
Chapter 5

Finite Element Methods

5.1 Finite Element Spaces

Remark 5.1. Mesh cells, faces, edges, vertices. As initial step of the appli-
cation of finite element methods, the considered domain is decomposed or
triangulated with a mesh or a grid. A mesh cell K is a compact polyhedron
in Rd, d ∈ {2, 3}, whose interior is not empty. The boundary ∂K ofK consists
of m-dimensional linear manifolds (points, pieces of straight lines, pieces of
planes), 0 ≤ m ≤ d−1, which are called m-faces. The 0-faces are the vertices
of the mesh cell, the 1-faces are the edges, and the (d − 1)-faces are called
facets. ✷

Remark 5.2. Finite-dimensional spaces defined on K. Let s ∈ N. Finite ele-
ment methods use finite-dimensional spaces P (K) ⊂ Cs(K) that are defined
on K. In general, P (K) consists of polynomials. The dimension of P (K) will
be denoted by NK = dimP (K). ✷

Example 5.3. The space P (K) = P1(K).The space consisting of linear poly-
nomials on a mesh cell K is denoted by P1(K):

P1(K) =

�
a0 +

d�

i=1

aixi : x = (x1, . . . , xd)
T ∈ K

�
.

There are d + 1 unknown coefficients ai, i = 0, . . . , d, so that dimP1(K) =
NK = d+ 1. ✷

Remark 5.4. Linear functionals defined on P (K), nodal functionals. For the
definition of finite elements, linear functionals that are defined on P (K) are
of importance. These functionals are called nodal functionals.

Consider linear and continuous functionals ΦK,1, . . . ,ΦK,NK
: Cs(K) → R

that are linearly independent. There are different types of functionals that
can be utilized in finite element methods:
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78 5 Finite Element Methods

• point values: Φ(v) = v(x), x ∈ K,
• point values of a first partial derivative: Φ(v) = ∂iv(x), x ∈ K,
• point values of the normal derivative on a facet E ofK: Φ(v) = ∇v(x)·nE ,
nE is the outward pointing unit normal vector on E,

• integral mean values on K: Φ(v) = 1
|K|

�
K
v(x) dx, where |K| is the

measure of K,
• integral mean values on faces E: Φ(v) = 1

|E|
�
E
v(s) ds with |E| being the

measure of E.

The smoothness parameter s has to be chosen in such a way that the func-
tionals ΦK,1, . . . ,ΦK,NK

are continuous. If, e.g., a functional requires the eval-
uation of a partial derivative or a normal derivative, then one has to choose
at least s = 1. For the other functionals given above, s = 0 is sufficient. ✷

Definition 5.5. Unisolvence of P (K) with respect to the functionals
ΦK,1, . . . ,ΦK,NK

. The space P (K) is called unisolvent with respect to the
functionals ΦK,1, . . . ,ΦK,NK

if there is for each a ∈ RNK , a = (a1, . . . , aNK
)T ,

exactly one p ∈ P (K) with

ΦK,i(p) = ai, 1 ≤ i ≤ NK .

✷

Remark 5.6. Local basis. Unisolvence means that if the value for each func-
tional is known, then one can identify a unique element from P (K) that takes
these values.

Choosing in particular the Cartesian1 unit vectors for a, then it follows
from the unisolvence that a set {φK,i}NK

i=1 exists with φK,i ∈ P (K) and

ΦK,i(φK,j) = δij , i, j = 1, . . . , NK .

Consequently, the set {φK,i}NK
i=1 forms a basis of P (K) (exercise). This basis

is called local basis. ✷

Remark 5.7. Transform of an arbitrary basis to the local basis. If an arbitrary
basis {pi}NK

i=1 of P (K) is known, then the local basis can be computed by
solving a linear system of equations. To this end, represent the local basis in
terms of the known basis

φK,j =

NK�

k=1

cjkpk, cjk ∈ R, j = 1, . . . , NK ,

with unknown coefficients cjk. Applying the definition of the local basis leads
to the linear system of equations

1 René Descartes (1596 – 1650)
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ΦK,i(φK,j) =

NK�

k=1

cjkaik = δij , i, j = 1, . . . , NK , aik = ΦK,i(pk).

Because of the unisolvence, the matrix A = (aij) is non-singular and the
coefficients cjk are determined uniquely. ✷

Example 5.8. Local basis for the space of linear functions on the reference
triangle. Consider the reference triangle K̂ with the vertices (0, 0), (1, 0),
and (0, 1). A linear space on K̂ is spanned by the functions 1, x̂, ŷ. Let the
functionals be defined by the values of the functions in the vertices of the
reference triangle. Then, the given basis is not a local basis because the
function 1 does not vanish at the vertices.

