
Chapter 3

Introduction to Sobolev Spaces

Remark 3.1. Contents. Sobolev spaces are the basis of the theory of weak or
variational forms of partial differential equations. A very popular approach
for discretizing partial differential equations, the finite element method, is
based on variational forms. In this chapter, a short introduction into Sobolev
spaces will be given. Recommended literature are the books Adams (1975);
Adams & Fournier (2003), and Evans (2010). ✷

3.1 Elementary Inequalities

Lemma 3.2. Inequality for strictly monotonically increasing func-
tion. Let f : R+ ∪ {0} → R be a continuous and strictly monotonically
increasing function with f(0) = 0 and f(x) → ∞ for x → ∞. Then, for all
a, b ∈ R+ ∪ {0}, it is

ab ≤
� a

0

f(x) dx+

� b

0

f−1(y) dy,

where f−1(y) is the inverse of f(x).

Proof. Since f(x) is strictly monotonically increasing, the inverse function exists.

The proof is based on a geometric argument, see Figure 3.1.

Consider the interval (0, a) on the x-axis and the interval (0, b) on the y-axis. Then, the
area of the corresponding rectangle is given by ab,

� a
0
f(x) dx is the area below the curve,

and
� b
0
f−1(y) dy is the area between the positive y-axis and the curve. From Figure 3.1,

the inequality follows immediately. The equal sign holds only iff f(a) = b. �

Remark 3.3. Young’s1 inequality. Young’s inequality

ab ≤ ε

2
a2 +

1

2ε
b2 ∀ a, b ∈ R+ ∪ {0}, ε ∈ R+, (3.1)

1 William Henry Young (1863 – 1942)
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Fig. 3.1 Sketch to the proof of Lemma 3.2.

follows from Lemma 3.2 with f(x) = εx, f−1(y) = ε−1y. It is also possible to
derive this inequality from the binomial theorem. For proving the generalized
Young inequality

ab ≤ εp

p
ap +

1

qεq
bq, ∀ a, b ∈ R+ ∪ {0}, ε ∈ R+, (3.2)

with p−1+q−1 = 1, p, q ∈ (1,∞), one chooses f(x) = xp−1, f−1(y) = y1/(p−1)

and applies Lemma 3.2 with intervals where the upper bounds are given by
εa and ε−1b. ✷

Remark 3.4. Cauchy–Schwarz inequality.

• The Cauchy2–Schwarz3 inequality (for vectors, for sums)

��(x, y)
�� ≤ �x�2

��y
��
2
∀ x, y ∈ Rn, (3.3)

where (·, ·) is the Euclidean inner product and �·�2 the Euclidean norm,
is well known.

• One can prove this inequality with the help of Young’s inequality. First, it
is clear that the Cauchy–Schwarz inequality is correct if one of the vectors
is the zero vector. Now, let x, y with �x�2 =

��y
��
2
= 1. One obtains with

the triangle inequality and Young’s inequality (3.1)

��(x, y)
�� =

�����
n�

i=1

xiyi

����� ≤
n�

i=1

|xi| |yi| ≤
1

2

n�

i=1

|xi|2 +
1

2

n�

i=1

|yi|2 = 1.

Hence, the Cauchy–Schwarz inequality is correct for x, y. Last, one con-
siders arbitrary vectors x̃ �= 0, ỹ �= 0. Now, one can utilize a homogeneity
argument. From the validity of the Cauchy–Schwarz inequality for x and
y, one obtains by a scaling argument

2 Augustin Louis Cauchy (1789 – 1857)
3 Hermann Amandus Schwarz (1843 – 1921)
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��(�x̃�−1
2 x̃� �� �
x

,
��ỹ

��−1

2
ỹ

� �� �
y

)
�� ≤ 1.

Both vectors x, y have the Euclidean norm 1, hence

1

�x̃�2
��ỹ

��
2

��(x̃, ỹ)
�� ≤ 1 ⇐⇒

��(x̃, ỹ)
�� ≤ �x̃�2

��ỹ
��
2
.

• The generalized Cauchy–Schwarz inequality or Hölder’s4 inequality

��(x, y)
�� ≤

�
n�

i=1

|xi|p
�1/p � n�

i=1

|yi|q
�1/q

with p−1 + q−1 = 1, p, q ∈ (1,∞), can be proved in the same way with
the help of the generalized Young inequality.

