Appendix B
Finite Element Methods

Remark B.1. Contents. This appendix provides a short introduction into fi-
nite element methods. In particular, notations are introduced that are used
throughout this monograph and finite element spaces are described that are
of importance for the discretization of incompressible flow problems. o

B.1 The Ritz Method and the Galerkin Method

Remark B.2. Contents. This section studies abstract problems in Hilbert
spaces. The existence and uniqueness of solutions will be discussed. Approx-
imating this solution with finite-dimensional spaces is called Ritz method or
Galerkin method. Some basic properties of this method will be proved.

In this section, a Hilbert space V' will be considered with inner product
a(-,-) : V. xV = R and norm |v||, = a(v,v)/2 O

Theorem B.3. Representation theorem of Riesz. Let f € V' be a
continuous and linear functional, then there is a uniquely determined u € V.
with

a(u,v) = f(v) YveW (B.1)

In addition, u is the unique solution of the variational problem
1
Fv) = ia(v,v) — f(v) > min Vv e V. (B.2)

PTOOf. First, the existence of a solution u of the variational problem will be proved. Since
f is continuous, it holds
[f@)I < Clolly, YveV,

from what follows that

1 1
F) > 5 ol = Clolly > =52
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224 B Finite Element Methods

where in the second estimate the necessary criterion for a local minimum of the expression
of the first bound is used. Hence, the function F(-) is bounded from below and

k= inf F(v
veV ()
exists.

Let {vg }ren be a sequence with F(v;) — k for k — oco. A straightforward calculation
(parallelogram identity in Hilbert spaces) gives

2 2 2 2
llve = villy + llve +oilly = 21lvklly + 2[Jvlly -
Using the linearity of f(-) and k < F'(v) for all v € V, one obtains

e — w3
Vi Jr’Ul

U~ g~ 4 + 87
vk—i-'ul)
2

’Uk+1)l>

2 2
= 2fjuill} +2luul} - 4| .

— AF(vy) + 4F(v)) — 8F (
< 4F(vg) + 4F(v)) — 8k —= 0
for k,l — co. Hence {vg }ken is a Cauchy sequence. Because V is a complete space, there
exists a limit u of this sequence with u € V, see Definition A.5. Since F(-) is continuous,
it is F(u) = k and u is a solution of the variational problem.

In the next step, it will be shown that each solution of the variational problem (B.2) is
also a solution of (B.1). It is for arbitrary v € V'

P(e) = Flu+ev) = %a(u—)—ev,u—}—av) — f(u+ev)
= %a(u,u) + ea(u,v) + %a(v,v) — f(u) —ef(v).

If v is a minimum of the variational problem, then the function ®(¢) has a local minimum
at ¢ = 0. The necessary condition for a local minimum leads to

0=9'(0) = a(u,v) — f(v) forallveV.

Finally, the uniqueness of the solution will be proved. It is sufficient to prove the unique-
ness of the solution of equation (B.1). If the solution of (B.1) is unique, then the existence
of two solutions of the variational problem (B.2) would be a contradiction to the fact proved
in the previous step. Let w1 and uz be two solutions of (B.1). Computing the difference of
both equations gives

a(u; —u2,v) =0 forallveV.

This equation holds, in particular, for v = u1 — ua. Hence, ||u1 — u2||;, = 0, such that
U] = u2. | ]

Theorem B.4. Theorem of Lax—Milgram. Let b(-,-) : VxV — R be
a bounded and coercive bilinear form on the Hilbert space V. Then, for each
bounded linear functional f € V' there is exactly one u € V with

b(u,v) = f(v) VYveW (B.3)
PT’OOf. One defines linear operators 7,7 : V — V by

a(Tu,v) = b(u,v) Vv eV, a(T'u,v) =bv,u) VveV. (B.4)
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Since b(u, -) and b(-, u) are continuous linear functionals on V/, it follows from Theorem B.3
that the elements Tw and T'u exist and they are defined uniquely. The operators satisfy
the relation

a(Tu,v) = b(u,v) = a(T'v,u) = a(u, T'v), (B.5)