Consider first the vertex (0, 0). A linear basis function ax̂+ bŷ+ c that has
the value 1 in (0, 0) and that vanishes in the other vertices has to satisfy the
following set of equations




0 0 1
1 0 1
0 1 1







a
b
c


 =




1
0
0


 .

The solution is a = −1, b = −1, c = 1. The two other basis functions of the
local basis are x̂ and ŷ, so that the local basis has the form {1− x̂− ŷ, x̂, ŷ}.

✷

Remark 5.9. Triangulation, grid, mesh, grid cell. For the definition of global
finite element spaces, a decomposition of the domain Ω into polyhedra K
is needed, see Figure 5.1 for an example. This decomposition is called tri-
angulation T h and the polyhedra K are called mesh cells. The union of the
polyhedra is called grid or mesh.

A triangulation is called admissible, see the definition in (Ciarlet, 1978,
p. 38, p. 51), if:

• It holds Ω = ∪K∈T hK.

• Each mesh cell K ∈ T h is closed and the interior K̊ is non-empty.
• For distinct mesh cells K1 and K2 there holds K̊1 ∩ K̊2 = ∅.
• For each K ∈ T h, the boundary ∂K is Lipschitz continuous.
• The intersection of two mesh cells is either empty or a common m-face,
m ∈ {0, . . . , d− 1}.

✷

Remark 5.10. Global and local functionals. Let

Φ1, . . . ,ΦN : {v ∈ L∞(Ω) : v|K ∈ P (K)} → R

be continuous linear functionals of the same types as given in Remark 5.4,
where for each K, v|K ∈ P (K) has to be understood in the sense that
the polynomial in K is extended continuously to the boundary of K. The
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Fig. 5.1 Triangulation of a domain for the simulation of the flow through and around a
dairy barn, from Janke et al. (2020).

restriction of the functionals to Cs(K) defines a set of local functionals
ΦK,1, . . . ,ΦK,NK

, where it is assumed that the local functionals are unisol-
vent on P (K). The union of all mesh cells Kj , for which there is a p ∈ P (Kj)
with Φi(p) �= 0, will be denoted by ωi. ✷

Example 5.11. On subdomains ωi. Consider the two-dimensional case and let
Φi be defined as nodal value of a function in x ∈ K. If x ∈ K̊, then ωi = K.
In the case that x is on a face of K but not in a vertex, then ωi is the union
of K and the other mesh cell whose boundary contains this face. Last, if x is
a vertex of K, then ωi is the union of all mesh cells that possess this vertex,
see Figure 5.2. ✷

Definition 5.12. Finite element space, global basis. A function v(x)
defined on Ω with v|K ∈ P (K) for all K ∈ T h is called continuous with
respect to a global functional Φi defined in Remark 5.10 if

Φi(v|K1) = Φi(v|K2), ∀ K1,K2 ∈ ωi.

The space

S =
�
v ∈ L∞(Ω) : v|K ∈ P (K) and v is continuous with respect to

Φi, i = 1, . . . , N
�
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Fig. 5.2 Subdomains ωi.
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Fig. 5.3 Piecewise linear global basis function (red lines), hat function.

is called finite element space.
The global basis {φj}Nj=1 of S is defined by the condition

φj ∈ S, Φi(φj) = δij , i, j = 1, . . . , N.

✷

Example 5.13. Piecewise linear global basis function. Figure 5.3 shows a piece-
wise linear global basis function in two dimensions. Because of its form, such
a function is called hat function. ✷

Remark 5.14. On global basis functions, conforming and non-conforming fi-
nite element spaces. A global basis function coincides on each mesh cell with
a local basis function. This property implies the uniqueness of the global basis
functions.

Whether the continuity with respect to {Φi}Ni=1 implies the continuity of
the finite element functions depends on the functionals that define the finite
element space.
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A finite element space whose functions belong to the space that appears in
the definition of the weak problem is called conforming, otherwise it is called
non-conforming. ✷

Definition 5.15. Parametric finite elements. Let K̂ be a reference mesh
cell with the local space P̂ (K̂), the local functionals Φ̂1, . . . , Φ̂N̂ , and a class

of bijective mappings {FK : K̂ → K}. A finite element space is called a
parametric finite element space if:

• The images {K} of {FK} form the set of mesh cells.
• The local spaces are given by

P (K) =
�
p : p = p̂ ◦ F−1

K , p̂ ∈ P̂ (K̂)
�
. (5.1)

• The local functionals are defined by

ΦK,i(v(x)) = Φ̂i (v̂(x̂)) = Φ̂i (v(FK(x̂))) , (5.2)

where x̂ = (x̂1, . . . , x̂d)
T are the coordinates of the reference mesh cell

and it holds x = FK(x̂), v̂ = v ◦ FK , compare (5.1).