✷

Definition 3.5. Lebesgue spaces. The space of functions that are Lebesgue5

integrable on Ω to the power of p ∈ [1,∞) is denoted by

Lp(Ω) =

�
f :

�

Ω

|f(x)|p dx < ∞
�
,

which is equipped with the norm

�f�Lp(Ω) =

��

Ω

|f(x)|p dx

�1/p

.

For p = ∞, this space is given by

L∞(Ω) = {f : |f(x)| < ∞ almost everywhere in Ω}

with the norm
�f�L∞(Ω) = ess supx∈Ω |f(x)|.

✷

Lemma 3.6. Hölder’s inequality. Let p−1 + q−1 = 1, p, q ∈ [1,∞]. If u ∈
Lp(Ω) and v ∈ Lq(Ω), then it is (uv) ∈ L1(Ω) and it holds that

�uv�L1(Ω) ≤ �u�Lp(Ω) �v�Lq(Ω) . (3.4)

If p = q = 2, then this inequality is also known as Cauchy–Schwarz inequality

4 Otto Hölder (1859 – 1937)
5 Henri Lebesgue (1875 – 1941)
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�uv�L1(Ω) ≤ �u�L2(Ω) �v�L2(Ω) . (3.5)

Proof. i) p, q ∈ (1,∞). First, one has to show that |(uv)(x)| can be estimated from
above by an integrable function. Setting in the generalized Young inequality (3.2) ε = 1,

a = |u(x)|, and b = |v(x)| gives

|u(x)v(x)| ≤ 1

p
|u(x)|p +

1

q
|v(x)|q . (3.6)

Since the right-hand side of this inequality is integrable, by assumption, it follows that

uv ∈ L1(Ω). Integrating (3.6), Hölder’s inequality is proved for the case �u�Lp(Ω) =

�v�Lq(Ω) = 1

�

Ω

|u(x)v(x)| dx ≤ 1

p

�

Ω

|u(x)|p dx+
1

q

�

Ω

|v(x)|q dx = 1.

The general inequality follows, for the case that both functions do not vanish almost

everywhere, with the same homogeneity argument as used for proving the Cauchy–Schwarz
inequality of sums. In the case that one of the functions vanishes almost everywhere, (3.4)

is trivially satisfied.

ii) p = 1, q = ∞. It is

�

Ω

|u(x)v(x)| dx ≤
�

Ω

|u(x)| ess supx∈Ω |v(x)| dx = �u�L1(Ω) �v�L∞(Ω) .

�

3.2 Weak Derivative and Distributions

Remark 3.7. Contents. This section introduces a generalization of the deriva-
tive that is needed for the definition of weak or variational problems. For an
introduction to the topic of this section, e.g., see Haroske & Triebel (2008)

Let Ω ⊂ Rd be a domain with boundary Γ = ∂Ω, d ∈ N, Ω �= ∅. A domain
is always an open set. ✷

Definition 3.8. The space C∞
0 (Ω). The space of infinitely often differen-

tiable real functions with compact (closed and bounded) support in Ω is
denoted by

C∞
0 (Ω) = {v : v ∈ C∞(Ω), supp(v) ⊂ Ω},

where
supp(v) = {x ∈ Ω : v(x) �= 0}.

In particular, functions from C∞
0 (Ω) vanish in a neighborhood of the bound-

ary of Ω. ✷

Definition 3.9. Convergence in C∞
0 (Ω). The sequence {φn(x)}∞n=1, φn ∈

C∞
0 (Ω) for all n, is said to convergent to the zero function if and only if

a) ∃K ⊂ Ω,K compact with supp(φn) ⊂ K for all n,
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b) Dαφn(x) → 0 for n → ∞ on K for all multi-indices α = (α1, . . . ,αd),
|α| = α1 + . . .+ αd.

It is
lim

n→∞
φn = φ ⇐⇒ lim

n→∞
(φn − φ) = 0.

✷

Definition 3.10. Weak derivative. Let f, F ∈ L1
loc(Ω). A function u be-

longs to L1
loc(Ω) if for each compact subset Ω� ⊂ Ω, it holds

�

Ω�
|u(x)| dx < ∞.

