Kapitel 7

Lineare
Zwei—Punkt—Randwertprobleme

Bemerkung 7.1 Gewdhnliche Differentialgleichungen, Randwertprobleme. Dieses Kapitel betrachtet
Probleme, welche lineare gewdhnliche Differentialgleichungen zweiter Ordnung beinhalten. In diesen
Problemen sind jedoch Daten in den beiden Randpunkten eines begrenzten Intervalls vorgegeben, im
Gegensatz zu Anfangswertproblemen, wie sie in Kapitel 6 behandelt wurden. O

7.1 Das Modellproblem

Definition 7.2 Lineares Zwei—Punkt—Randwertproblem. Ein lineares Zwei-Punkt-Randwertproblem
besitzt die Gestalt

—eu” 4+ b(x)u' + c(x)u = f(x), firz € (d,e), (7.1)
mit den Randbedingungen
agu(d) + 5du’/(d) = Y (7.2)
aule) + Beu(e) = 7
Hierbei gelte b, ¢, f € C([d,e]), 0 < ¢ € R und die Konstanten ay, a., B4, Be, Ya; Ve S€ien gegeben. O

Bemerkung 7.3 Bedeutung linearer Zwei—Punkt—Randwertprobleme. Das Randwertproblem (7.1), (7.2)
ist das einfachste Modellproblem zur Beschreibung von Prozessen, welche Diffusion, Transport und Re-
aktion beinhalten.

Ein Beispiel aus Goering (1977) ist wie folgt. Fliefit einem Stréomungsreaktor bei konstanter Tempe-
ratur kontinuierlich eine Reaktionsmasse zu und ein Produkt ab, so berechnet sich die Konzentrations-
verteilung c(t, z,y, z), [kmol/m®], im Reaktor geméB der partiellen Differentialgleichung

Oc + div (cu) —div (D gradc) = r(c)
ot .
Konvektion Diffusion Reaktion

wobei u(x), [/s], der Vektor der Stromungsgeschwindigkeit, r(c), [kmol/m®s], eine die Reaktion beschrei-
bende Funktion und D, [m"/s], der Diffusionskoeffizient sind.

Bei einem stationiren Reaktorbetrieb, das heit die zeitliche Anderung ist sehr langsam und kann ver-
nachléssigt werden, bei konstanten Parametern D, v und wenn die Konzentration sich nur in z—Richtung
dndert, erhélt man aus der partiellen Differentialgleichung eine gewéhnliche Differentialgleichung fiir ¢(x)

—Dc"(z) + uc (z) = r(c(x)).

Sei x € [0, L], wobei L, [m], die Reaktorlinge bezeichne. )
Sowohl fiir die mathematische Analysis als auch fiir numerische Simulationen ist der Ubergang zu
dimensionslosen Problemen wichtig. Mit den dimensionslosen Gréfien
c
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wobei ¢g, [kmol/m?], eine Referenzkonzentration ist, gelangt man zu einer dimensionslosen gewéhnlichen
Differentialgleichung. Es gelten mit Kettenregel

/ 2 "
(O _de@/e)de _ d@) ) )
d¢ dr  d¢ o de? co
Einsetzen in die Differentialgleichung ergibt, im Fall u # 0,
1 ’ . ulL L
- = 1 Pei=—, p=—r.
pa @) +7(€) =p(1(§)), £€(0,1), mit Pe:=—=, p "

Die dimensionslose Zahl Pe wird Péclet-Zahl* genannt. Zur Vervollstindigung der Problemstellung sind
jetzt noch Randbedingungen fiir £ € {0, 1} nétig.
Aus der eben beschriebenen Anwendung heraus werden die Terme in (7.1) wie folgt genannt:
e —cu” — Diffusionsterm,
e b(x)u’ — Konvektions—, Advektions— oder Transportterm,
e c(x)u — Reaktionsterm.
Das Modellproblem (7.1), (7.2) wird Konvektions-Diffusions-Reaktions-Problem genannt, falls b(z) # 0
beziehungsweise ¢(z) # 0.
Die Péclet-Zahl gibt das Verhiltnis von Konvektion und Diffusion an. Falls dieses Verhéltnis grofl
ist, wird dies in der numerischen Losung von (7.1), (7.2) zu erheblichen Schwierigkeiten fiihren. O

Definition 7.4 Randbedingungen.
1. Randbedingungen der Gestalt
u(d) = Yd> u(e) = Ye
heilen Randbedingungen erster Art oder DirichletQfRandbedingungem
2. Randbedingungen der Gestalt
!/ /
u (d) =Y, U (6) = Ye
heiflen Randbedingungen zweiter Art oder N eumann?’fRandbedingungen,
3. Seien v4,7. € R, ay, o, € R\ {0}, dann nennt man

agu(d) +u'(d) =4, acule) +u'(e) =7

Randbedingungen dritter Art oder Robin4fRandbedingungen.
Dirichlet—-Randbedingungen sind in Anwendungen am wichtigsten und sie werden am haufigsten in der
Analysis betrachtet. Deshalb wird sich in der Vorlesung auf diese konzentriert werden. O

Bemerkung 7.5 Normierung eines linearen Zwei—Punkt—Randwertproblems.
e Man kann ohne Beschriankung der Allgemeinheit z € [0,1] annehmen. Das erreicht man durch die

Transformation
T —d

e—d’
e Man kann ebenfalls ohne Beschrinkung der Allgemeinheit homogene Randbedingungen v; = v, =0

annehmen, indem man von u(z) eine glatte Funktion ¢ (z), welche die urspriinglichen Randbedin-
gungen erfiillt, subtrahiert. Sind beispielsweise Dirichlet—-Randbedingungen

X —

u(d) = Vd> ’U,(@) = Ye>

gegeben, dann setzt man
T —e x—d

d—eJr%e—d

() =74

! Jean Claude Eugene Péclet (1793 — 1857)

2 Johann Peter Gustav Lejeune Dirichlet (1805 — 1859)
3Carl Gottfried Neumann (1832 — 1925)

*Victor Gustave Robin (1855 — 1897)
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und
u () = u(x) — P().

Dann ist u*(z) die Lésung eines linearen Zwei-Punkt-Randwertproblems mit homogenen Dirichlet—
Randbedingungen.
O

Definition 7.6 Modellproblem. Das Modellproblem ist ein lineares Konvektions-Diffusions-Reaktions-
Problem

Lu = —eu” + b(2)u' + c(x)u = f(x) fiir x € (0,1), (7.3)

mit den Randbedingungen
u(0) = u(1) = 0. (7.4)
Hierbei gelten b, ¢, f € C([0,1]), 0 <e € R. O

Bemerkung 7.7 Differentialoperator. In (7.3) bezeichnet L einen Differentialoperator. Unter einem
Operator versteht man eine Abbildung zwischen zwei (Funktionen—)RAumen. Insoweit ist der Begriff des
Operators synonym zum Begriff der Abbildung. Ein linearer Operator ist eine lineare Abbildung A auf
einem linearen Raum X, so dass

A(au + pv) = aAu + A

fiir alle Skalare o, 8 und alle u,v € X ist. Ein Differentialoperator ist ein Operator, der, angewandt
auf geeignete Funktionen, Ableitungen enthélt. Zur vollsténdigen Definition eines Operators ist dessen
Definitionsbereich anzugeben.