✷

Remark 5.16. Motivations for using parametric finite elements. Definition
5.12 of finite elements spaces is very general. For instance, different types
of mesh cells are allowed. However, as well the finite element theory as the
implementation of finite element methods become much simpler if only para-
metric finite elements are considered. ✷

5.2 Finite Elements on Simplices

Definition 5.17. d-simplex. A d-simplex K ⊂ Rd is the convex hull of
(d+ 1) points a1, . . . ,ad+1 ∈ Rd that form the vertices of K. ✷

Remark 5.18. On d-simplices. It will be always assumed that the simplex is
not degenerated, i.e., its d-dimensional measure is positive. This property is
equivalent to the non-singularity of the matrix (exercise)

A =




a11 a12 . . . a1,d+1

a21 a22 . . . a2,d+1

...
...

. . .
...

ad1 ad2 . . . ad,d+1

1 1 . . . 1




∈ R(d+1)×(d+1),

where ai = (a1i, a2i, . . . , adi)
T , i = 1, . . . , d+ 1.

For d = 2, simplices are triangles and for d = 3 they are tetrahedra. ✷
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Definition 5.19. Barycentric coordinates. Since K is the convex hull of
the points {ai}d+1

i=1 , the parameterization of K with a convex combination of
the vertices reads as follows

K =

�
x ∈ Rd : x =

d+1�

i=1

λiai, 0 ≤ λi ≤ 1,

d+1�

i=1

λi = 1

�
.

The coefficients λ1, . . . ,λd+1 are called barycentric coordinates of x ∈ K. ✷

Remark 5.20. On barycentric coordinates.

• From the definition, it follows that the barycentric coordinates are the
solution of the linear system of equations

d+1�

i=1

ajiλi = xj , 1 ≤ j ≤ d,

d+1�

i=1

λi = 1.

Since the system matrix is non-singular, see Remark 5.18, the barycentric
coordinates are determined uniquely.

• The barycentric coordinates of the vertex ai, i = 1, . . . , d + 1, of the
simplex are λi = 1 and λj = 0 if i �= j. Since λi(aj) = δij , the barycentric
coordinate λi can be identified with the linear function that has the value 1
in the vertex ai and that vanishes in all other vertices aj with j �= i.

• The barycenter of the simplex is given by

SK =
1

d+ 1

d+1�

i=1

ai =

d+1�

i=1

1

d+ 1
ai.

Hence, its barycentric coordinates are λi = 1/(d+ 1), i = 1, . . . , d+ 1.

✷

Remark 5.21. Simplicial reference mesh cells. A commonly used reference
mesh cell for triangles and tetrahedra is the unit simplex

K̂ =

�
x̂ ∈ Rd :

d�

i=1

x̂i ≤ 1, x̂i ≥ 0, i = 1, . . . , d

�
,

see Figure 5.4. The class {FK} of admissible mappings consists of the bijective
affine mappings

FK x̂ = BK x̂+ b, BK ∈ Rd×d, det (BK) �= 0, b ∈ Rd. (5.3)

The images of these mappings generate the set of the non-degenerated sim-
plices {K} ⊂ Rd. ✷

Definition 5.22. Affine family of simplicial finite elements. Given a
simplicial reference mesh cell K̂, affine mappings {FK}, and an unisolvent set
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Fig. 5.4 The unit simplices in two and three dimensions.

of functionals on K̂. Using (5.1) and (5.2), one obtains a local finite element
space on each non-degenerated simplex. The set of these local spaces is called
affine family of simplicial finite elements. ✷

Definition 5.23. Polynomial space Pk. Let x = (x1, . . . , xd)
T , k ∈ N ∪

{0}, and α = (α1, . . . ,αd)
T . Then, the polynomial space Pk is given by

Pk = span

�
d�

i=1

xαi
i = xα : αi ∈ N ∪ {0} for i = 1, . . . , d,

d�

i=1

αi ≤ k

�
.