T’ is called adjoint operator of T'. Setting v = Tu in (B.4) and using the boundedness of
b(-,-) yields
2
Tully = a(Tu, Tu) = b(u, Tw) < M |ully |Tully, = [1Tully, <M |ully

for all w € V. Hence, T is bounded. Since T is linear, it follows that 7" is continuous, see
Lemma A.62. Using the same argument, one shows that 7" is also bounded and continuous.
Define the bilinear form

d(u,v) = a(TT u,v) = a(T'u,T'v) Yu,veV,

where (B.5) was used. Hence, this bilinear form is symmetric. Using the coercivity of b(-, -)
and the Cauchy—Schwarz inequality (A.10) gives

4 2 2 2 2
m? ol < b(o,0)? = a(T',0)? < ol |[770]]% = [ol}} o(T"0, T") = lo] d(v, ).
Applying now the boundedness of a(,-) and of T” yields
m? [|ol|3, < d(v,v) = a(T'v, T'v) = || T"0||%, < M2 |Jo]%,. (B.6)

Hence, d(-,-) is also coercive and, since it is symmetric, it defines an inner product on V.
From (B.6), one has that the norm induced by d(v,v)/? is equivalent to the norm |[v||.
From Theorem B.3, it follows that there is a exactly one w € V' with

d(w,v) = f(v) YveW
Inserting u = T'w in (B.3) gives with (B.4)
b(T'w,v) = a(TT' w,v) = d(w,v) = f(v) VveV

and consequently, u = T'w is a solution of (B.3).
The uniqueness of the solution is proved analogously as in the symmetric case. | |

Remark B.5. Basic idea of the Ritz method. For approximating the solu-
tion of (B.2) or (B.1) with a numerical method, it will be assumed that
V' has a countable orthonormal basis (Schauder basis), i.e., V is a separa-
ble Hilbert space. Then, using Parseval’s equality, one finds that there are
finite-dimensional subspaces Vi, V5, ... C V with dimV} = k, which have the
following property: for each u € V and each € > 0 there is a K € N and a
up € Vi with

lu —uklly, <e VEk>K. (B.7)

Note that it is not required that there holds an inclusion of the form V; C
Viet1.
The Ritz approximation of (B.2) and (B.1) is defined by: Find uy, € Vj
with
a(uk,vk) = f(’l)k) Vo, € V. (BS)

]
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Lemma B.6. Existence and uniqueness of a solution of (B.8). There
exists exactly one solution of (B.8).

P T‘OOf. Finite-dimensional subspaces of Hilbert spaces are Hilbert spaces as well. For this
reason, one can apply the representation theorem of Riesz, Theorem B.3, to (B.8) which
gives the statement of the lemma. In addition, the solution of (B.8) solves a minimization
problem on Vj. | |

Lemma B.7. Best approximation property. The solution of (B.8) is the
best approzimation of u in Vi, i.e., it is

- = inf — . B.9
= uelly = ot Ju=eilly (B.9)

Proof. Since Vj, C V, one can use the test functions from Vj, in the weak equation (B.1).
Then, the difference of (B.1) and (B.8) gives the orthogonality, the so-called Galerkin
orthogonality,

a(u —ug,vp) =0 Vo € V. (B.10)

Hence, the error u — uy, is orthogonal to the space Vj: u —up L Vi. That means, uy is the
orthogonal projection of u onto Vj, with respect of the inner product of V.