Der Differentialoperator L ist ein linear Differentialoperator 2. Ordnung (die héchste Ableitung ist
die zweite Ableitung) mit dem Definitionsbereich C*(0,1) N C([0,1]). O

Beispiel 7.8 Konvektions—Diffusions—Problem. Das Randwertproblem
—eu” +u =1 auf (0,1), u(0)=wu(l)=0

besitzt die Losung
exp (—15%) —exp (—3)

1 —exp (—%)
Je kleiner der Parameter ¢ ist, umso steiler wird die Losung in der Ndhe des rechten Randes, siehe
Abbildung 7.1. Diesen Teil der Losung nennt man Grenzschicht. Solche starken Anderungen der Losung
in einem sehr kleinen Bereich fithren zu Schwierigkeiten bei der numerischen Approximation der Lésung,
vergleiche Beispiel 7.68. m]

u(z) =x —

Bemerkung 7.9 Transformation des Modellproblems auf ein symmetrisches Problem. Sei b(x) hinrei-
chend glatt. Definiert man

() := u(z) exp (15 /Ow b(€) d§> , x€0,1], (7.5)

transformieren, wobei

o) = 00— 30 +eta), T = F)emw (5 [ 006 ae).

sind. Ubungsaufgabe |
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Abbildung 7.1: Beispiel 7.8. Losung fiir € = 0.1 links und € = 0.0001 rechts.

7.2 Losungsverhalten

Bemerkung 7.10 Das Modellproblem. Fiir die Untersuchung der Loésbarkeit des Randwertproblems
(7.3), (7.4) spielt die Grofe von € > 0 keine Rolle. Nach Division durch € und Umbenennung der Daten
betrachtet man das Problem

Lu = —u"(z) + b(z)u () + c(z)u(z) = f(z), firz e (0,1), (7.6)

mit den Randbedingungen
u(0) = u(1) = 0. (7.7)
O

Definition 7.11 Klassische Losung. Eine Funktion u(x) wird klassische Loésung von (7.6), (7.7) ge-
nannt, falls

e ue C*0,1)NC([0,1]),

o u(x) erfiillt die Gleichung (7.6) identisch, d.h. fir alle z € (0, 1),

e u(z) geniigt den Randbedingungen (7.7).

7.2.1 Betrachtung der Differentialgleichung (7.6)

Bemerkung 7.12 Allgemeines. Eine klassische Losung von (7.6) muss die ersten beiden Eigenschaf-
ten der obigen Definition besitzen. Da ein lineares Problem untersucht wird, wird man wie iiblich die
allgemeine Losung als die Summe einer speziellen Losung und der allgemeinen Losung des homogenen
Problems darstellen kénnen (Superpositionsprinzip). Die Charakterisierung der allgemeinen Lésung des
homogenen Problems erfordert die Einfithrung einiger neuer Begriffe. o

Definition 7.13 Linear unabhingige Funktionen. Zwei Funktionen u,(z) und uy(x) heiflen im
Intervall (a,b) linear unabhéngig, wenn aus

cruy (z) + couq(z) =0 fiir alle = € (a, b)

folgt, dass ¢; = ¢y = 0 ist. Sie heiflen linear abhéngig, wenn sie nicht linear unabhingig sind. O
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Bemerkung 7.14 Wronski’ —Determinante. Sind zwei in (a,b) linear abhingige Funktionen in (a,b)
stetig differenzierbar, so folgt aus der Bedingung fiir die lineare Abhéngigkeit auch, dass

crut (z) + coup(x) =0 fiir alle € (a, b).

Demzufolge sind mit u;(z), uy(x) auch u}(z), uy(x) linear abhingig. Das bedeutet, dass das homogene

lineare Gleichungssystem
(36 43)(2)-(3)
uy(z)  uy(z) C2 0

eine nichttriviale Losung besitzt. Es folgt, dass die sogenannte Wronski-Determinante

W(a) = det( u() o) )

uy(x)  up(x)

fiir alle « € (a,b) gleich Null sein muss. Die Umkehrung gilt allerdings nicht: die Wronski-Determinante
kann fiir alle z € (a,b) verschwinden, auch wenn zwei Funktionen linear unabhiingig sind. Ein Beispiel
dazu findet man in (Emmrich, 2004, S. 15). m|

Lemma 7.15 Lineare Unabhiingigkeit zweier Losungen der homogenen Differentialgleichung.
Sei xg € (0,1) beliebig gewdhlt. Zwei in (0,1) gegebene klassische Lisungen der homogenen linearen Dif-
ferentialgleichung zweiter Ordnung mit stetigen Koeffizienten sind genau dann linear unabhdngig, wenn
die zugehdrige Wronski—Determinante an der Stelle xo ungleich Null ist.

Beweis: Fiir Interessenten.
i) W(zg) #0 = lineare Unabhingigkeit. Seien u;(x) und u,(x) klassische Lésungen von

—u”(az) + b(az)u/(x) +c(z)u(x) =0, z€(0,1),

wobei b, ¢ € C(0,1) sind. Fiir die Wronski-Determinante gilt dann mit Produktregel

W(z) = (w(z)u(z) - ui(z)us(x))’
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= u(z) (b(@)usz(z) + c(x)us () — ua(z) (b(x)uiz(z) + c(z)u; (z))
= b(z) (w(2)usz(z) — uiz(z)us(2)) + c(@) (ur (2)us () — u (2)uz())
= b(z)W(x)

Mithin 16st die Wronski—Determinante die homogene lineare Differentialgleichung 1. Ordnung

Y (2) = b(a)y().

Die allgemeine Losung dieser Differentialgleichung ist durch die die Liouvillesche® Formel, vergleiche (6.11),
gegeben. Angewandt auf die Differentialgleichung fiir W (x) gilt dann fiir jedes zy € (0,1)

0

W(z) = W(zg)exp </z b(&) df) , x€(0,1).

Da die Exponentialfunktion nur positive Werte annimmt, ist die Wronski-Determinante genau dann fiir alle
xz € (0,1) gleich Null beziehungsweise ungleich Null, wenn sie an einer beliebigen Stelle z, € (0,1) gleich Null
beziehungsweise ungleich Null ist. Insbesondere gilt im Fall W (x,) # 0 nach Bemerkung 7.14, dass u;(z) und
uy () nicht linear abhéngig sind.

11) lineare Unabhingigkeit => W (zq) # 0. Der Beweis wird indirekt gefiihrt. Angenommen, u, (z) und uy(x)
seien zwei linear unabhéngige Losungen und die Wronski-Determinante verschwinde in z, € (0,1). Nach Teil i)
verschwindet sie dann im gesamten Intervall (0, 1). Dann gibt es eine nichttriviale Lésung des Gleichungssystems

(u}(x) uIQ(x))(cl ):(0)
uy(z)  ua(x) ca 0

® Joseph Marie Wronski (1758 — 1853)

6 Joseph Liouville (1809 — 1882)
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Betrachte die Funktion
v(z) == cruy (x) + cous ().

Insbesondere gelten dann v(zy) = v'(xq) = 0. Wegen der Linearitit geniigt v(x) ebenfalls der Differentialglei-
chung. Somit 16st v(x) das Anfangswertproblem

—v"(2) + b(2)v' (2) + c(z)v(x) =0, @ € (w,1), w(zo) =v'(x0) =0

fiir jedes zy € (0,1). Mit dem globalen Satz von Picard-Lindelsf, Satz 6.52, zeigt man, dass dieses Anfangswert-
problem nur die triviale Losung besitzt. Also ist v(z) = 0 fiir alle « € (0, 1). Dies widerspricht jedoch der linearen
Unabhéngigkeit von u, (z) und us(x). [ |

Satz 7.16 Superpositionsprinzip. Betrachte die homogene lineare Differentialgleichung
—u" +b(z)u +c(zx)u=0, x¢€(0,1),

mit Koeffizienten b,c € C([0,1]). Dann gibt es zwei linear unabhingige Lésungen in C*([0,1]) und jede
klassische Ldsung ist als Linearkombination dieser darstellbar.