✷

Remark 5.24. Lagrangian2 finite elements. In many examples given below,
the linear functionals on the reference mesh cell K̂ are the values of the
polynomials with the same barycentric coordinates as on the general mesh
cell K. Finite elements whose linear functionals are values of the polynomials
at certain points in K are called Lagrangian finite elements. ✷

Example 5.25. P0 : piecewise constant finite element. The piecewise constant
finite element space consists of discontinuous functions. The linear functional
is the value of the polynomial in the barycenter of the mesh cell, see Fig-
ure 5.5. It is dimP0(K) = 1. ✷

Example 5.26. P1 : conforming piecewise linear finite element. This finite el-
ement space is a subspace of C(Ω) ⊂ H1(Ω) . The linear functionals are
the values of the function in the vertices of the mesh cells, see Figure 5.6. It
follows that dimP1(K) = d+ 1.

The local basis for the functionals {Φi(v) = v(ai), i = 1, . . . , d + 1} is
{λi}d+1

i=1 since Φi(λj) = δij , compare Remark 5.20. Since a local basis exists,
the functionals are unisolvent with respect to the polynomial space P1(K).

Now, it will be shown that the corresponding finite element space consists
of continuous functions. Let K1,K2 be two mesh cells with the common facet

2 Joseph-Louis de Lagrange (1736 – 1813)
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Fig. 5.5 The finite element P0(K).

a2

a3

a1

Fig. 5.6 The finite element P1(K).

E and let v ∈ P1(= S). The restriction of vK1
on E is a linear function on

E as well as the restriction of vK2
on E. It has to be shown that both linear

functions are identical. A linear function on the (d−1)-dimensional face E is
uniquely determined with d linearly independent functionals that are defined
on E. These functionals can be chosen to be the values of the function in
the d vertices of E. The functionals in S are continuous by the definition of
S. Thus, it must hold that both restrictions on E have the same values in
the vertices of E. Hence, it is vK1

|E = vK2
|E and the functions from P1 are

continuous. ✷

Example 5.27. P2 : conforming piecewise quadratic finite element. This finite
element space is also a subspace of C(Ω). It consists of piecewise quadratic
functions. The functionals are the values of the functions in the d+1 vertices
of the mesh cell and the values of the functions in the centers of the edges,
see Figure 5.7. Since each vertex is connected to each other vertex, there
are

�d
i=1 i = d(d + 1)/2 edges. Alternatively, the number of edges can be

calculated by the observation that it is equal to the number of pairs that can
be formed out of (d+ 1) values, which is

�
d+ 1

2

�
=

(d+ 1)!

(d− 1)!2!
=

d(d+ 1)

2
.
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a1

a12

a23

a13

Fig. 5.7 The finite element P2(K).

Altogether, it follows that dimP2(K) = (d+ 1)(d+ 2)/2.
The part of the local basis that belongs to the functionals {Φi(v) = v(ai),

i = 1, . . . , d+ 1}, is given by

{φi(λ) = λi(2λi − 1), i = 1, . . . , d+ 1}.

Denote the center of the edge between the vertices ai and aj by aij . The
corresponding part of the local basis is given by

{φij = 4λiλj , i, j = 1, . . . , d+ 1, i < j}.

The unisolvence follows from the fact that there exists a local basis. The
continuity of the corresponding finite element space is shown in the same way
as for the P1 finite element. The restriction of a quadratic function defined
in a mesh cell to a facet E is a quadratic function on that facet. Hence, the
function on E is determined uniquely with d(d + 1)/2 linearly independent
functionals on E.

The functions φij are called in two dimensions edge bubble functions. ✷

Example 5.28. P3 : conforming piecewise cubic finite element. This finite ele-
ment space consists of continuous piecewise cubic functions. It is a subspace
of C(Ω). The functionals in a mesh cell K are defined to be the values in
the vertices ((d + 1) values), two values on each edge (dividing the edge in

three parts of equal length) (2
�d

i=1 i = d(d + 1) values), and the values in
the barycenter of the 2-faces of K, see Figure 5.8. Each 2-face of K is defined
by three vertices. Then, the number of 2-faces corresponds to the number of
triples that can be formed out of (d+ 1) values, which is given by

�
d+ 1

3

�
=

(d+ 1)!

(d− 2)!3!
=

(d− 1)d(d+ 1)

6
. (5.4)

The dimension of P3(K) is given by
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Fig. 5.8 The finite element P3(K).

dimP3(K) = (d+ 1) + d(d+ 1) +
(d− 1)d(d+ 1)

6
=

(d+ 1)(d+ 2)(d+ 3)

6
.