Let now wi € Vi be an arbitrary element, then it follows with the Galerkin orthogo-
nality (B.10) and the Cauchy—Schwarz inequality (A.10) that

lu - urll = a(u — ug,w —up) = alu — up,w — (up — wy)) = alu — up, u — vg)
N—_——

Vg

IN

lw = wklly llw —vklly -

Since wy, € Vj was arbitrary, also vy € Vj is arbitrary. If ||u — uglly, > 0, division by
|lu — u|ly, gives the statement of the lemma, since the error cannot be smaller than the
best approximation error. If ||u — ugl|y, = 0, the statement of the lemma is trivially true.

Theorem B.8. Convergence of the Ritz approximation. The Ritz ap-
proximation converges

li — =0.

[l =y,

Proof. The best approximation property (B.9) and property (B.7) give
uU—u = inf |[u—v <e
lu=wnlly = ot flu = velly <
for each £ > 0 and k > K(g). Hence, the convergence is proved. |

Remark B.9. Formulation of the Ritz method as linear system of equations.
One can use an arbitrary basis {¢;}¥_; of V, for the computation of wuy.
First of all, the equation for the Ritz approximation (B.8) is satisfied for all
v € Vi if and only if it is satisfied for each basis function ¢;. This statement
follows from the linearity of both sides of the equation with respect to the
test function and from the fact that each function vy € Vj, can be represented
as linear combination of the basis functions. Let vy = Zf:l a;¢;, then from
(B.8), it follows that
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o

a(ug,vr) = Z a(ug, ¢ Zazf(¢z = f(vk).

k=1

This equation is satisfied if a(ug,¢;) = f(¢s), @ = 1,...,k. On the other
hand, if (B.8) hold, then it holds in particular for each basis function ¢;.
One uses as ansatz for the solution also a linear combination of the basis

functions
k
up =Y ule;
j=1

with unknown coefficients u/ € R. Using as test functions now the basis
functions yields

k

k
Zau¢]a¢l _Za(¢]a¢l)ujzf(¢l): 22177k
j=1

Jj=1

This equation is equivalent to the linear system of equations Au = f, where

A= (aij)ﬁjzl = a(¢;, ¢i)?,j:1

is called stiffness matrix. Note that the order of the indices is different for the
entries of the matrix and the arguments of the inner product. The right-hand
side is a vector of length k with the entries f; = f(¢;), i =1,...,k.

Using the one-to-one mapping between the coefficient vector (v, ..., v*)7
and the element v, = Zf:l v¥¢;, one can show that the matrix A is symmetric
and positive definite

A=AT = a(v,w)=a(w,v) Yv,weV,
2TAz >0forz #0 <= a(v,v) >0 YoveV,v#£0.

]

Remark B.10. The case of a bounded and coercive bilinear form. If b(-,-) is
bounded and coercive, but not symmetric, it is possible to approximate the
solution of (B.3) with the same idea as for the Ritz method. In this case, it
is called Galerkin method. The discrete problem consists in finding ux € Vj,
such that

b(uk,vk) = f(vk) YV, € V. (B.ll)

]

Lemma B.11. Existence and uniqueness of a solution of (B.11). There
is exactly one solution of (B.11).

PT’OOf. The statement of the lemma follows directly from the Theorem of Lax—Milgram,
Theorem B.4. | |
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Lemma B.12. Lemma of Cea, error estimate. Letb : VXV — R be a
bounded and coercive bilinear form on the Hilbert space V and let f € V' be
a bounded linear functional. Let u be the solution of (B.3) and let uy, be the
solution of (B.11), then the following error estimate holds

M
— < — inf — B.12
= willy < - it flu=olly, (B.12)

where the constants M and m are given in (A.47) and (A.48).

