The functions from P nc

1 that will be sought as an approx-
imation of the solution of the boundary value problem (7.7) vanish in the
midpoint of the edges at the boundary. However, in the other points at the
boundary, their value is generally not equal to zero.

The bilinear form

a(u, v) =

�

Ω

(A(x)∇u(x)) ·∇v(x) dx

will be extended to H1
0 (Ω) + P nc

1 by

ah(u, v) =
�

K∈T h

�

K

(A(x)∇u(x)) ·∇v(x) dx ∀ u, v ∈ H1
0 (Ω) + P nc

1 .

Then, the non-conforming finite element method is given by: Find uh ∈ P nc
1

with
ah(uh, vh) = (f, vh) ∀ vh ∈ P nc

1 .
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Fig. 7.1 Function from Pnc
1 .

The goal of this section consists in proving the linear convergence with re-

spect to h in the energy norm �·�h =
�
ah(·, ·)

�1/2
. It can be proved that the so-

lution of the continuous problem (7.12) is smooth, i.e., that u ∈ H2(Ω), since
f ∈ L2(Ω), the coefficients aij(x) are weakly differentiable with bounded
derivatives, and Ω is a convex domain with polygonal boundary. ✷

Remark 7.8. The error equation. The first step of proving an error estimate
consists in deriving an equation for the error. To this end, multiply the contin-
uous problem (7.7) with a test function from vh ∈ P nc

1 , integrate the product
on Ω, and apply integration by parts on each triangle. This approach gives

(f, vh) = −
�

K∈T h

�

K

∇ · (A(x)∇u(x)) vh(x) dx

=
�

K∈T h

�

K

(A(x)∇u(x)) ·∇vh(x) dx

−
�

K∈T h

�

∂K

(A(s)∇u(s)) · nK(s)vh(s) ds

= ah(u, vh)−
�

K∈T h

�

∂K

(A(s)∇u(s)) · nK(s)vh(s) ds,

where nK is the unit outer normal at the edges of the triangles. Subtracting
the finite element equation, one obtains

ah(u−uh, vh) =
�

K∈T h

�

∂K

(A(s)∇u(s))·nK(s)vh(s) ds ∀ vh ∈ P nc
1 . (7.13)

In contrast to the Ritz and the Galerkin method, where the Galerkin orthog-
onality (4.17) holds, the error is not orthogonal to the finite element space.

✷
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Lemma 7.9. Estimate of the right-hand side of the error equation
(7.13). Assume that u ∈ H2(Ω) and aij ∈ W 1,∞(Ω), i, j = 1, 2, then it is

������
�

K∈T h

�

∂K

A(s)∇u(s) · nK(s)vh(s) ds

������
≤ Ch �u�H2(Ω)

��vh
��
h
.

Proof. Every edge of the triangulation that is in Ω appears exactly twice in the boundary
integrals on ∂K. The corresponding unit normals possess opposite signs. One can choose
for each edge one fixed unit normal and then one can write the integrals in the form

�

E

�

E

���(A(s)∇u(s)) · nE(s)vh(s)
���

E
ds =

�

E

�

E

(A(s)∇u(s)) · nE(s)
���vh

���
E
(s) ds,

where the sum is taken over all edges {E}. Here,
���vh

���
E

denotes the jump of vh

���vh
���

E
(s) =

�
vh|K1

(s)− vh|K2
(s) s ∈ E ⊂ Ω,

vh(s) s ∈ E ⊂ ∂Ω,

where nE is directed from K1 to K2 or it is the outer normal on ∂Ω. For writing the

integrals in this form, it was used that ∇u(s), A(s), and nE(s) are almost everywhere

continuous, so that these functions can be written as factor in front of the jumps.
Because of the continuity condition for the functions from Pnc

1 and the homogeneous

Dirichlet boundary condition, it is for all vh ∈ Pnc
1 that

���vh
���

E
(P ) = 0 for the midpoints P

of all edges. From the linearity of the functions on the edges, it follows that

�

E

���vh
���

E
(s) ds = 0 ∀ E. (7.14)