If for all functions g ∈ C∞
0 (Ω), it holds that

�

Ω

F (x)g(x) dx = (−1)|α|
�

Ω

f(x)Dαg(x) dx,

then F (x) is called weak derivative of f(x) with respect to the multi-index
α. ✷

Remark 3.11. On the weak derivative.

• The notion ‘weak’ is used in mathematics if something holds for all ap-
propriate test elements (test functions).

• One uses the same notations for the derivative as in the classical case:
F (x) = Dαf(x).

• If f(x) is classically differentiable on Ω, then the classical derivative is
also the weak derivative.

• The assumptions on f(x) and F (x) are such that the integrals in the
definition of the weak derivative are well defined. In particular, since the
test functions and all their derivatives vanish in a neighborhood of the
boundary, the behavior of f(x) and F (x) if x approaches the boundary
is not of importance.

• The main aspect of the weak derivative is due to the fact that the
(Lebesgue) integral is not influenced from the values of the functions on a
set of (Lebesgue) measure zero. Hence, the weak derivative is defined only
up to a set of measure zero. It follows that f(x) might be not classically
differentiable on a set of measure zero, e.g., in a point, but it can still be
weakly differentiable.

• The weak derivative is uniquely determined, in the sense described above.

✷

Example 3.12. Weak derivative. The weak derivative of the function f(x) =
|x| is

f �(x) =





−1 x < 0,
0 x = 0,
1 x > 0.
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In x = 0, one can use also any other real number. The proof of this statement
follows directly from the definition and it is left as an exercise. ✷

Definition 3.13. Distribution. A continuous linear functional defined on
C∞

0 (Ω) is called distribution. The set of all distributions is denoted by
(C∞

0 (Ω))
�
.

Let u ∈ C∞
0 (Ω) and ψ ∈ (C∞

0 (Ω))
�
, then the following notations are used

for the application of the distribution to the function

ψ(u) = �ψ, u� ∈ R.

✷

Remark 3.14. On distributions. Distributions are a generalization of func-
tions. They assign to each function from C∞

0 (Ω) a real number. ✷

Example 3.15. Regular distribution. Let u ∈ L1
loc(Ω). Then, a distribution is

defined by �

Ω

u(x)φ(x) dx = �ψ,φ� ∀ φ ∈ C∞
0 (Ω).

This distribution will be identified with u ∈ L1
loc(Ω).

Distributions with such an integral representation are called regular, oth-
erwise they are called singular. ✷

Example 3.16. Dirac distribution. Let ξ ∈ Ω be fixed, then

�δξ,φ� = φ(ξ) ∀ φ ∈ C∞
0 (Ω)

defines a singular distribution, the so-called Dirac6 distribution or δ-distribu-
tion. It is denoted by δξ = δ(x− ξ). ✷

Definition 3.17. Derivatives of distributions. Let φ ∈ (C∞
0 (Ω))

�
be a dis-

tribution. The distribution ψ ∈ (C∞
0 (Ω))

�
is called derivative in the sense of

distributions or distributional derivative of φ if

�ψ, v� = (−1)|α|�φ, Dαv� ∀ v ∈ C∞
0 (Ω),

α = (α1, . . . ,αd), αj ≥ 0, j = 1, . . . , d, |α| = α1 + . . .+ αd. ✷

Remark 3.18. On derivatives of distributions.

• Each distribution has derivatives in the sense of distributions of arbitrary
order.

• Let φ be a regular distribution, which can be identified with a function
u ∈ L1

loc(Ω). If a derivative in the sense of distributions ψ of φ is also
a regular distribution, it can be identified with a function ũ ∈ L1

loc(Ω).
Then, also the weak derivative Dαu(x) exists and it can be identified
with ũ(x).

✷

6 Paul Adrien Maurice Dirac (1902 – 1984)
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3.3 Lebesgue Spaces and Sobolev Spaces

Remark 3.19. On the spaces Lp(Ω). These spaces were introduced in Defini-
tion 3.5.

• The elements of Lp(Ω) are, strictly speaking, equivalence classes of func-
tions that are different only on a set of Lebesgue measure zero.