PTOOf. Considering the difference of the continuous equation (B.3) and the discrete equa-
tion (B.11), one obtains the error equation

b(U7lLk,'Uk) =0 VU}C € Vk,

which is also called Galerkin orthogonality. With (A.48), the Galerkin orthogonality, and
(A.47), it follows that

1 1
[Ju — ukH%/ < —b(u — ug,u —ug) = —b(u — ug, u — vg)
m m
M
< —lu—uklly llw—vklly Vo € Vi,
m
from what the statement of the lemma follows immediately. ||

Remark B.13. On the best approximation error. It follows from estimate
(B.12) that the error is bounded by a multiple of the best approximation
error, where the factor depends on properties of the bilinear form b(-,-).
Thus, concerning error estimates for concrete finite-dimensional spaces, the
study of the best approximation error will be of importance. a

Remark B.1/4. The corresponding linear system of equations. The correspond-
ing linear system of equations is derived analogously to the symmetric case.
The system matrix is still positive definite but not symmetric. O

Lemma B.15. Inf-sup criterion for finite-dimensional spaces. Let V"
be a finite-dimensional space with inner product (-,-)yr and induced norm
I-lyn = (s )%//,? Consider a bilinear form a : V" x Vh — R and a linear
functional f : V" = R. Then, the problem to find u" € V" such that

a(ulo") = f(v") (B.13)
has a unique solution for all f(-) if and only if

ho,.h
inf a(v 7w)

sup i > B > 0. (B.14)
wheVi\{0} yrevfoy [0 lyn " llyn = F

Proof. Denote by n € N the dimension of V" and let {cplh}?zl be a basis of V. Then
there are representations

n n
h 2 : h h } : h
vo= Viwp;, W= WiP;
i=1 i=1
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with v = (v1,...,v,)7, w = (w1,...,ws)T and there are matrices A, M € R"*" such
that

a (v w) =07 ATw, o = M) | = M)

The matrix M is symmetric and positive definite. The inf-sup condition (B.14) can be
written in the form

vT AT w

inf sup — —
weR™\{0} yerm\ {0} (vT Mv)'/? (wT Mw)

h
73 = B> 0. (B.15)

Problem (B.13) has a unique solution for all f if and only if the matrix A is non-singular.

(B.15) holds => A is non-singular. Assume that (B.15) holds and A is a singular
matrix. Then there is a vector v # 0 such that Av = 0 or equivalently vT AT = 0. Hence,
the supremum in (B.15) is zero such that (B.15) cannot hold, which is a contradiction to
the assumption.

A is non-singular = (B.15) holds. With A also AT is non-singular. Then, for each
v € R™\ {0} there is a unique w € R™\ {0} such that v = M~1ATw, since M and AT are
non-singular matrices. Inserting this vector in (B.15) and using the symmetry and positive
definiteness of M gives

. wl AM—*ATw
inf 1/2 1/2
weR™\{0} (wT AM 1M M~1ATw)Y/? (wT Mw)/
) wT AM—tATw
inf
weRM\{0} (wT AM ~1ATw)"/? (w? Mw)/?
wlT AM—1ATw 1/2
inf = - = -
weR™\ {0} ( wT Mw )
(QMI/Q)T (M—1/2AM—1/2) (M—T/QATM—T/Z) (MI/QQ) 1/2
(wh172)” (M1/2u) |

= inf
weR™\ {0}

Hence, one obtains a Rayleigh quotient. From Lemma A.19, it is known that the infimum of
a Rayleigh quotient is attained and it is the smallest eigenvalue of the eigenvalue problem

(M—l/QAM—1/2> <M—T/2ATM—T/2> <M1/Qw) - (Ml/QQ) )

This problem is an eigenvalue problem for a symmetric matrix, hence all eigenvalues are
real. Since

w? (M_1/2AM—1/2> <M—T/2ATM—T/2> w
_ ((MfT/ZATMfT/Q) Q)T ((M—T/ZATMfT/Q) M)

| (o2 a73a777) o 2
2

the matrix is positive semi-definite, such that all eigenvalues are non-negative. Finally, since
A and M are non-singular matrices, the matrix of this eigenvalue problem is non-singular
and all eigenvalues are positive. Hence, there is a positive constant B{; such that

vT AT

w
inf — —
weRM\{0} (vT Muv)H? (wT Mw)