Beweis: Die Aussagen des Satzes werden mit Hilfe der Theorie von Anfangswertproblemen gezeigt. i) Exi-
stenz und Findeutigkeit der Losung des Anfangswertproblems. Man kann die Differentialgleichung zweiter Ordnung
(7.6) als dquivalentes System erster Ordnung schreiben

%< 5’(&)) ) N ( c&) b(lcw > ( Zf’(é)) )

Nach dem globalen Satz von Picard—Lindeldf, Satz 6.52, gibt es zu vorgegebenen Anfangsbedingungen u(zg),
u'(20), o € (0,1), eine eindeutig bestimmte Losung (u(x),u’(x)) des Anfangswertproblems in [0,1]. Jede Kom-
ponente der Lasung liegt in C*([0,1]), woraus u € C*(]0,1]) folgt.

1t) Ezistenz von zwei linear unabhdngigen Lisungen. Seien uy(x) die Losung zu den Anfangswerten u(xg) =
1,4 (20) = 0 und uy(z) zu den Anfangswerten u(zy) = 0,u'(29) = 1. Fiir die Wronski-Determinante gilt

W(xg) = ul(xo)u'g(xo) —u} (zo)ua(zg) = 1.

Nach Lemma 7.15 sind u, (z) und us(x) linear unabhéngig.
111) Darstellung jeder klassischen Ldsung als Linearkombination. Jede Linearkombination

u(z) = cyuy (z) + cua (), c1,¢2 ER,
ist wieder Losung der Differentialgleichung. Betrachte, mit u;(x), us(z) aus Teil ii), eine Funktion der Gestalt
u(z) = u(zo)us () +u'(zo)uz(x), € [a,b], u(zo),u'(zo) € R.

Diese Funktion erfiillt das Anfangswertproblem zu den beliebig vorgegebenen Anfangswerten u(z,),u (zo). Aus
der Eindeutigkeit der Losung des Anfangswertproblems folgt, dass jede Losung der Differentialgleichung in dieser
Gestalt dargestellt werden kann. ]

Satz 7.17 Klassische L6sung der inhomogenen Differentialgleichung. Betrachte die inhomogene,
lineare Differentialgleichung

—u" +b(z)u + c(z)u= f(z), z€(0,1),

mit b, c, f € C([0,1]). Dann gibt es eine klassische Losung u,(x), die sogenannte partikuldre Losung, und
jede klassische Losung ist darstellbar als

u(@) = crug () + coun () +up(@), ¢, 6 €R,

wobei {uy(x),uy(x)} ein System von zwei linear unabhingigen Losungen (Fundamentalsystem) der zu-
gehorigen homogenen Gleichung ist. Es gilt u € C*([0,1]).

Beweis: Mit dem globalen Existenz— und Eindeutigkeitssatz von Picard-Lindelsf, , Satz 6.52, Ubungsaufgabe.
|
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7.2.2 Betrachtung des Randwertproblems (7.6), (7.7)

Beispiel 7.18 Nichteindeutigkeit der Losung eines Dirichlet—Randwertproblems. Betrachte die Differen-
tialgleichung
—u" () — u(x) = 0.

Die allgemeine Losung dieser homogenen, linearen Differentialgleichung lautet
u(x) = ¢y cosx + copsinx, c¢q,c9 €R.

e Seien die Randbedingungen
u(0) = u(r/2) =1

gegeben, dann lautet die eindeutig bestimmte Losung u(z) = cosx + sinx.
e Sind die Randbedingungen
u(0) = u(m) =1

gegeben, dann besitzt das Randwertproblem keine Losung, da gleichzeitig ¢; = 1 als auch ¢ = —1
gelten miissten.
e Seien die Randbedingungen
uw(0)=1, wu(r)=-1

vorgelegt, dann gibt es unendlich viele Losungen, denn es folgt aus den Randbedingungen lediglich
c; = 1. Der Wert ¢y kann beliebig gewéhlt werden.
Dieses Beispiel zeigt, dass selbst in einfachen Féllen keine eindeutige Losung des Randwertproblems
(7.6), (7.7) existieren muss. Es wird sich zeigen, dass die Koeffizientenfunktionen bestimmte Bedingungen
erfiillen miissen, damit diese Eigenschaft gegeben ist. O

Satz 7.19 Existenz und Eindeutigkeit der Lésung des Modellproblems mit homogener rech-
ter Seite. Gegeben sei das Randwertproblem (7.6), (7.7) mit b € C*([0,1]), ¢ € C([0,1]) und f(z) = 0.
Gilt fir alle x € (0,1)

1 1
&) == Z1)2(1») - 5b’(gc) + ¢(z) >0, (7.8)
so besitzt das Problem (7.6), (7.7) nur die triviale Lisung.
Beweis: Zunichst ist offensichtlich, dass u(xz) = 0 eine Losung des gestellten Problems ist.

Angenommen, u(z) # 0 sei eine weitere klassische Losung. Nach Satz 7.17 gilt u € C?([0,1]). Mit der
Transformation (7.5) erhilt man das symmetrische’” Problem

—a"(z) + é(z)u(z) =0, =€ (0,1), @(0)=a(l)=0.

Eine Losung dieses Problems ist @(xz) = 0. Sei @(z) eine weitere Losung. Multipliziere nun die Gleichung mit
dieser Losung und integriere partiell. Das fithrt auf

0 = /0 ' (fﬂ"(:c)ﬁ(m)JrE(x)f(x)) de
= _a”(1)a(1)+a”(o)a(o)+/01 ((ﬂ'(m))2+6(1:)ﬂ2(x)) dz

1

[ (@) +ewit@) a (7.9)
0

da 4(x) an den Randpunkten verschwindet. Wegen é(x) > 0 ist der Integrand nichtnegativ, also muss er ver-

schwinden. Daraus folgt insbesondere (il'(ac))2 =0, also @' (z) = 0, woraus @i(z) gleich konstant folgt. Wegen der
Stetigkeit von @(z) und wegen der Randbedingungen folgt @(z) = 0. Daraus ergibt sich mit (7.5) aber auch

u(z) = i(z) exp (% G da) =

im Widerspruch zur Annahme. u

"Die letzte Zeile in (7.9) ist die symmetrische Bilinearform (u’, v/)Lz + (El/Qu, El/Qv)Lz
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Bemerkung 7.20 Konstante Koeffizienten. Im Spezialfall konstanter Koeffizienten reduziert sich Be-
dingung (7.8) auf
b2
D = Z +c Z 0

A"uch fiir den Fall D < 0 kann man das Losungsverhalten des Randwertproblems genau beschreiben,
Ubungsaufgabe. a

Bemerkung 7.21 Anderes Kriterium zur Eindeutigkeit der Losung des vollhomogenen Randwertpro-
blem. Betrachte das Randwertproblem (7.6), (7.7) mit homogener rechter Seite. Seien u; (), uy(x) zwei
linear unabhéngige Losungen der Gleichung und bezeichne

wme (U E0))

Die allgemeine Losung der homogenen Differentialgleichung lautet
u(z) = cyuy () + coug ().
Die Koeffizienten bestimmen sich aus den Randbedingungen
0= c1u1(0) + caug(0), 0= crug(1) 4 coua(1),

was zur Losung des linearen Gleichungssystems

(28 58)(2)-(2)

ur (1) uy(1) C2 0

dquivalent ist. Diese Losung ist genau dann eindeutig (¢; = ¢y = 0), falls R # 0 gilt. Genau in diesem
Fall besitzt das vollhomogene Randwertproblem nur die triviale Losung. O

Bemerkung 7.22 Zum inhomogenen Randwertproblem. Betrachte nun das Randwertproblem (7.6),

(7.7) mit inhomogener rechter Seite. Seien u, (), uy(x) zwei linear unabhéngige Losungen der zugehorigen
homogenen Differentialgleichung und

et (e i) ) per= e () ).