• The spaces Lp(Ω) are Banach7 spaces (complete normed spaces). A space
X is complete, if each so-called Cauchy sequence {un}∞n=0 ∈ X, i.e., for
all ε > 0 there is an index n0(ε) such that for all i, j > n0(ε)

�ui − uj�X < ε,

converges and the limit is an element of X.
• The space L2(Ω) becomes a Hilbert8 space with the inner product

(f, g) =

�

Ω

f(x)g(x) dx, �f�L2 = (f, f)1/2, f, g ∈ L2(Ω).

• The dual space of a space X is the space of all bounded linear functionals
defined on X. Let Ω be a domain with sufficiently smooth boundary Γ
and consider the Lebesgue space Lp(Ω), p ∈ [1,∞], then

(Lp(Ω))
�
= Lq(Ω) with p, q ∈ (1,∞),

1

p
+

1

q
= 1,

�
L1(Ω)

��
= L∞(Ω),

(L∞(Ω))
� �= L1(Ω),

where the prime symbolizes the dual space. The spaces L1(Ω), L∞(Ω)
are not reflexive, i.e., the dual space of the dual space is not the original
space again.

✷

Definition 3.20. Sobolev9 spaces. Let k ∈ N ∪ {0} and p ∈ [1,∞], then
the Sobolev space W k,p(Ω) is defined by

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀ α with |α| ≤ k}.

This space is equipped with the norm

�u�Wk,p(Ω) :=
�

|α|≤k

�Dαu�Lp(Ω) . (3.7)

✷

7 Stefan Banach (1892 – 1945)
8 David Hilbert (1862 – 1943)
9 Sergei Lvovich Sobolev (1908 – 1989)
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Remark 3.21. On the spaces W k,p(Ω).

• Definition 3.20 has the following meaning. From u ∈ Lp(Ω), p ∈ [1,∞),
it follows in particular that u ∈ L1

loc(Ω), so that u defines (represents)
a (regular) distribution. Then, all derivatives Dαu exist in the sense of
distributions. The statement Dαu ∈ Lp(Ω) means that the distribution
Dαu ∈ (C∞

0 (Ω))
�
can be represented by a function from Lp(Ω).

• One can add elements from W k,p(Ω) and one can multiply them with
real numbers. The result is again a function from W k,p(Ω). With this
property, the space W k,p(Ω) becomes a vector space (linear space). It is
straightforward to check that (3.7) is a norm. (exercise)

• It is Dαu(x) = u(x) for α = (0, . . . , 0) and W 0,p(Ω) = Lp(Ω).
• The spaces W k,p(Ω) are Banach spaces.
• Sobolev spaces have for p ∈ [1,∞) a countable basis {ϕn(x)}∞n=1 (Schau-
der10 basis), i.e., each element u(x) can be written uniquely in the form

u(x) =

∞�

n=1

unϕn(x), un ∈ R, n = 1, 2, . . . .

• Sobolev spaces are reflexive for p ∈ (1,∞).
• The subspace C∞(Ω) ∩ W k,p(Ω) is dense in W k,p(Ω), see (Gilbarg &
Trudinger, 1983, p. 154). Under a certain condition on the smoothness of
the boundary of a bounded domain Ω, one can show that C∞

0 (Rd) is dense
inW k,p(Ω), p ∈ [1,∞), with respect to the norm (3.7), e.g., (Adams, 1975,
Thm. 3.18). With this property, one can characterize the Sobolev spaces
W k,p(Ω) as completion of the functions from C∞

0 (Rd) with respect to the
norm (3.7). It follows that Ck(Ω) is dense in W k,p(Ω), p ∈ [1,∞).

• The Sobolev space Hk(Ω) = W k,2(Ω) is a Hilbert space with the inner
product

(u, v)Hk(Ω) =
�

|α|≤k

�

Ω

Dαu(x)Dαv(x) dx

and the induced norm �u�Hk(Ω) = (u, u)
1/2

Hk(Ω)
.

✷

Definition 3.22. The space W k,p
0 (Ω). The Sobolev space W k,p

0 (Ω) is de-
fined as the completion of C∞

0 (Ω) in the norm of W k,p(Ω)

W k,p
0 (Ω) = C∞

0 (Ω)
�·�

Wk,p(Ω) .