(5.5)
For the functionals

�
Φi(v) = v(ai), i = 1, . . . , d+ 1, (vertex),

Φiij(v) = v(aiij), i, j = 1, . . . , d+ 1, i �= j, (point on edge),

Φijk(v) = v(aijk), i = 1, . . . , d+ 1, i < j < k, (point on 2-face)
�
,

the local basis is given by

�
φi(λ) =

1

2
λi(3λi − 1)(3λi − 2), φiij(λ) =

9

2
λiλj(3λi − 1),

φijk(λ) = 27λiλjλk

�
.

In two dimensions, the function φijk(λ) is called cell bubble function. ✷

Example 5.29. Cubic Hermite3 element. This finite element space is a sub-
space of C(Ω), the dimension of the local space is (d + 1)(d + 2)(d + 3)/6
and the functionals are the values of the function in the vertices of the
mesh cell ((d + 1) values), the value of the barycenter at the 2-faces of K
((d + 1)(d − 1)d/6 values, compare (5.4)), and the partial derivatives at the
vertices (d(d + 1) values), see Figure 5.9. The dimension is the same as for
the P3(K) element, see (5.5). Hence, the local polynomials can be defined to
be cubic.

This finite element does not define an affine family in the strict sense,
because partial derivatives on the reference cell are mapped to directional
derivatives on the physical cell. Concretely, the functionals for the partial
derivatives Φ̂i(v̂) = ∂iv̂(0) on the reference cell are mapped to the functionals

3 Charles Hermite (1822 – 1901)
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a123
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a1

Fig. 5.9 The cubic Hermite element.

Φi(v) = ∂tiv(a), where a = FK(0) and ti are the directions of edges which
are adjacent to a, i.e., a is an end point of this edge. This property suffices
to control all first derivatives. One has to take care of this property in the
implementation of this finite element.

Because of this property, one can use the derivatives in the direction of
the edges as functionals

Φi(v) = v(ai), (vertices)
Φij(v) = ∇v(ai) · (aj − ai), i, j = 1, . . . , d− 1, i �= j, (directional deriv.)
Φijk(v) = v(aijk), i < j < k, (2-faces)

with the corresponding local basis

φi(λ) = −2λ3
i + 3λ2

i − 7λi

�
j<k,j �=i,k �=i λjλk,

φij(λ) = λiλj(2λi − λj − 1),
φijk(λ) = 27λiλjλk.

The proof of the unisolvence can be found in the literature.
Here, the continuity of the functions will be shown only for d = 2. Let

K1,K2 be two mesh cells with the common edge E and the unit tangential
vector t. Let V1, V2 be the end points of E. The restrictions vK1

, vK2
to E

satisfy four conditions

vK1
(Vi) = vK2

(Vi), ∂tvK1
(Vi) = ∂tvK2

(Vi), i = 1, 2.

Since both restrictions are cubic polynomials and four conditions have to be
satisfied, their values coincide on E.

The cubic Hermite finite element possesses an advantage in comparison
with the P3 finite element. For d = 2, it holds for a regular triangulation T h

that
#(K) ≈ 2#(V ), #(E) ≈ 2#(V ),

where #(·) denotes the number of triangles, nodes, and edges, respectively.
Hence, the dimension of P3 is approximately #(V ) + 2#(E) + #(K) ≈
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7#(V ), whereas the dimension of the cubic Hermite element is approximately
3#(V )+#(K) ≈ 5#(V ). This difference comes from the fact that both spaces
are different proper subspaces of the space of all continuous piecewise cubic
functions. The elements of both spaces are continuous functions, but for the
functions of the cubic Hermite finite element, in addition, the first deriva-
tives are continuous at the nodes. That means, these two spaces are different
finite element spaces whose degree of the local polynomial space is the same
(cubic). One can see at this example the importance of the functionals for
the definition of the global finite element space. ✷

Example 5.30. P nc
1 : non-conforming linear finite element, Crouzeix–Raviart

finite element, Crouzeix & Raviart (1973). This finite element space consists
of piecewise linear but discontinuous functions. The functionals are given by
the values of the functions in the barycenters of the (d − 1)-faces so that
dimP nc

1 (K) = (d + 1). It follows from the definition of the finite element
space, Definition 5.12, that the functions from P nc

1 are continuous in the
barycenter of the facets

P nc
1 =

�
v ∈ L2(Ω) : v|K ∈ P1(K), v(x) is continuous at the barycenter

of all facets
�
. (5.6)

Equivalently, the functionals can be defined to be the integral mean values
on the facets and then the global space is defined to be

P nc
1 =

�
v ∈ L2(Ω) : v|K ∈ P1(K),

�

E

v|K ds =

�

E

v|K� ds ∀ E ∈ E(K) ∩ E(K �)

�
, (5.7)

where E(K) is the set of all (d− 1)-dimensional facets of K. Notice that the
integral of a linear function on an edge E in 2d or on a triangular facet in 3d
can be computed by �

E

v ds = |E| v(xE),

where xE is the barycenter of E. Hence, the values of the integrals are equal
if and only if the values in the barycenters are equal.