Fiir die Betrachtung des Randwertproblems mit inhomogener rechter Seite, wird der Begriff der
Greenschen Funktion benotigt. m|

A(z)

Definition 7.23 Green®sche Funktion. Die Funktion I'(z, &) heift Greensche Funktion fiir das ho-
mogene Randwertproblem Lu = 0, u(0) = u(1) = 0, wenn:

1. I'(z, &) ist stetig auf dem Quadrat @ := {(z,§) : =, € [0,1]}.

2. In jedem der Dreiecke

Qi ={(z,8) : 0<&<x <1}, Qy:={(z,8) : 0<x <L}

existieren stetige partielle Ableitungen T';(z,€) und T, (z, ).
Bei festem £ € I = (0, 1) ist I'(z, £) als Funktion von « eine Losung von LT' =0 fir x # &, x € I.
4. Auf der Diagonalen x = £ besitzt die erste Ableitung eine Sprung der Form

@

1
r 0,z)—T —0,x)=——, O0<z<1,
o(z+0,2) ~Talz = 0.2) = - x

p(x) = exp </ b(s) ds> .
0
8Georg Green (1793 — 1841)

9Falls man nicht e = 1 betrachtet, dann soll p(x) = exp (é fox b(s) ds) gelten.

mit
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5. T'(0,€) =T'(1,€) =0 fiir alle £ € (0,1).
O

Satz 7.24 Existenz und Eindeutigkeit der L&6sung des Modellproblems mit inhomogener
rechter Seite. Betrachte das Modellproblem (7.6), (7.7) mit b,c, f € C(|0,1]). Besitzt das zugehirige
Randwertproblem fiir die Gleichung mit homogener rechter Seite nur die triviale Lisung, so besitzt das
Randwertproblem (7.6), (7.7) genau eine klassische Losung. Diese hat die Gestalt

1
u(z) = /0 P(x,€)(€) dé

mit der Greenschen Funktion

_ 1 A(€)B(z) fir0<¢<z <1,
M0 = g { B 0 ceceot

Beweis: Idee. Dass I'(z, ) eine Greensche Funktion ist, rechnet man direkt mit Hilfe der Definition nach.
Die Existenz einer Losung zeigt man, indem man nachrechnet, dass u(z) Losung des Randwertproblems (7.6),
(7.7) ist. Die Eindeutigkeit folgt schlieSlich analog zu Bemerkung 7.21, indem man zeigt, dass sich die freien
Parameter der allgemeinen Losung der homogenen Gleichung unter den gegebenen Voraussetzungen eindeutig
bestimmen lassen. |

Bemerkung 7.25 Zu Satz 7.24. Dass das vollhomogene Problem nur die triviale Losung besitzt, ist
beispielsweise gegeben, wenn (7.8) erfiillt ist. Es gibt auch andere hinreichende Bedingungen als (7.8)
dafiir, dass das vollhomogene Problem nur die triviale Losung besitzt, siehe Folgerung 7.35.

Die Umkehrung des vorstehenden Satzes gilt auch. O

Satz 7.26 Existenz und Eindeutigkeit der Lésung des Modellproblems mit homogener rech-
ter Seite. Besitzt das inhomogene Randwertproblem (7.6), (7.7) fir ein f(x) € C([0,1]) genau eine klas-
sische Losung, so besitzt das zugehdrige Randwertproblem mit homogener rechter Seite nur die triviale
Lésunyg.

Beweis: Sei u(z) die eindeutige klassischen Losung des inhomogenen Randwertproblems fiir f(z). Sei uy ()
eine nichttrivale Losung des vollhomogenen Randwertproblems, dann folgt auf Grund der Linearitét des Problems,
dass dann u(x) + uy (x) eine klassischen Losung des Randwertproblems zum selben f(z) ist, im Widerspruch zur
vorausgesetzten Einzigkeit dieser Losung. |

Folgerung 7.27 Existenz und Eindeutigkeit der Losung des Modellproblems mit beliebigen
Dirichlet—Randdaten. Betrachte das Modellproblem (7.6) mit b € C*([0,1]), ¢, f € C([0,1]) und mit
den Dirichlet-Randdaten w(0) = a, u(l) = b mit a,b € R. Gilt fir alle x € (0,1) die Beziehung (7.8),
dann existiert genau eine klassische Lésung.

Beweis: Inhomogene Dirichlet—Randdaten kénnen in die rechte Seite transformiert werden, siche Bemer-
kung 7.5. Diese Transformation ist zweimal stetig differenzierbar und sie kann so erfolgen, dass die neue rechte
Seite stetig in [0, 1] ist. Fiir das so erhaltene Problem mit homogenen Dirichlet—-Randbedingungen kann man
die obigen Aussagen anwenden. Nach Satz 7.19 besitzt das vollhomogene Problem nur die triviale Losung. Aus
Satz 7.24 folgt, dass es genau eine klassische Losung des Problems mit inhomogener rechter Seite gibt. Da die
Riicktransformation zweimal stetig differenzierbar ist, existiert damit genau eine klassische Losung fiir das Pro-
blem mit inhomogenen Dirichlet—-Randbedingungen. |

7.3 Maximumprinzip und Stabilitéit
Bemerkung 7.28 Betrachteter Differentialoperator. Im Folgenden sei L der durch
(Lu)(z) = —u" () + b(z)u'(2) + c(z)u(z), =€ (0,1)

definierte lineare Differentialoperator, der fiir b, ¢ € C([0,1]) offenbar C*(0,1) in C(0,1) abbildet. O
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Lemma 7.29 Abschitzungen fiir den Differentialoperator. Seien b € C([0,1]) und c¢(z) = 0 fiir
alle z € [0,1]. Dann gilt fir jedes u € C*(0,1) N C([0,1])
i) aus (Lu)(z) <0 fir alle x € (0,1) folgt u(x) < max{u(0),u(1)} fir z € [0,1],
it) aus (Lu)(x) > 0 fir alle x € (0,1) folgt u(z) > min{u(0),u(1)} fir x € [0,1].

Beweis: Es braucht nur i) gezeigt zu werden. Die Aussage ii) ergibt sich dann, wenn u(z) durch —u(z)
ersetzt wird.

Es wird zuerst gezeigt, dass aus der schérferen Voraussetzung (Lu)(z) < 0 auf (0,1) die Behauptung folgt.

Angenommen, die Funktion u(z) nimmt ihr Maximum nicht am Rand, sondern im Inneren des Intervalls an.
Dann gibt es ein x, € (0,1), mit u'(x) = 0 (lokales Extremum) und «” (zy) < 0 (lokales Maximum). Es folgt

—u(20) 4 b(xo)u' (z0) = —u” (z5) > 0,

was im Widerspruch zur Voraussetzung steht.
Nun wird i) gezeigt. Hierzu sei fiir §, A > 0

w(z) = 6™, zel0,1].
Ist A hinreichend groff, A > max,co,1) b(z), so gilt fiir alle z € (0,1)
(Lw)(z) = =Nw(z) + b(z) w(z) = =X\ (A — b(z)) w(z) < 0.
Mit der Linearitéit des Differentialoperators folgt
(L(u+w)) (z) = (Lu)(z) + (Lw)(z) <O.
Nach dem ersten Teil des Beweises gilt
u(z) + w(z) < max{u(0) + w(0),u(1) + w(1)}.

Fiir § — 0 ergibt sich die Behauptung. |

Satz 7.30 Maximumprinzip. Seien b,c € C([0,1]) und c(z) auf [0, 1] nichtnegativ. Dann gilt fiir jedes
uwe C*0,1)nC(o,1])

i) aus (Lu)(z) <0 fiir alle x € (0,1) folgt u(x) < max{0,u(0),u(1)} fir x € [0,1],

it) aus (Lu)(xz) > 0 fir alle x € (0,1) folgt u(z) > min{0, u(0),w(1)} fir x € [0,1].