✷

10 Juliusz Pawel Schauder (1899 – 1943)



3.4 The Trace of a Function from a Sobolev Space 55

3.4 The Trace of a Function from a Sobolev Space

Remark 3.23. Motivation. This class considers boundary value problems for
partial differential equations. In the theory of weak or variational solutions,
the solution of the boundary value problem is searched in an appropriate
Sobolev space. Then, for the boundary value problem, this solution has to
satisfy the boundary condition. However, since the boundary of a domain is
a manifold of dimension (d − 1), and consequently it has Lebesgue measure
zero, one has to clarify how a function from a Sobolev space is defined on
this manifold. This definition will be presented in this section. ✷

Definition 3.24. Lipschitz boundary, Lipschitz domain, (Grisvard,
1985, Def. 1.2.1.1). Let Ω be a bounded domain in Rd, then Ω is called
Lipschitz11 domain, respectively the boundary Γ of Ω is called Lipschitz
boundary, if for every x ∈ Γ there exists a neighborhood U of x in Rd and
new orthogonal coordinates (y1, . . . , yd) so that:

1) U is a hypercube in the new coordinates

U = {(y1, . . . , yd) : −ai < yi < ai, i = 1, . . . , d} .

2) There exists a Lipschitz continuous function φ, defined in

U � = {(y1, . . . , yd−1) : −ai < yi < ai, i = 1, . . . , d− 1} ,

so that

|φ(y�)| ≤ an
2

for every y� = (y1, . . . , yd−1) ∈ U �,

Ω ∩ U = {y = (y�, yd) ∈ U : yd < φ(y�)} ,
Γ ∩ U = {y = (y�, yd) ∈ U : yd = φ(y�)} .

✷

Remark 3.25. Lipschitz boundary.

• In a neighborhood of x, Ω is below the graph of φ and the boundary Γ
is the graph of φ.

• The domain Ω is not on both sides of the boundary at any point of Γ .
• The outer normal vector is defined almost everywhere at the boundary
and it is almost everywhere continuous, e.g., see (Nečas, 2012, Chapter 2,
Lemma 4.2) .

✷

Example 3.26. On Lipschitz domains.

• Domains with Lipschitz boundary are, for example, balls or polygonal
domains in two dimensions where the domain is always on one side of the
boundary.

11 Rudolf Otto Sigismund Lipschitz (1832 – 1903)
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Fig. 3.2 Polyhedral domain in three dimensions that is not Lipschitz continuous (at the

corner where the arrow points to).

• A domain that is not a Lipschitz domain is a ball with a slit

Ω = {(x, y) : x2 + y2 < 1} \ {(x, y) : x ≥ 0, y = 0}.

At the slit, the domain is on both sides of the boundary.
• In three dimensions, a polyhedral domain is not not necessarily a Lip-
schitz domain. For instance, if the domain is build of two bricks that are
laying on each other like in Figure 3.2, then the boundary is not Lipschitz
continuous where the edge of one brick meets the edge of the other brick.

✷

Theorem 3.27. Trace theorem. Let Ω ⊂ Rd, d ≥ 2, with a Lipschitz
boundary. Then, there is exactly one linear and continuous operator γ :
W 1,p(Ω) → Lp(Γ ), p ∈ [1,∞), that gives for functions u ∈ C(Ω) ∩W 1,p(Ω)
the classical boundary values

γu(x) = u(x), x ∈ Γ, ∀ u ∈ C(Ω) ∩W 1,p(Ω),

i.e., γu(x) = u(x)|x∈Γ .

Proof. The proof can be found in the literature, e.g., in Adams (1975); Adams & Fournier
(2003). �

Remark 3.28. On the trace.

• The operator γ is called trace or trace operator.
• By definition of the trace, one gets for u ∈ C(Ω) the classical boundary
values. By the density of C∞(Ω) ⊂ C(Ω) in W 1,p(Ω) for domains with
smooth boundary, it follows that for all u ∈ W 1,p(Ω) there is a sequence
{un}∞n=1 ∈ C∞(Ω) with un → u in W 1,p(Ω). Then, the trace of u is
defined to be γu = limn→∞(γun).

• Since a linear and continuous operator is bounded, there is a constant
C > 0 with

�γu�Lp(Γ ) ≤ C �u�W 1,p(Ω) ∀ u ∈ W 1,p(Ω)
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or
�γ�L(W 1,p(Ω),Lp(Γ )) ≤ C.