For the description of this finite element, one defines the functionals by

Φi(v) = v(ai−1,i+1) for d = 2, Φi(v) = v(ai−2,i−1,i+1) for d = 3,

where the points are the barycenters of the facets with the vertices that
correspond to the indices, see Figure 5.10. This set of functionals is unisolvent
with the local basis

φi(λ) = 1− dλi, i = 1, . . . , d+ 1.
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a13

a12

a23

Fig. 5.10 The finite element Pnc
1 (K).

✷

5.3 Finite Elements on Parallelepipeds and
Quadrilaterals

Remark 5.31. Reference mesh cells, reference map to parallelepipeds. One can
find in the literature two reference cells: the unit cube [0, 1]d and the large
unit cube [−1, 1]d. It does not matter which reference cell is chosen. Here, the
large unit cube will be used: K̂ = [−1, 1]d. The class of admissible reference
maps {FK} to parallelepipeds consists of bijective affine mappings of the form

FK x̂ = BK x̂+ b, BK ∈ Rd×d, b ∈ Rd.

Affine mappings map parallel lines to parallel lines. IfBK is a diagonal matrix,
then K̂ is mapped to a d-rectangle K.

The class of mesh cells that is obtained in this way is not sufficient to
triangulate general domains. If one wants to use more general mesh cells
than parallelepipeds, then the class of admissible reference maps has to be
enlarged, see Remark 5.40. ✷

Definition 5.32. Polynomial space Qk. Let x = (x1, . . . , xd)
T and denote

by α = (α1, . . . ,αd)
T a multi-index. Then, the polynomial space Qk is given

by

Qk = span

�
d�

i=1

xαi
i = xα : 0 ≤ αi ≤ k for i = 1, . . . , d

�
.

✷

Example 5.33. Q1 vs. P1. The space Q1 consists of all polynomials that are
d-linear. Let d = 2, then it is

Q1 = span{1, x, y, xy},
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a2a1

a3 a4

Fig. 5.11 The finite element Q1(K).

whereas
P1 = span{1, x, y}.

✷

Remark 5.34. Finite elements on d-rectangles. For simplicity of presentation,
the examples below consider d-rectangles. In this case, the finite elements
are just tensor products of one-dimensional finite elements. In particular, the
basis functions can be written as products of one-dimensional basis functions.

✷

Example 5.35. Q0 : piecewise constant finite element. Similarly to the P0

space, the space Q0 consists of piecewise constant, discontinuous functions.
The functional is the value of the function in the barycenter of the mesh
cell K and it holds dimQ0(K) = 1. ✷

Example 5.36. Q1 : conforming piecewise d-linear finite element. This finite
element space is a subspace of C(Ω). The functionals are the values of
the function in the vertices of the mesh cell, see Figure 5.11. Hence, it is
dimQ1(K) = 2d.

The one-dimensional local basis functions, which will be used for the tensor
product, are given by

φ̂1(x̂) =
1

2
(1− x̂), φ̂2(x̂) =

1

2
(1 + x̂).

With these functions, e.g., the basis functions in two dimensions are computed
by

φ̂1(x̂)φ̂1(ŷ), φ̂1(x̂)φ̂2(ŷ), φ̂2(x̂)φ̂1(ŷ), φ̂2(x̂)φ̂2(ŷ).

The continuity of the functions of the finite element space Q1 is proved in
the same way as for simplicial finite elements. It is used that the restriction
of a function from Qk(K) to a k-face E is a function from the space Qk(E),
k ≥ 1. ✷
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Fig. 5.12 The finite element Q2(K).

Fig. 5.13 The finite element Q3(K).

Example 5.37. Q2 : conforming piecewise d-quadratic finite element. It holds
that Q2 ⊂ C(Ω). The functionals in one dimension are the values of the
function at both ends of the interval and in the center of the interval. The
one-dimensional basis function on the reference interval are defined by

φ̂1(x̂) = −1

2
x̂(1− x̂), φ̂2(x̂) = (1− x̂)(1 + x̂), φ̂3(x̂) =

1

2
(1 + x̂)x̂.