Beweis: Wiederum ergibt sich die zweite Aussage aus der ersten, wenn man dort u(z) durch —u(z) ersetzt.
Da u(z) in [0, 1] stetig ist, ist die Menge

M i={z € (0,1) : u(z) >0}

entweder leer oder die Vereinigung offener Teilintervalle von (0,1), Analysis I. Sei M1 = 0, sei also u(z) in (0,1)
nichtpositiv. Dann ist die die Behauptung trivialerweise erfiillt.
Sei MT = (0,1). Dann gilt fiir z € (0,1)

—u'"(x) + b(x)u' (z) < —u" (x) + b(x)u' (x) + c(x)u(z) = (Lu)(z) < 0.
Nach Lemma 7.29 folgt
u(z) < max{u(0),u(1)},

was die Behauptung auch in diesem Falle zeigt.

Seinun @ # MT #£ (0,1). Es wird gezeigt, dass M an 0 oder 1 heranreichen muss. Sei (ao,bo) C M™. Gelten
ag # 0 und u(ag) > 0, so folgt, wegen der Stetigkeit von u(z), dass entweder u(0) > 0 oder ein 0 < a; < ag
existiert mit u(a;) = 0. Analoges gilt fiir by. Man kann daher ay = 0 oder u(ag) = 0 sowie by = 1 oder u(bg) = 0
annehmen. Das heiit man wihlt M ™ gréBtméglich. Nach der Voraussetzung gilt fiir alle = € (ag,bg), und damit
fiir alle = € [ag, by],

(Lu)(z) <0 = —u"(z) +b(=x)u' (z) < —c(x)u(r) < 0.

Damit kann man wieder Lemma 7.29 anwenden. Es folgt also fiir alle = € (ag, by)
0 < u(z) < max{u(ag),u(by)} (7.10)
Offenbar kann nicht zugleich u(ag) = u(bg) = 0 gelten, denn dies wiirde dieser Relation widersprechen. Der Fall

ag = 0,by = 1 wurde bereits betrachtet. Es bleiben die Félle aqg = 0 und u(by) = 0 sowie u(ag) = 0 und by = 1.
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Damit ist gezeigt: Ist die Menge M nicht leer, so gibt es Zahlen &,l; €[0,1] mit a < l;, so dass
M =(0,a) U (b, 1),

wobei u(@) = 0 wenn & # 0, und u(b) = 0, wenn b # 1. Mit (7.10) gilt fiir z € (0,1)

u(z) < max{Zrél[%’)é]u(x),;?g)i]u(m),o}
< max{max{u(o),u(a)},max{u(z;),u(n},o}

max{0, u(0),u(1)}.

Bemerkung 7.31 Physikalische Interpretation. Das Modellproblem (7.6), (7.7) ldsst sich schreiben als

(Lu)(z) = f(2), u(0) = ug,u(1) = uy.

Ist (Lu)(z) <0 fir alle z € (0,1), das heifit f(z) <0 fiir alle z € (0, 1), so gibt es in (0,1) keine Quellen
von u(z). Das Maximumprinzip besagt dann, dass falls wenigstens einer der Randwerte positiv ist, u(x)
seinen grofiten Wert auf dem Rand annimmt. Im Inneren des Intervalls kann u(z) hochstens gleich gro8
sein. Ist u(x) beispielsweise eine Konzentration und gibt es im Gebiet keine Konzentrationsquellen, dann
existiert im Gebiet kein lokales Konzentrationsmaximum, welches hoher als die Konzentration am Rand
ist. O

Folgerung 7.32 Inverse Monotonie, Isotonie, Vergleichsprinzip. Unter den Voraussetzungen von
Satz 7.30 folgt fiir zwei Funktionen u,v € C*(0,1) N C([0,1]) mit uw(0) < v(0) und u(1) < v(1) aus
(Lu)(z) < (Lv)(zx) fir x € (0,1), dass u(x) < v(x) fir z € 0,1].

Beweis: Satz 7.30 ist auf die Differenz (u — v)(z) anzuwenden. |

Satz 7.33 Stabilitit der Losung und stetige Abhingigkeit von den Daten. Vorgelegt sei das
Randwertproblem (7.6), (7.7), mit b,c, f € C(]0,1]). Ist c(x) auf [0,1] nichinegativ, so gilt fir jede
klassische Lisung u(x) die Abschitzung

lulleoayy < AMlfllego,) »
wobei die Konstante A > 0 von b(x), c(z) abhingt, aber nicht von f(x).

Beweis: Fiir ein noch zu spezifizierendes A > 0 setzt man
w(z) = Be™ — A, € (0,1),

mit

A:=AB, B:=|flq A:=e"—1>0.

0,1]) >
Dann gilt fiir z € (0,1)

(Lw)(z) = - ()\2 — Nb(z) — c(as)) B — Ac(z)

IN

- (A2 —Ab(z) — c(x)) BeM.

Nun wihlt man A derart, dass ()\2 — Ab(x) — c(a:)) ¢ > 1. Diese Relation ist erfiillt, wenn A groB genug ist,

etwa
b(z) b (x)
A > max (2+ 4+c(a¢)+1>,

da €™ > 1. An dieser Stelle sieht man die Abhiingigkeit von A von b(x) und ¢(z). Dann gilt fiir alle z € (0,1)

(Lw)(@) < =B == floqo) -
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Es folgt fiir alle = € (0,1) mit Hilfe der Normdefinition im Raum der stetigen Funktionen
(L(u +w))(@) = ££(@) + (Lw)(@) < 1F@)] = [ Fllogo, <O
Nach dem Maximumprinzip gilt
+u(z) + w(z) < max{0, £u(0) + w(0), £u(1l) + w(1)} = max{0, w(0),w(1)}.

Damit folgt fiir alle z € (0, 1)
tu(z) < max{0, w(0),w(1)} — w(z).
Aus e > 1 folgt
w(z) > B—A=w(0), w(l)=DBe —A4,

also

max{0, w(0), w(1)} — w(z) < max{0,B— A, Be* — A} +A— B
= max{A— B,0,B(e"* —1)} = max{A — B,0,AB} = max{A — B,0,A} = A,

|u(z)]

IA

was die Behauptung war. [ ]

Bemerkung 7.34 Nichtnormiertes Problem. Fiir das nichtnormierte Problem (7.1), (7.2) mit Dirichlet—
Randbedingungen u(d) = «, u(e) = § erhiilt man analog

lullea,ey < M lleqa,e) +max{lal, 5]},

wobei A jetzt auch von e — d abhéingen kann, aber nicht von «, 8 abhingt, (Emmrich, 2004, Satz 2.5.4),
Ubungsaufgabe.

Dass diese Abschitzung tatséichlich eine Stabilitdtsabschitzung ist, sieht man, wenn man sie auf die
Differenz u(z) — t(x) anwendet. Dabei sei u(z) Losung des exakten Problems und 4(z) Losung eines
Problems mit gestorter rechter Seite f oder gestorten Randbedingungen &, B. Aus der Linearitit des
Problems folgt sofort

lu =l e <A Hf - fH

)+max{|a—07|, B—BH.

C([dse]
Das bedeutet, Anderungen der Lésung hiingen stetig, in der Norm von C([d, €]), von den Daten ab. O

Folgerung 7.35 Eindeutigkeit der Losung des homogenen Problems. Gegeben sei das Rand-
wertproblem (7.6), (7.7), mit b,c € C([0,1]) und f(z) = 0. Ist c(x) auf [0,1] nichinegativ, so besitzt das
Problem nur die triviale Losung u(z) = 0.

Beweis: Das folgt unmittelbar aus der Abschétzung von Satz 7.33, da || f|l¢ 0,17y = 0 ist. |

Bemerkung 7.36 Alternativer Beweis. Diese Aussage folgt auch schon aus dem Maximumprinzip, Satz
7.30, weil fiir ein homogenes Problem beide Teile i) und ii) dieses Satzes gelten und «(0) = u(1) = 0 ist.
O

Folgerung 7.37 Eindeutigkeit der L6sung des inhomogenen Problems. Vorgelegt sei das Rand-
wertproblem (7.6), (7.7) mit b,c, f € C([0,1]). Ist c¢(x) auf [0, 1] nichtnegativ, so besitzt das Randwert-
problem genau eine klassischen Lisung.

