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2. SUPG method in 1D for P1 finite elements and the model problem. Con-
sider Ω = (0, 1) and the model problem

−εu�� + u� = 1 in Ω, u(0) = u(1) = 1.

Let Ω be decomposed by an equidistant grid of mesh widht h = 1/N .

a. Derive the concrete formulation of the SUPG method for the model
problem. Presenting the simplified bilinear forms is sufficient, the pre-
sentation of the matrix entries is not necessary. Assume that the stabi-
lization parameter δK is the same for each mesh cell (δK = δ).

b. Consider ε = 10−8. Write a code for solving the model problem for N ∈
{8, 16, 32, 64, 128, 256, 512, 1024}. For the implementation, the concrete
formulation from 2a can be used. Use as stabilization parameter δK = h.
Compute the errors in l∞ of the nodes. Any language can be used.

c. Formulate this method as a finite difference method. How has the sta-
bilization parameter to be chosen such that the simple upwind FDM
and the IAS scheme are obtained?

d. Use the stabilization parameters that correspond to the finite difference
methods in the code and perform the same numerical studies as in 2b.

Solution:
In the derivation of the formulas, an arbitrary constant convection b is considered.

a. Consider Ω = (0, 1) and Vh = P1 on an equidistant grid with hi = h, i = 1, . . . , N .

Since all coefficients are constant, σ = 0, and the SUPG parameter is also constant,

the left-hand side of the SUPG method reduces to
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The right-hand side of the SUPG method is
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= (f, vh) = hfi.

The sum vanishes, since each test function
�
vh

��
(x) can be written as a linear

combination of the basis functions {φi(x)} of P1 and the integral of the derivative

of each basis function vanishes. Alternatively, one can apply integration by parts to
check this fact.

b. See 2d, results for ‘SUPG standard’.

c. Expression (1.3) is of the form of a Galerkin finite element method for an equation
with left-hand side

−
�
ε+ δb2

�
u��(x) + bu�(x).
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It is known from Exercise Problem 1 that the Galerkin finite element method is in

this case equivalent to a central finite difference scheme.
Altogether, the SUPG method with the conditions stated above is equivalent to the

fitted finite difference scheme

−ε

�
1 + δ

b2

ε

�
D+D−ui + bD0ui,= fi,

i.e., κ(Pe) = 1 + δb2/ε = 1 + 2δb
h

Pe with Pe = bh/(2ε).
With δ = h/(2b), one gets the simple upwind scheme. Choosing the SUPG parameter

by
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h
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then it is
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One obtains the Iljin–Allen–Southwell scheme.

d. The results computed by the code below are as follows:

Galerkin n = 8 781249.8750002801

Galerkin n = 16 195312.43750140007

Galerkin n = 32 48828.09375620007

Galerkin n = 64 12207.015651039968

Galerkin n = 128 3051.750106679735

Galerkin n = 256 762.9359786727381

Galerkin n = 512 190.73464753525425

Galerkin n = 1024 47.68970895011962

SUPG standard n = 8 0.3332317427913126

SUPG standard n = 16 0.3333333889573362

SUPG standard n = 32 0.33333347555552517

SUPG standard n = 64 0.33333361777765713

SUPG standard n = 128 0.3333339022217401

SUPG standard n = 256 0.33333447110917

SUPG standard n = 512 0.33333560888112224

SUPG standard n = 1024 0.3333378844134236

SUPG upwind n = 8 7.999999351859799e-08

SUPG upwind n = 16 1.5999997549087652e-07

SUPG upwind n = 32 3.1999989769104786e-07

SUPG upwind n = 64 6.399995903239031e-07

SUPG upwind n = 128 1.2799983617473032e-06

SUPG upwind n = 256 2.559993446560327e-06

SUPG upwind n = 512 5.1199737856055805e-06

SUPG upwind n = 1024 1.0239895256280995e-05

SUPG IAS n = 8 0.0

SUPG IAS n = 16 7.771561172376096e-16

SUPG IAS n = 32 0.0

SUPG IAS n = 64 0.0

SUPG IAS n = 128 0.0

SUPG IAS n = 256 0.0

SUPG IAS n = 512 0.0

SUPG IAS n = 1024 0.0

1 import numpy as np
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2. Connection of M-matrices to diagonally dominant matrices. A matrix A =
(aij)