Let E be an arbitrary edge in Ω that belongs to the triangles K1 and K2. The next
goal consists in proving the estimate

����
�

E

(A(s)∇u(s)) · nE(s)
���vh

���
E
(s) ds

����

≤ Ch �u�H2(K1)

���∇vh
��
L2(K1)

+
��∇vh

��
L2(K2)

�
. (7.15)

To this end, one uses a reference configuration (K̂1, K̂2, Ê), where K̂1 is the unit triangle
and K̂2 is the triangle that is obtained by reflecting the unit triangle at the y-axis. The
common edge Ê is the interval (0, 1) on the y-axis. The unit normal on Ê will be chosen

to be the Cartesian unit vector ex, see Figure 7.2. This choice is the other way around
than in the definition of the jump, but it is just for simplicity of notation and it does not

influence the estimate. The reference configuration can be transformed to (K1,K2, E) by

a map that is continuous and on both triangles K̂i affine. For this map, one can prove the
same properties for the transform as proved in Chapter 6.

Using (7.14), the Cauchy–Schwarz inequality, and Theorem 3.27 (continuity property

of the trace theorem, which implies boundedness), one obtains for an arbitrary constant
α ∈ R

�

Ê

�
Â(ŝ)∇û(ŝ)

�
· ex

���v̂h
���

Ê
dŝ =

�

Ê

��
Â(ŝ)∇û(ŝ)

�
· ex − α

� ���v̂h
���

Ê
dŝ

≤
���Â∇û

�
· ex − α

��
L2(Ê)

�����v̂h
���

Ê

��
L2(Ê)

≤ C
���Â∇û

�
· ex − α

��
H1(K̂1)

�����v̂h
���

Ê

��
L2(Ê)

.(7.16)
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1

K̂2

−1

1

Ê

x

y

K̂1

ex

Fig. 7.2 Reference configuration.

In particular, one can choose α such that

�

K̂1

��
Â(x̂)∇û(x̂)

�
· ex − α

�
dx̂ = 0.

Using first that (a2 + b2)1/2 ≤ a + b for a, b ≥ 0, then the L2(Ω) term in the first factor

of the right-hand side of (7.16) can be bounded using the estimate from Lemma 6.4 for

k = 0 and l = 1 and the choice of α

���Â∇û
�
· ex − α

��
H1(K̂1)

≤
���Â∇û

�
· ex − α

��
L2(K̂1)

+
��∇

��
Â∇û

�
· ex − α

���
L2(K̂1)

≤ C
��∇

��
Â∇û

�
· ex − α

���
L2(K̂1)

= C
��∇

��
Â∇û

�
· ex

���
L2(K̂1)

.

To estimate the second factor, the trace theorem and the equivalence of norms in finite-

dimensional spaces are applied

�����v̂h
���

Ê

��
L2(Ê)

≤ C
���v̂h

��
H1(K̂1)

+
��v̂h

��
H1(K̂2)

�

≤ C
���∇v̂h

��
L2(K̂1)

+
��∇v̂h

��
L2(K̂2)

�
. (7.17)

To apply the norm equivalence, one has to prove that the terms in the last line are in
fact norms. Let the terms in the last line be zero, then it follows that v̂h = c1 in K̂1 and

v̂h = c2 in K̂2. Because v̂h is continuous in the midpoint of Ê, one finds that c1 = c2 and

consequently that
���v̂h

���
Ê

= 0. Hence, also the left-hand side of the estimate is zero and
(7.17) is true. It follows that the right-hand side of estimate (7.17) defines a norm in the

quotient space of Pnc
1 with respect to the constraint

���v̂h
���

Ê
= 0.