Beweis: Das folgt unmittelbar aus Folgerung 7.35 und Satz 7.24. [ ]

Lemma 7.38 Nichtexistenz eines nichtnegativen Maximums. Seien b,c € C([0,1]), sei c(z) auf
[0,1] nichtnegativ und gelte u € C*(0,1) N C([0,1]). Gilt (Lu)(z) < 0 fiir alle = € (0,1), so kann u(z)
kein nichtnegatives Mazximum im Inneren des Intervalls annehmen.

Beweis: Angenommen, es gibe ein nichtnegatives inneres Maximum z, € (0,1). Dann sind u(zy) > 0,
u'(z¢) = 0 und u” (o) < 0. Damit folgt

(Luw)(zo) = —u" (xg) + bxo)u' (x0) + clzo)u(zg) > 0,

im Widerspruch zur Voraussetzung. |
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Abbildung 7.2: Tllustration zum Beweis von Satz 7.39, x, = 0.5, ; = 0.3, x5 = 0.8.

Satz 7.39 Starkes Maximumprinzip. Seien b,c € C ([0, 1]) und sei c(x) auf [0, 1] nichtnegativ. Nimmt
uw e C*(0,1) N C([0,1)]) @m Inneren des Intervalls ein nichtnegatives Mazimum an und gilt (Lu)(z) < 0
fir alle z € (0,1), so ist u(z) konstant.

Beweis: Die Funktion u(x) nehme in xz, ein nichtnegatives lokales Maximum an. Es gilt insbesondere u(zq) >
0.

Angenommen, u(z) sei nicht konstant. Dann gibt es ein o € (0,1) mit u(z;) < u(zg). Ohne Beschrinkung
der Allgemeinheit sei zy > z, der Fall z, < zy kann analog behandelt werden. Wiéhle z, und z; € [0, () so,
dass u(z) in zg das grofte lokale Maximum beziiglich [z, z5] annimmt. Dieses wird in einem abgeschlossenen
Intervall angenommen.

Es sei fiir 5, A >0

w(z) :=4§ (eMI*IO) - 1) , T € [z, Ty

Offenbar gelten
<0 firz <z,
w(x) ¢ =0 firz=x,
>0 fir x> x.

Nun wahlt man A hinreichend grof}, etwa
b(x) b’ (x)

A > max —— +
z€[zy,T5] 2 4

so dass fiir alle x € (z1,z5) gilt
(Lw)(z) = — (A2 — () — c(x)) 570 _ ¢(2)8 < 0.
Dann gilt nach Voraussetzung auch
(Lu+ w)(@) = (Lu)(@) + (Lw)(@) <0, € (z,2,).
Jetzt wird d so klein gewéhlt, dass
u(22) + w(zz) < u(zo).
Daraus folgte, vergleiche Abbildung 7.2,
u(z) +w(r) < u(wg), firze (z1,20),
u(zo) +w(zo) = u(xo) 20,
u(zz) +w(zz) < ulzo),
womit die Funktion (u + w)(z) in (z;,2,) ein nichtnegatives Maximum annimmt. Das steht nach Lemma 7.38
im Widerspruch zu (L(u + w))(z) < 0. Demzufolge ist die Annahme, dass u(z) nicht konstant ist, falsch. [ |

Bemerkung 7.40 Minimumprinzipien. Durch Ersetzung von u(z) mit —u(z) erhélt man aus den Ma-
ximumprinzipien entsprechende Minimumprinzipien. O

131



7.4 Finite—Differenzen—Verfahren

Bemerkung 7.41 Zu Finite-Differenzen—Verfahren. Finite-Differenzen—Verfahren sind nur eine von
mehreren Moglichkeiten zur Berechnung von numerischen Approximationen der Losung von Randwert-
problemen. Sie sind vom methodischen Standpunkt am einfachsten und deswegen wird sich diese Vorle-
sung auf die Einfithrung dieser Verfahren beschrénken. O

7.4.1 Begriffe und Bezeichnungen

Bemerkung 7.42 Idee. Die grundlegende Idee von Finite-Differenzen—Verfahren besteht darin, dass
man die Ableitungen in der Differentialgleichung durch geeignete finite Differenzen ersetzt. Dazu wird
das Intervall [0, 1] mittels eines, der Einfachheit halber, dquidistanten Gitters zerlegt:

x; = dh, i=0,...,N, h=1/N,
w, = {x; : 1=0,...,N} — Gitter.

O

Definition 7.43 Gitterfunktion. Ein Vektor v, = (1107...,11N)T € ]RNH, der jedem Gitterpunkt
einen Funktionswert zuordnet, heifit Gitterfunktion. Die Restriktion einer Funktion v € C([0, 1]) auf eine
Gitterfunktion wird mit R,v bezeichnet, das heif3t

Ryv:= (v(xg),v(x1),... ,v(:vN))T
O

Beispiel 7.44 Gitterfunktionen. Sei ein Gitter mit den Punkten {0,0.25,0.5,0.75, 1} gegeben. Dann ist

die Gitterfunktion zu v(z) = z*
Rov= 1[0 119 1 !
L= \Mie e )

Unterschiedliche Funktionen kénnen fiir ein gegebenes Gitter die gleiche Gitterfunktion haben. Betrachte
beispielsweise v(x) = sin(4rz) auf dem obigen Gitter. Die zugehorige Gitterfunktion ist

R,v=(0,0,0,0,0)" .

Dies ist offensichtlich auch die Gitterfunktion von v(z) = 0. Das obige Gitter ist zu grob, um die Funktion
v(x) = sin(4wx) verniinftig auflésen zu kénnen. m|

Definition 7.45 Differenzenoperatoren. Sei v(x) eine geniigend glatte Funktion. Bezeichne v; =
v(x;), wobei z; Knoten eines Gitters ist. Die folgenden Differenzenquotienten (finite Differenzen) nennt

man
Vit1 — U;

DYo(z;) = Vi = — 5 — Vorwiértsdifferenz,
D v(z) = vz = Gt — Riickwértsdifferenz,
Vjp1 — Vi )
DOU(%‘) = V3, = %hll — zentrale Differenz,
_ o, .
DD (v)(z;) = Vzw,i = fitl hv; L zweite Differenz,
vergleiche Abbildung 7.3. a

Bemerkung 7.46 Zu Differenzenquotienten. Die Formel fir D" D™ (v)(x;) kontrolliert man durch di-
rektes Nachrechnen. Weiter gilt

DOU(;U,;) = ((Dﬂ)(xi) + D_’U(.’Ei)) )

N =

132



| \ \
Ti-1 T Tipl

Abbildung 7.3: Hlustration der Differenzenquotienten.

Definition 7.47 Konsistenz eines Differenzenoperators, diskrete Maximumsnorm. Sei L ein
Differentialoperator. Der Differenzenoperator L; : RYTT 5 RM*! heift mit L konsistent mit der
Ordnung k, wenn
k
oglz‘ag}%v |(Lv)(z:) — Lypvy)il =t [Lv — Lyvy|lso,a = O(R7)

gilt. Hierbei ist [|-||  , die diskrete Maximumsnorm im Raum der Gitterfunktionen. O

Beispiel 7.48 Konsistenzordnungen der Standard—Differenzenoperatoren. Die Konsistenz ist ein Maf3
fiir die Approximationsgiite von Lj,. Aus der Taylor-Entwicklung fiir v(z) an der Stelle x; ergibt sich

(z;) = '(z;)+O(h),

D7u(x;) = v'(x;)+O(h),
D(z;) = '(z;)+O(R?),
DYD™(v)(z;) = v"(x;)+OR?).