In d dimensions, the functionals are the corresponding values of the tensor
product of the intervals, see Figure 5.12. It follows that dimQ2(K) = 3d.

The basis function
�d

i=1 φ̂2(x̂i) is called cell bubble function. ✷

Example 5.38. Q3 : conforming piecewise d-cubic finite element. This finite
element space is a subspace of C(Ω). The functionals on the reference interval
are given by the values at the end of the interval and the values at the points
x̂ = −1/3, x̂ = 1/3. In multiple dimensions, it is the corresponding tensor
product, see Figure 5.13. The dimension of the local space is dimQ3(K) = 4d.

The one-dimensional basis functions in the reference interval are given by

φ̂1(x̂) = − 1

16
(3x̂+ 1)(3x̂− 1)(x̂− 1), φ̂2(x̂) =

9

16
(x̂+ 1)(3x̂− 1)(x̂− 1),
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Fig. 5.14 The finite element Qrot
1 (K).

φ̂3(x̂) = − 9

16
(x̂+ 1)(3x̂+ 1)(x̂− 1), φ̂4(x̂) =

1

16
(3x̂+ 1)(3x̂− 1)(x̂+ 1).

✷

Example 5.39. Qrot
1 : rotated non-conforming element of lowest order, Ran-

nacher–Turek element, Rannacher & Turek (1992). For interested students
only. This finite element space is a generalization of the P nc

1 finite element to
quadrilateral and hexahedral mesh cells. It consists of discontinuous functions
that are continuous at the barycenter of the faces. The dimension of the local
finite element space is dimQrot

1 (K) = 2d. The space on the reference mesh
cell is defined by

Qrot
1

�
K̂
�
=

�
p̂ : p̂ ∈ span{1, x̂, ŷ, x̂2 − ŷ2}

�
for d = 2,

Qrot
1

�
K̂
�
=

�
p̂ : p̂ ∈ span{1, x̂, ŷ, ẑ, x̂2 − ŷ2, ŷ2 − ẑ2}

�
for d = 3.

Note that the transformed space

Qrot
1 (K) = {p = p̂ ◦ F−1

K , p̂ ∈ Qrot
1 (K̂)}

contains polynomials of the form ax2 − by2, where a, b depend on FK .
For d = 2, the local basis on the reference cell is given by

φ̂1(x̂, ŷ) = −3

8
(x̂2 − ŷ2)− 1

2
ŷ +

1

4
, φ̂2(x̂, ŷ) =

3

8
(x̂2 − ŷ2) +

1

2
x̂+

1

4
,

φ̂3(x̂, ŷ) = −3

8
(x̂2 − ŷ2) +

1

2
ŷ +

1

4
, φ̂4(x̂, ŷ) =

3

8
(x̂2 − ŷ2)− 1

2
x̂+

1

4
.

(5.8)

Analogously to the Crouzeix–Raviart finite element, the functionals can
be defined as point values of the functions in the barycenters of the facets,
see Figure 5.14, or as integral mean values of the functions at the facets.
Consequently, the finite element spaces are defined in the same way as (5.6)
or (5.7), with P nc

1 (K) replaced by Qrot
1 (K).
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In the code ParMooN Wilbrandt et al. (2017), the mean value oriented
Qrot

1 finite element space is implemented for two dimensions and the point
value oriented Qrot

1 finite element space for three dimensions. For d = 3, the
integrals on the facets of mesh cells, whose equality is required in the mean
value oriented Qrot

1 finite element space, involve a weighting function which
depends on the particular mesh cell K. The computation of these weighting
functions for all mesh cells is an additional computational overhead. For this
reason, it was suggested in (Schieweck, 1997, p. 21) to use for d = 3 the
simpler point value oriented form of the Qrot

1 finite element. ✷

Remark 5.40. Parametric mappings. The image of an affine mapping of the
reference mesh cell K̂ = [−1, 1]d, d ∈ {2, 3}, is a parallelepiped. If one wants
to consider finite elements on general d-quadrilaterals, then the class of ad-
missible reference maps has to be enlarged.

The simplest non-affine parametric finite element on quadrilaterals in two
dimensions uses bilinear mappings. Let K̂ = [−1, 1]2 and let

FK(x̂) =

�
F 1
K(x̂)

F 2
K(x̂)

�
=

�
a11 + a12x̂+ a13ŷ + a14x̂ŷ
a21 + a22x̂+ a23ŷ + a24x̂ŷ

�
, F i

K ∈ Q1, i = 1, 2,

be a bilinear mapping from K̂ on the class of admissible quadrilaterals. A
quadrilateral K is called admissible if

• the length of every edge of K is larger than zero,
• the interior angles of K are smaller than π, i.e., K is convex.