Altogether, one obtains for the reference configuration

����
�

Ê

�
Â(ŝ)∇û(ŝ)

�
· ex

���v̂h
���

Ê
dŝ

����

≤ C
��∇

��
Â∇û

�
· ex

���
L2(K̂1)

���∇v̂h
��
L2(K̂1)

+
��∇v̂h

��
L2(K̂2)

�
.

This estimate has to be transformed to the triple (K1,K2, E). In this step, one gets for
the integral on the edge the factor C (Ch for ∇ and Ch−1 for dŝ). For the product of the

norms on the right-hand side, one obtains the factor Ch (Ch for the first factor and C for
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the second factor). In addition, one uses that A(s) and all first order derivatives of A(s)

are bounded to estimated the first term on the right-hand side (exercise). In summary,
(7.15) is proved.

The statement of the lemma follows by summing over all edges and by applying on the

right-hand side the Cauchy–Schwarz inequality for sums. �

Theorem 7.10. Finite element error estimate. Let the assumptions of
Lemma 7.9 be satisfied, then it holds the following error estimate

��u− uh
��2
h
≤ Ch �u�H2(Ω)

��u− uh
��
h
+ Ch2 �u�2H2(Ω) . (7.18)

Proof. Applying Lemma 7.9, it follows from the error equation (7.13) that

��ah(u− uh, vh)
�� ≤ Ch �u�H2(Ω)

��vh
��
h

∀ vh ∈ Pnc
1 .

In addition, one finds with the same arguments as for bilinear form of the continuous

problem that ah(·, ·) is coercive and bounded, where in the respective bounds in (7.10)

and (7.11) the L2(Ω) norm of the gradient has to be replaced by �·�h.
Let Ih : H1

0 (Ω) → Pnc
1 be an interpolation operator with optimal interpolation order

in �·�h, e.g., the Lagrangian interpolation operator to the conforming P1 finite element

space, which is a proper subspace of Pnc
1 . Then, one obtains with the coercivity the Cauchy–

Schwarz inequality, the triangle inequality, the boundedness, and the interpolation estimate

��u− uh
��2

h
≤ 1

m
ah(u− uh, u− uh) = Cah(u− uh, u− Ihu) + Cah(u− uh, Ihu− uh)

≤ C
��ah(u− uh, u− Ihu)

��+ Ch �u�H2(Ω)

��Ihu− uh
��
h

≤ CM
��u− uh

��
h

��u− Ihu
��
h
+ Ch �u�H2(Ω)

���Ihu− u
��
h
+
��u− uh

��
h

�

≤ Ch
��u− uh

��
h
�u�H2(Ω) + Ch �u�H2(Ω)

�
h �u�H2(Ω) +

��u− uh
��
h

�
.

�

Remark 7.11. To the error estimate. Let the first term on the error bound
(7.18) dominate the second term, i.e., Ch �u�H2(Ω)

��u− uh
��
h
≥ Ch2 �u�2H2(Ω).

Then, it follows that

��u− uh
��2
h
≤ Ch �u�H2(Ω)

��u− uh
��
h

⇐⇒
��u− uh

��
h
≤ Ch �u�H2(Ω) .

If the second term dominates, i.e., Ch �u�H2(Ω)

��u− uh
��
h
< Ch2 �u�2H2(Ω),

one finds that

��u− uh
��2
h
≤ Ch2 �u�2H2(Ω) ⇐⇒

��u− uh
��
h
≤ Ch �u�H2(Ω) .

In both cases, one obtains that the method converges of first order. ✷

Example 7.12. Numerical study that supports the finite element error esti-
mate. The same problem as in Example 6.19 is considered. The number of
degrees of freedom are given in Table 7.1. One can see that on the same
grid, the Crouzeix–Raviart finite element has more degrees of freedom than
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Table 7.1 Example 7.12. Number of degrees of freedom, including nodes at the Dirichlet

boundary.

level Pnc
1

1 56

2 208
3 800

4 3136

5 12416
6 49408

7 197120

8 787456
9 3147776

� � � � � � � � �

�����

��
��

��
��

||
�
−
�
�
||
�

�

�
��

�

Fig. 7.3 Example 7.12. Convergence of
��u− uh

��
h
for Pnc

1 .