Die Differenzenoperatoren D" v(z;), D™ v(z;), D°v(x;) sind damit konsistent zu L = d/dz mit der Ord-

nung 1,1 beziehungsweise 2. Der Operator D" D™ (v)(z;) ist von zweiter Ordnung konsistent mit L =

dQ/de. ]

7.4.2 Klassische Konvergenztheorie fiir zentrale Differenzen

Bemerkung 7.49 Betrachtetes Problem. In diesem Abschnitt wird das 2-Punkt—Randwertproblem
Lu = —u" 4+ b(2)u' + c(z)u= f(z), firzec (0,1), u(0)=u(l)=0, (7.11)

betrachtet, das heifit ¢ = 1, um die klassische Losungstheorie darzustellen. Es wird angenommen, dass
die Parameterfunktionen b, ¢, f hinreichend glatt sind und dass ¢(z) > 0 fiir alle z € [0, 1] gilt. Damit ist
die Existenz und Eindeutigkeit einer Losung gesichert, vergleiche Folgerung 7.37. m|

Definition 7.50 Zentrales Differenzenschema. Das zentrale Differenzenschema fiir (7.11) besitzt
die Gestalt

—D+D_Ui + biDOUZ‘ +cu; = fi? fiir i = ].7 e ,N — 1,

133



Bemerkung 7.51 Zum zentralen Differenzenschema.
e Das zentrale Differenzenschema fithrt auf ein tridiagonales System linearer Gleichungen

Ty +siu tug = fi, i=1,...,N—1, ug=uy =0,
mit
L L b + 2 t 1 + 1 b
r, = ——m — —0; S; = C; —_— L = — — —0,.
i h2 o i i h2> i h2 op ¢

e Die folgenden Fragen miissen beantwortet werden:
o Welche Eigenschaften besitzt das diskrete Problem (7.12)7
o Was kann man iiber den Fehler |u(z;) — u;| aussagen?
Dazu werden die Konzepte von Konsistenz und Stabilitit verwendet.

Definition 7.52 Konsistenz eines Differenzenschemas und Konsistenzordnung. Betrachte ein
Differenzenschema der Gestalt Lju; = Rj(Lu). Dabei seien die Randbedingungen derart integriert,
dass die erste und letzte Zeile von L, identisch zur ersten und letzten Zeile der Einheitsmatrix sind und
Ry, (Lu)y = ug sowie Ry, (Lu)y = upy gelten. Das Schema wird konsistent von der Ordnung & in der
diskreten Maximumsnorm genannt, falls

k
| LnRpu — Eh(Lu)Hoo,d < Ch
ist, wobei die positiven Konstanten C und k unabhéngig von h sind. O

Lemma 7.53 Konsistenzordnung des zentralen Differenzenschemas. Unter der Annahme, dass
we C[0,1)) gilt, besitzt das zentrale Differenzenschema (7.12) die Konsistenzordnung 2.

Beweis: Mit Taylor-Entwicklung, Ubungsaufgabe. |

Definition 7.54 Stabilitéit eines Differenzenschemas. Ein Differenzenschema Lju;, = f, wird sta-
bil in der diskreten Maximumsnorm genannt, wenn es eine Stabilitdtskonstante C's unabhingig von h
gibt, so dass

||ﬂh||oo,d < CS ||Lhuh||oo,d - CS HihHoo d

fiir alle Gitterfunktionen w,;, gilt. O

Definition 7.55 Konvergenz eines Differenzenschemas und Konvergenzordnung. Ein Diffe-
renzenschema fiir (7.11) ist konvergent von Ordnung k in der diskreten Maximumsnorm, falls es positive
Konstanten C' und k£ unabhéngig von h gibt, so dass

k
lun = Byull o g < ChT.
O

Satz 7.56 Konsistenz + Stabilitit — Konvergenz. Fin konsistentes und stabiles Differenzensche-
ma fiir das Randwertproblem (7.11) ist konvergent. Konsistenz— und Konvergenzordnung sind gleich.

Beweis: Es gilt

St

I/\gr

lin.
lu, = Ryull o g Cs || L (wp, = Byu)lloo,q = Cs [ Lnwy, — LuRyull 4

= Cs|f, — LuBul|_ = Cs|IBuf — LuByul.

Kons. k
= CS ||EhL’U/ — LhEhuHon S Ch )

wobei die Konstante C' das Produkt aus den Konstanten der Stabilitdts— und Konsistenzbedingung ist. ]
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Bemerkung 7.57 Zur Untersuchung von Konsistenz und Stabilitdt. Man muss also Konsistenz und
Stabilitéit untersuchen.

o Konsistenzuntersuchungen basieren oft auf Taylor—-Entwicklungen und sie laufen dann in der Regel
nach dem gleichen Muster ab.

e Stabilitdtsuntersuchungen werden nicht nur an Funktionen sondern mit Matrizen und Funktionen
durchgefiihrt, siehe Definition 7.54. Sie sind nicht so einfach und es werden einige neue Begriffe
bendétigt, die im folgenden bereitgestellt werden.

O

Definition 7.58 Natiirliche Ordnung von Vektoren und Matrizen, invers—monotone Matrix.
Seien z,y € R". Dann schreibt man z < y genau dann, wenn z; < y; fiir alle i = 1,...,n gilt. Die
Notation z > 1 bedeutet x; > 1 fiir alle s = 1,...,n. Analog bedeutet fiir eine Matrix A = (a;;) € R
die Bezeichnung A > 0, dass a,;; > 0 fiir alle 4,5 = 1,...,n gilt.

Eine Matrix A, fiir welche A™" existiert mit A~ > 0, wird invers—monotone Matrix genannt. a

Lemma 7.59 Diskretes Vergleichsprinzip. Sei A € R™™" invers—monoton. Gilt Av < Aw fiir v, w €
R"™, dann folgt v < w.

Beweis: Diese Lemma ist ein diskretes Analogon zum Vergleichsprinzip von Folgerung 7.32. Nach Voraus-
setzung gilt
Alv—w):=b<

=

Multiplikation mit A™" ergibt
v-w=A""p<

[

Die letzte Ungleichung folgt daraus, dass A invers—monoton ist. Nichtnegative Matrixeintréige werden mit nicht-
positiven Vektoreintragen von b multipliziert. Man erhilt als Ergebnis einen Vektor mit nichtpositiven Kompo-
nenten. |

Definition 7.60 M-Matrix. Eine Matrix A = (a;;) € R"*" wird M-Matrix genannt, falls:
2. A7! existiert mit A" > 0.
O

Bemerkung 7.61 M-Matrizen. M-Matrizen sind eine wichtige Teilklasse der Klasse der invers—-monotonen
Matrizen. Die zweite Bedingung der Definition ist im allgemeinen schwer zu iiberpriifen. Es gibt aber
auch handlichere Charakterisierungen von M-Matrizen. m|

Satz 7.62 M-Matrix—Kriterium. Sei A = (a;;) € R™™" mit a;; < 0 fir i # j. Dann ist A eine
M-Matriz genau dann, wenn ein Vektor e € R", e > 0, emistiert, so dass Ae > 0. In diesem Fall gilt fiir
die Zeilensummennorm

_ el o
] < s 719

Der Vektor e wird majorisierendes Element genannt.