i=1,...,m
j=1,...,n is said to be a Minkowski matrix or a matrix of non-negative

type if it satisfies the conditions

aij ≤ 0 ∀ i �= j, i = 1, . . . ,m, j = 1, . . . , n , (1.5)
n�

j=1

aij ≥ 0 ∀ i = 1, . . . ,m. (1.6)

A Minkowski matrix is called a proper Minkowski matrix if all row sums
are positive, i.e., the matrix is diagonally dominant.
Show the following statement: Each M-matrix A ∈ Rn×n can be obtained
from a proper Minkowski matrix Ã by scaling each column of Ã with an
appropriate positive number.
Hint: consider the system Ax = 1 for an arbitrary M-matrix A, where 1 is
a vector where all entries are 1.

Solution:
Consider the system Ax = 1 for an arbitrary M-matrix A. Applying A−1, one finds

that the solution of this system is

xi =

n�

j=1

ainvij > 0,

since A−1 ≥ 0 and ainvii > 0 by Exercise 1. Consider now the matrix Ã that is obtained

by multiplying the jth column of A with xj , j = 1, . . . , n. These multiplications do not

change the signs, hence the properties of a Minkowski matrix with respect to the signs
of the entries are satisfied for Ã. By construction, it holds for the row sums

n�

j=1

ãij =

n�

j=1

aijxj = 1.

Consequently, the property of a proper Minkowski matrix with respect to the row sums

is satisfied and Ã is such a matrix. In turn, the M-matrix A can be obtained by the

proper Minkowski matrix Ã by multiplying the jth column of Ã with 1/xj , j = 1, . . . , n.
✷
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3. Estimating the L2(Ω) norm of the divergence by the L2(Ω) norm of the
gradient for functions from H1

0 (Ω). Let v(x) = (v1(x), v2(x), v3(x))
T ,

x = (x, y, z)T , be a vector field in a domain Ω ⊂ R3 which is sufficiently
regular. Then the rotation or the curl of v(x) is defined by

∇× v(x) = det




i j k
∂x ∂y ∂z

v1(x) v2(x) v3(x)


 =



∂yv3 − ∂zv2
∂zv1 − ∂xv3
∂xv2 − ∂yv1


 (x). (2.2)

A vector field v(x) = (v1(x), v2(x))
T , x = (x, y)T , in a two-dimensional

domain Ω can be extended formally to a vector field with three values by
v(x) = (v1(x), v2(x), 0)

T . Then, the first two components in (2.2) vanish.

a. Show that in both cases and for sufficiently smooth functions

∇× (∇× v) (x) = −Δv(x) +∇ (∇ · v) (x), (2.3)

where a two-dimensional vector field is formally extended to a three-
dimensional field.

b. Using (2.3), show the following statement: Let Ω ⊂ Rd, d ∈ {2, 3}, and
let v ∈ H1

0 (Ω), then it holds

�∇v�2L2(Ω) = �∇ · v�2L2(Ω) + �∇× v�2L2(Ω) (2.4)

and consequently

�∇ · v�L2(Ω) ≤ �∇v�L2(Ω) ∀ v ∈ H1
0 (Ω). (2.5)

Hint: use the integration by parts formula

(∇× v,φ) = (v,∇× φ) +

�

∂Ω

((v × n) · φ) (s) ds ∀ φ ∈ H1(Ω).