the P1 finite element. The order of convergence for
��u− uh

��
h
is displayed in

Figure 7.3. These results support the first order error estimate. ✷

7.3 L2(Ω) Error Estimate

Remark 7.13. Motivation. A method is called quasi-optimal in a given norm,
if the order of the method is the same as the optimal approximation order.
Already for one dimension, one can show that at most linear convergence
in H1(Ω) can be achieved for the best approximation in P1. This statement
can be already verified with the function v(x) = x2. Hence, all considered
methods so far are quasi-optimal in the energy norm.

However, the best approximation error in L2(Ω) is of one order higher
than the best approximation error in H1(Ω). A natural question is whether
finite element methods converge also of higher order with respect to the error
in L2(Ω) than with respect to the error in the energy norm.
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In this section, it will be shown that one can obtain for finite element
methods a higher order of convergence in L2(Ω) than in H1(Ω). However,
there are more restrictive assumptions to prove this property in comparison
with the convergence proof for the energy norm. ✷

Remark 7.14. Model problem. Let Ω ⊂ Rd, d ∈ {2, 3}, be a convex polyhedral
domain with Lipschitz boundary. The model problem has the form

−Δu = f in Ω, u = 0 on ∂Ω. (7.19)

A non-optimal error estimate in L2(Ω) can be obtained with Poincaré’s in-
equality and (6.16), which reads in the case of P1 finite elements as follows

��u− uh
��
L2(Ω)

≤ C
��∇(u− uh)

��
L2(Ω)

≤ Ch |u|H2(Ω) .

To prove an optimal error estimate in L2(Ω), the regularity of the solution
of (7.19) plays an essential role. ✷

Definition 7.15. m-regular differential operator. Let L be a second or-
der differential operator. This operator is called m-regular, m ≥ 2, if for all
f ∈ Hm−2(Ω) the solutions of Lu = f in Ω, u = 0 on ∂Ω, are in the space
Hm(Ω) and the following estimate holds

�u�Hm(Ω) ≤ C �f�Hm−2(Ω) + C �u�H1(Ω) . (7.20)

✷

Remark 7.16. On the m-regularity.

• The definition is formulated in a way that it can be applied also if the
solution of the problem is not unique.

• For the Laplacian, the term �u�H1(Ω) can be estimated by �f�L2(Ω) such

that with (7.20) one obtains (exercise)

�u�H2(Ω) ≤ C �f�L2(Ω) . (7.21)

• Many regularity results can be found in the literature. Loosely speaking,
they say that regularity is given if the data of the problem (coefficients
of the operator, boundary of the domain) are sufficiently regular. For
instance, an elliptic operator in divergence form (L = ∇ · (A∇)) is 2-
regular if the coefficients are from W 1,p(Ω), p ≥ 1, and if ∂Ω is a C2

boundary. Another important result is the 2-regularity of the Laplacian
on a convex domain. A comprehensive overview on regularity results can
be found in Grisvard (1985).

✷

Remark 7.17. Variational form and finite element formulation of the model
problem. The variational form of (7.19) is: Given f ∈ L2(Ω), find u ∈ H1

0 (Ω)
with
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(∇u,∇v) = (f, v) ∀ v ∈ H1
0 (Ω).

The P1 finite element space, with zero boundary conditions, will be used for
the discretization. Then, the finite element problem reads as follows: Find
uh ∈ P1 such that

(∇uh,∇vh) = (f, vh) ∀ vh ∈ P1. (7.22)

✷

Theorem 7.18. Finite element error estimates. Let u(x) be the solution
of (7.19), let (7.19) be 2-regular, and let uh(x) be the solution of (7.22).
Then, the following error estimates hold

��∇(u− uh)
��
L2(Ω)

≤ Ch �f�L2(Ω) ,��u− uh
��
L2(Ω)

≤ Ch2 �f�L2(Ω) .