Beweis: Siche Literatur, zum Beispiel (Barrenechea et al., 2025, Lemmata 3.47, 3.60). [ ]

Bemerkung 7.63 Zum M-Matriz—Kriterium.
e Das folgende Rezept ist oft erfolgreich, um ein majorisierendes Element zu konstruieren:
o Finde eine Funktion e(xz) > 0, so dass (Le)(x) > 0 fiir € (0,1). Das ist ein majorisierendes
Element des Differentialoperators L.
o Schrinke e(z) auf die Gitterfunktion e, ein.
Falls der erste Schritt in dieser Herangehensweise moglich ist, und die Diskretisierung konsistent ist,
dann funktioniert die Herangehensweise im allgemeinen, zumindest fiir hinreichend kleine Gitterweite.
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e Mit (7.13) kann man die Konstante Cg in der Stabilitéitsdefinition abschétzen

Lt A V1 PR o N 1 e s

also gilt fiir diese Konstante
el oo
~ miny, (Ae),
Das heifit, aus dem M-Matrix—Kriterium, welches dquivalent zur M-Matrix—Eigenschaft ist, folgt
Stabilitét, falls die rechte Seite der Abschitzung unabhéngig von h beschrinkt werden kann.
e Fiir Dirichlet-Randbedingungen eliminiert man die Variablen uy und uy bevor man Satz 7.62 an-
wendet.
O

Beispiel 7.64 Zum M-Matriz—Kriterium. Betrachte (7.11) mit b(z) =0
Lu(z) = —u" (z) + c(x)u(z), w(0)=u(1)=0, c(x)>0in]0,1].
Wiéhle e(x) := $2(1 — z). Dann folgt
Le(z) =14 c(x)e(z) > 1.
Nun setzt man e, := R;e. Damit ergibt sich
(Lnen)i = —D D ep i +cien; =1+ cien; > 1,

weil der zweite Differenzenquotient die zweite Ableitung von quadratischen Funktionen in inneren Git-
terpunkten exakt diskretisiert, siche Beispiel 7.48. Das heifit

thh > (17~~'71)T — AQZl
Fiir die Abschétzung der Stabilitdtskonstanten erhélt man

o elooa e/ 18 1 (7.14)
miny, (Ae); 1 1 8

Dieses Beispiel zeigt, dass im Fall b(z) = 0 die M-Matrix Eigenschaft ohne Einschrinkungen an die
Feinheit des Gitters gilt. |

Lemma 7.65 Stabilitit des zentralen Differenzenschemas fiir hinreichend feines Gitter. Fiir
hinreichend kleine Gitterweite h ist das zentrale Differenzenschema (7.12) fiir das Randwertproblem
(7.11) in der diskreten Mazimumsnorm stabil. Dann ist die Koeffizientenmatriz eine M-Matriz.

Beweis: Sei e(x) die Losung des Randwertproblems
—" +b(z)e’ =1, e(0)=e(1)=0.

Nach dem Maximumprinzip, Lemma 7.29, gilt e(x) > 0 fiir € (0,1). Da kein Term ohne Ableitung vorhanden
ist, folgt nach Folgerung 7.37, dass das obige Problem eindeutig 16sbar ist und insbesondere e € C(]0,1]) gilt.
Damit ist e(z) beschrinkt. Fiir innere Gitterpunkte gilt wegen c(x) > 0

(Lneyn); = (BpLe), + (Lne, — Ry Le),
(B, (1+ c(@)e(@)), + (=D D e, + b:D%, + cie, — 1 - ciey, )

> 1+ (—D+D_gh +b,D%, — 1)‘
_ (—D+D_gh + biDogh) .
Da ¢, die zu e(z) gehorende Gitterfunktion ist, approximiert der Ausdruck in der letzten Zeile fiir hinreichend
feines h den Term —e” (z;) +b(z;)e’ (z;)(= 1) hinreichend gut, siche die Konsistenzabschéitzungen in Beispiel 7.48.
Insbesondere gibt es ein H > 0, so dass fiir alle h € (0, H] gilt

1
5
Damit kann man fiir h € (0, H] die Stabilititskonstante, dhnlich wie in (7.14), unabhingig von der Gitterweite

(thh)i Z

nach oben beschrianken. Das M-Matrix—Kriterium beweist nun die Aussage des Lemmas. |
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Abbildung 7.4: Beispiel 7.67. Numerische Approximation der Losung mit dem zentralen Finite-
Differenzen-Verfahren.

Tabelle 7.1: Beispiel 7.67. Fehler fiir unterschiedliche Gitterweiten.

Intervalle N [[u —uy |, 4
4 4.2388e-4

8 9.8811e-5

16 2.4529e-5

32 6.1537¢-6

64 1.5368e-6

128 3.8440e-7

256 9.6093e-8

512 2.4023e-8

1024 6.0058¢-9

Folgerung 7.66 Konvergenz zweiter Ordnung des zentralen Differenzenschemas. Unter der
Annahme, dass u € C*([0,1]) gilt, konvergiert das zentrale Differenzenschema (7.12) von zweiter Ord-
nung.

Beweis: Das folgt aus Satz 7.56, indem man Lemmata 7.53 und 7.65 kombiniert. [ |

Beispiel 7.67 Illustration der Konvergenzaussage mit Hilfe eines numerischen Beispiels. Betrachte das
2-Punkt-Randwertproblem

—u"(z) +2u/(z) + 3u(z) =1 in (0,1), u(0)=wu(1)=0.

Die Losung dieses Problems lautet
1 1—et 5, -1 _,
u(m)zg(l—i— — 363 + ——¢ )
e

Eine numerische Approximation der Losung ist in Abbildung 7.4 zu sehen.

Tabelle 7.1 prasentiert den Fehler fiir unterschiedliche Gitterweiten. Man erkennt, dass fiir hinreichend
feine Gitter, sich der Fehler bei einer Halbierung der Gitterweite um den Faktor Vier verringert. Das ist
Konvergenz von zweiter Ordnung. m|
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Abbildung 7.5: Beispiel 7.68. Numerische Ergebnisse fiir das zentrale Differenzenschema.

7.4.3 Ausblick

Beispiel 7.68 Zentrales Differenzenschema angewandt auf ein Problem mit kleiner Diffusi-
on. Betrachte das Konvektions-Diffusions-Problem aus Beispiel 7.8 mit ¢ = 1074 Ergebnisse, die mit
dem zentralen Differenzenschema berechnet wurden sind in Abbildung 7.5 dargestellt.

Man sieht einerseits, dass die Losung auf groben Gittern im gesamten Intervall unphysikalische Oszil-
lationen besitzt. Andererseits konvergiert der Fehler auf hinreichend feinen Gittern von zweiter Ordnung.
Hinreichend fein beginnt etwa ab h = 1/10000, was der Breite der Grenzschicht entspricht. Man hat also
erst Konvergenz, wenn die Grenzschicht aufgelost ist.

In Anwendungen ist jedoch oft ¢ < 10767 so dass man sehr feine Gitter braucht, um das zentrale
Differenzenschema anwenden zu koénnen. In einer Dimension ist das heute oft moglich, fiir Probleme in
zwei oder drei Dimensionen jedoch nicht. Insgesamt ist das zentrale Differenzenverfahren bei Problemen,
bei denen die Konvektion sehr viel grofler als die Diffusion ist, nicht brauchbar. Man benéttigt spezielle
numerische Verfahren. m|

Bemerkung 7.69 Ausblick. Randwertprobleme oder Anfangs—Randwertprobleme dienen als Modelle
fiir viele physikalische Prozesse. Dann ist das zu Grunde liegende Gebiet im allgemeinen nicht mehr
eindimensional und man hat eine partielle Differentialgleichung.

Die Analysis solcher Probleme wird in Vorlesungen zu partiellen Differentialgleichungen oder auch
in der Funktionalanalysis behandelt. In der Vorlesung Numerik III werden die wichtigsten Klassen von
Verfahren zur Berechnung numerischer Losungen von Randwertproblemen mit partiellen Differentialglei-
chungen behandelt:

e die Finite-Differenzen—Methode (FDM), in hoheren Dimensionen gibt es neue Aspekte, beispielsweise
wenn das Gebiet kein Parallelepiped (Rechteck in zwei Dimensionen) ist,

o die Finite-Elemente-Methode (FEM),

e die Finite-Volumen-Methode (FVM).
Fiir den Fall dass ¢ sehr klein ist im Vergleich zur Konvektion, genauer, dass die Gitter—Péclet—Zahl

h||b]| ;-
A
19

grof} ist, braucht man spezielle Verfahren, siehe die Monographien Roos et al. (2008); Barrenechea et al.
(2025). Diese werden in Spezialvorlesungen diskutiert. m|
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