(2.6)

Solution:

a. A direct calculation, using the Theorem of Schwarz, gives

∇× (∇× v) (x) = ∇×



∂yv3 − ∂zv2
∂zv1 − ∂xv3
∂xv2 − ∂yv1


 =



∂y (∂xv2 − ∂yv1)− ∂z (∂zv1 − ∂xv3)

∂z (∂yv3 − ∂zv2)− ∂x (∂xv2 − ∂yv1)
∂x (∂zv1 − ∂xv3)− ∂y (∂yv3 − ∂zv2)




=




−∂yyv1 − ∂zzv1 + ∂x (∂yv2 + ∂zv3)

−∂xxv2 − ∂zzv2 + ∂y (∂xv1 + ∂zv3)
−∂xxv3 − ∂yyv3 + ∂z (∂xv1 + ∂yv2)


 = −Δv +∇ (∇ · v) .

b. The proof is based on the identity (2.3). Considering v ∈ H1
0 (Ω), this identity can

be transformed into a weak form by multiplication with a test function w ∈ H1
0 (Ω)

and applying integration by parts
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(∇v,∇w) = (∇ · v,∇ ·w) + (∇× v,∇×w) ∀ w ∈ H1
0 (Ω). (2.7)

The derivation of the first two terms is standard. For deriving the last term, the

integration by parts formula (2.6) can be applied. However, the derivation can be
also checked with a straightforward calculation. Using (2.2) gives

∇×∇× v =



∂y (∂xv2 − ∂yv1)− ∂z (∂zv1 − ∂xv3)

∂z (∂yv3 − ∂zv2)− ∂x (∂xv2 − ∂yv1)
∂x (∂zv1 − ∂xv3)− ∂y (∂yv3 − ∂zv2)


 .

Applying integration by parts, boundary integrals will not appear for test functions
w ∈ H1

0 (Ω). One obtains, considering the individual terms,

(∇×∇× v,w) = − (∂xv2 − ∂yv1, ∂yw1) + (∂zv1 − ∂xv3, ∂zw1)− (∂yv3 − ∂zv2, ∂zw2)

+ (∂xv2 − ∂yv1, ∂xw2)− (∂zv1 − ∂xv3, ∂xw3) + (∂yv3 − ∂zv2, ∂yw3)

= (∂yv3 − ∂zv2, ∂yw3 − ∂zw2) + (∂zv1 − ∂xv3, ∂zw1 − ∂xw3)

+ (∂xv2 − ∂yv1, ∂xw2 − ∂yw1)

= (∇× v,∇×w) .

Inserting now w = v ∈ H1
0 (Ω) in (2.7) gives (2.4).

✷



2 Numerical Methods for Incompressible Flow Problems 25

4. The pair of finite element spaces P1/P0. This pair of spaces approximates
the velocity by a continuous piecewise linear function and the pressure by
a piecewise constant function on simplicial grids. It is easily to implement
and it has the favorable property that ∇ · V h = ∇ · P1 = P0 = Qh.
Consider the two-dimensional domain Ω = (0, 1)2 and a decomposition of
Ω in rectangular triangles. To this end, Ω is first decomposed in n2 squares
and then each square is decomposed into triangles by choosing an arbi-
trary diagonal. Consider a problem with Dirichlet boundary conditions,
such that the degrees of freedom for the velocity are not situated on the
boundary. Show that in this situation the pair P1/P0 does not satisfy the
discrete inf-sup condition.

Solution:
The dimension of V h corresponds to twice the number of interior vertices, dim

�
V h

�
=

2 (n− 1)2. The dimension of Qh corresponds to the number of mesh cells reduced by

one (because of the integral mean value condition), i.e., dim
�
Qh

�
= 2n2 − 1. It follows

that
dim

�
V h

�
− dim

�
Qh

�
= 2n2 − 4n+ 2− 2n2 + 1 = 3− 4n < 0

for n ≥ 1. Hence, the necessary condition for the unique solvability of the discrete
system, dim

�
V h

�
≥ dim

�
Qh

�
, see Remark 2.7 of the lecture notes, is not satisfied. ✷