• It is

γu(x) = 0 ∀ u ∈ W 1,p
0 (Ω),

γDαu(x) = 0 ∀ u ∈ W k,p
0 (Ω), |α| ≤ k − 1. (3.8)

✷

3.5 Sobolev Spaces with Non-Integer and Negative
Exponents

Remark 3.29. Motivation. Sobolev spaces with non-integer and negative ex-
ponents are important in the theory of variational formulations of partial
differential equations.

Let Ω ⊂ Rd be a domain and p, q ∈ (1,∞) with p−1 + q−1 = 1. ✷

Definition 3.30. The space W−k,q(Ω). The space W−k,q(Ω), k ∈ N∪ {0},
contains distributions that are defined on W k,p(Ω)

W−k,q(Ω) =
�
ϕ ∈ (C∞

0 (Ω))
�
: �ϕ�W−k,q(Ω) < ∞

�

with

�ϕ�W−k,q(Ω) = sup
u∈C∞

0 (Ω),u�=0

�ϕ, u�
�u�Wk,p(Ω)

.

✷

Remark 3.31. On the spaces W−k,p(Ω).

• It is W−k,q(Ω) =
�
W k,p

0 (Ω)
��
, i.e., W−k,q(Ω) can be identified with the

dual space of W k,p
0 (Ω). In particular, it is H−1(Ω) =

�
H1

0 (Ω)
��
.

• It is

. . . ⊂ W 2,p(Ω) ⊂ W 1,p(Ω) ⊂ Lp(Ω) ⊂ W−1,q(Ω) ⊂ W−2,q(Ω) . . . .

✷

Definition 3.32. Sobolev–Slobodeckij space. Let s ∈ R, then the Sobo-
lev–Slobodeckij12 or Sobolev space Hs(Ω) is defined as follows:

• s ∈ Z. Hs(Ω) = W s,2(Ω).
• s > 0 with s = k + σ, k ∈ N ∪ {0}, σ ∈ (0, 1). The space Hs(Ω) contains
all functions u for which the following norm is finite:

12 L. N. Slobodeckij
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�u�2Hs(Ω) = �u�2Hk(Ω) + |u|2k+σ ,

with

(u, v)Hs(Ω) = (u, v)Hk(Ω) + (u, v)k+σ, |u|2k+σ = (u, u)k+σ.

and

(u, v)k+σ =
�

|α|=k

�

Ω

�

Ω

(Dαu(x)−Dαu(y)) (Dαv(x)−Dαv(y))

�x− y�d+2σ
2

dxdy,

• s < 0. Hs(Ω) =
�
H−s

0 (Ω)
��

with H−s
0 (Ω) = C∞

0 (Ω)
�·�H−s(Ω) .

✷

3.6 The Poincaré–Friedrichs Inequality

Definition 3.33. Equivalent norms. Two norms �·�1 and �·�2 on the lin-
ear space X are said to be equivalent if there are constants C1 and C2 so
that

C1 �u�1 ≤ �u�2 ≤ C2 �u�1 ∀ u ∈ X.

✷

Remark 3.34. On equivalent norms.

• Many important properties, like continuity or convergence, do not change
if an equivalent norm is considered.

• In finite-dimensional spaces, all norms are equivalent.

✷

Theorem 3.35. Equivalent norms in W k,p(Ω) (Smirnow, 1967, § 114,
Satz 3). Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary Γ , p ∈
[1,∞], and k ∈ N. Let {fi}li=1 be a system of functionals with the following
properties:

1) fi : W k,p(Ω) → R+ ∪ {0} is a seminorm,
2) boundedness: ∃Ci > 0 with 0 ≤ fi(v) ≤ Ci �v�Wk,p(Ω), ∀ v ∈ W k,p(Ω),

3) fi is a norm on the polynomials of degree k − 1, i.e., if for v ∈ Pk−1 =��
|α|≤k−1 Cαx

α
�
, it holds that fi(v) = 0, i = 1, . . . , l, then it is v ≡ 0.

Then, the norm �·�Wk,p(Ω) defined in (3.7) and the norm

�u��Wk,p(Ω) :=

�
l�

i=1

fp
i (u) + |u|pWk,p(Ω)

�1/p

with