Proof. With the error estimate in H1(Ω), Corollary 6.17, and the 2-regularity estimate
(7.21), one obtains

��∇(u− uh)
��
L2(Ω)

≤ Ch �u�H2(Ω) ≤ Ch �f�L2(Ω) . (7.23)

To prove the L2(Ω) error estimate, let w ∈ H1
0 (Ω) be the unique solution of the so-called

dual (or adjoint) problem

(∇v,∇w) = (u− uh, v) ∀ v ∈ H1
0 (Ω).

For a symmetric differential operator, the dual problem has the same form like the original

(primal) problem. Hence, the dual problem is also 2-regular and it holds the estimate

�w�H2(Ω) ≤ C
��u− uh

��
L2(Ω)

.

To perform the error estimate, the Galerkin orthogonality of the error is utilized

(∇(u− uh),∇vh) = (∇u,∇vh)− (∇uh,∇vh) = (f, vh)− (f, vh) = 0

for all vh ∈ P1. Now, the error u − uh is used as test function v in the dual problem.
Let Ihw be the interpolant of w in P1. Using the Galerkin orthogonality, the interpolation

estimate, and the regularity of w, one obtains

��u− uh
��2

L2(Ω)
= (∇(u− uh),∇w) = (∇(u− uh),∇(w − Ihw))

≤
��∇(u− uh)

��
L2(Ω)

��∇(w − Ihw)
��
L2(Ω)

≤ Ch �w�H2(Ω)

��∇(u− uh)
��
L2(Ω)

≤ Ch
��u− uh

��
L2(Ω)

��∇(u− uh)
��
L2(Ω)

.

Finally, division by
��u− uh

��
L2(Ω)

and the application of the already known error estimate

(7.23) for
��∇(u− uh)

��
L2(Ω)

are used for completing the proof of the theorem. �

Example 7.19. Numerical study that supports the finite element error esti-
mate. The same problem as in Example 6.19 is considered. Numerical results
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Fig. 7.4 Example 7.19. Convergence of
��u− uh

��
L2(Ω)

for different finite elements.

concerning the convergence of the error
��u− uh

��
L2(Ω)

are presented in Fig-

ure 7.4. These results support the error estimate given in Theorem 7.18. ✷

7.4 Outlook

Remark 7.20. Advanced topics for finite element methods (and partly also for
other methods). This class provided an introduction to numerical methods
for solving partial differential equations and the numerical analysis of these
methods. There are many further aspects that might be covered in forthcom-
ing classes.

Further aspects for elliptic problems.

• Adaptive methods and a posteriori error estimators. It will be shown how
it is possible to estimate the error of the computed solution only using
known quantities and in this way one can decide where it makes sense to
refine the mesh and where not.

• Multigrid methods. Multigrid methods are for certain classes of problems
optimal solvers.

• Numerical analysis of problems with other boundary conditions or taking
into account quadrature rules.

Time-dependent problems. As mentioned in Remark 1.7, standard ap-
proaches for the numerical solution of time-dependent problems are based
on solving stationary problems in each discrete time.

• The numerical analysis of discretizations of time-dependent problems has
some new aspects, but also many tools from the analysis of steady-state
problems are used.
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Convection-diffusion equations. Convection-diffusion equations are of im-
portance in many applications. Generally, the convection (first order differ-
ential operator) dominates the diffusion (second order differential operator).

• In the convection-dominated regime, the Galerkin method as presented
in this class does not work. One needs new ideas for discretizations and
these new discretizations create new challenges for the numerical analysis.

Problems with more than one unknown function. The fundamental equa-
tion of fluid dynamics, the Navier–Stokes equations, Section 1.3, belong to
this class.

• It will turn out that the discretization of the Navier–Stokes equations re-
quires special care in the choice of the finite element spaces. The numerical
analysis becomes rather involved.

✷