This class contains, e.g., trapezoids and rhombi. ✷

Remark 5.41. Parametric finite element functions. The functions of the local
space P (K) on the mesh cell K are defined by p = p̂ ◦ F−1

K . These functions
are in general rational functions if FK is not affine. However, using d-linear
mappings, then the restriction of FK to an edge of K̂ is an affine map, since
(d − 1) coordinates are fixed for an edge on K̂. For instance, in the case of
the Q1 finite element, the functions on K are linear functions on each edge
of K. It follows that the functions of the corresponding global finite element
space Q1 are continuous, compare Example 5.26. ✷

5.4 Transform of Integrals

Remark 5.42. Motivation. The transformation of integrals from the reference
mesh cell to mesh cells of the grid and vice versa is used as well for the
analysis as for the implementation of finite element methods. This section
provides an overview of the most important formulae for transformations.

Let K̂ ⊂ Rd be the reference mesh cell, K be an arbitrary mesh cell, and
FK : K̂ → K with x = FK(x̂) be the reference map. It is assumed that the
reference map is a continuous differentiable one-to-one map. The inverse map
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is denoted by F−1
K : K → K̂. For the integral transforms, the derivatives

(Jacobians) of FK and F−1
K are needed

DFK(x̂)ij =
∂xi

∂x̂j
, DF−1

K (x)ij =
∂x̂i

∂xj
, i, j = 1, . . . , d. (5.9)

✷

Remark 5.43. Integral with a function without derivatives. This integral trans-
forms with the standard rule of integral transforms

�

K

v(x) dx =

�

K̂

v̂(x̂) |detDFK(x̂)| dx̂, (5.10)

where v̂(x̂) = v(FK(x̂)). ✷

Remark 5.44. Transform of derivatives. Using the chain rule and (5.9), one
obtains

∂v

∂xi
(x) =

d�

j=1

∂v̂

∂x̂j
(x̂)

∂x̂j

∂xi
= ∇x̂v̂(x̂) ·

��
DF−1

K (x)
�T�

i

= ∇x̂v̂(x̂) ·
��

DF−1
K (FK(x̂))

�T�
i

=
��

DF−1
K (FK(x̂))

�T�
i
·∇x̂v̂(x̂), (5.11)

∂v̂

∂x̂i
(x̂) =

d�

j=1

∂v

∂xj
(x)

∂xj

∂x̂i
= ∇v(x) ·

�
(DFK(x̂))

T
�
i

= ∇v(x) ·
��

DFK(F−1
K (x))

�T�
i
. (5.12)

The index i denotes the i-th row of a matrix. Derivatives on the reference
mesh cell are marked with a symbol on the operator. ✷

Remark 5.45. Integrals with gradients. Using the rule for transforming inte-
grals and (5.11) gives

�

K

b(x) ·∇v(x) dx

=

�

K̂

b (FK(x̂)) ·
��
DF−1

K

�T
(FK(x̂))

�
∇x̂v̂(x̂) |detDFK(x̂)| dx̂. (5.13)

Similarly, one obtains

�

K

∇v(x) ·∇w(x) dx

=

�

K̂

��
DF−1

K

�T
(FK(x̂))

�
∇x̂v̂(x̂) ·

��
DF−1

K

�T
(FK(x̂))

�
∇x̂ŵ(x̂)
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× |detDFK(x̂)| dx̂. (5.14)

✷

Example 5.46. Affine transform. The most important class of reference maps
are affine transforms (5.3), where the invertible matrix BK and the vector b
are constants. It follows that

x̂ = B−1
K (x− b) = B−1

K x−B−1
K b.

In this case, there are

DFK = BK , DF−1
K = B−1

K , detDFK = det (BK) .

One obtains for the integral transforms from (5.10), (5.13), and (5.14)

�

K

v(x) dx = |det (BK)|
�

K̂

v̂(x̂) dx̂, (5.15)

�

K

b(x) ·∇v(x) dx = |det (BK)|
�

K̂

b (FK(x̂)) ·B−T
K ∇x̂v̂(x̂) dx̂, (5.16)

�

K

∇v(x) ·∇w(x) dx = |det (BK)|
�

K̂

B−T
K ∇x̂v̂(x̂) ·B−T

K ∇x̂ŵ(x̂) dx̂.

(5.17)

Setting v(x) = 1 in (5.15) yields

|det (BK)| = |K|���K̂
���
. (5.18)

✷