h
1/2 2 Bis
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with v = M~1ATw. Taking now the supremum with respect to v might only increase the

left-hand side and (B.15) follows. | |

B.2 Finite Element Spaces

Remark B.16. Mesh cells, faces, edges, vertices. A mesh cell K is a compact
polyhedron in R%, d € {2, 3}, whose interior is not empty. The boundary 9K
of K consists of m-dimensional linear manifolds (points, pieces of straight
lines, pieces of planes), 0 < m < d — 1, which are called m-faces. The 0O-faces
are the vertices of the mesh cell, the 1-faces are the edges, and the (d—1)-faces
are just called faces. m]

Remark B.17. Finite-dimensional spaces defined on K. Let s € N. Finite ele-
ment methods use finite-dimensional spaces P(K) C C*(K) that are defined
on K. In general, P(K) consists of polynomials. The dimension of P(K) will
be denoted by dim P(K) = Ng. |

Remark B.18. Linear functionals defined on P(K), nodal functionals. For the
definition of finite elements, linear functional that are defined on P(K) are
of importance. These functionals are called nodal functionals.

Consider linear and continuous functionals @ 1,...,Px N, @ C°(K) = R
which are linearly independent. There are different types of functionals that
can be utilized in finite element methods:

e point values: (v) = v(z), © € K,
e point values of a first partial derivative: ¢(v) = 9;v(x), = € K,
e point values of the normal derivative on a face E of K: &(v) = Vu(x) - ng,

ng is the outward pointing unit normal vector on F,

e integral mean values on K: ¢(v) = \Tlﬂ S v(x) de,

e integral mean values on faces E: &(v) = ﬁ [ v(s) ds.
The smoothness parameter s has to be chosen in such a way that the func-
tionals @ 1, ..., Pk, N, are continuous. If, e.g., a functional requires the eval-
uation of a partial derivative or a normal derivative, then one has to choose
at least s = 1. For the other functionals given above, s = 0 is sufficient. O

Definition B.19. Unisolvence of P(K) with respect to the function-
als @i 1, ..., Px Ny - The space P(K) is called unisolvent with respect to the
functionals @ 1, ..., P N if there is for each a € RV% g = (a1, ...,an, )7,
exactly one p € P(K) with

P i(p) =a;;, 1<i< Ng.

O

Remark B.20. Local basis. Unisolvence means that for each vector a € RVx,
a=(ay,...,an, )T, there is exactly one element in P(K) such that a; is the
image of the i-th functional, ¢ =1,..., Nk.
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Choosing in particular the Cartesian unit vectors for a, then it follows
from the unisolvence that a set {¢ ;1N exists with ¢ ; € P(K) and

P i(Pk ;) =dij, 4,j=1,...,Nk.

Consequently, the set {¢x;}% forms a basis of P(K). This basis is called
local basis. O

Remark B.21. Transform of an arbitrary basis to the local basis. If an arbi-
trary basis {p; }Y% of P(K) is known, then the local basis can be computed
by solving a linear system of equations. To this end, represent the local basis
in terms of the known basis

Nk

¢K7jzzcjkpka CjkER,jzl,...7NK,
k=1

with unknown coeflicients c;. Applying the definition of the local basis leads
to the linear system of equations

Nk

Bri(drj) = Y Cikain = 0ij, 6,5 =1,...,Ni, aix =Pri(pr)-
k=1

Because of the unisolvence, the matrix A = (a;;) is non-singular and the
coeflicients c;;, are determined uniquely. a

Remark B.22. Triangulation, grid, mesh, grid cell. For the definition of global
finite element spaces, a decomposition of the domain {2 into polyhedra K is
needed. This decomposition is called triangulation 7" and the polyhedra K
are called mesh cells. The union of the polyhedra is called grid or mesh.
A triangulation is called admissible, see the definition in (Ciarlet, 1978,
p. 38, p. 51), if:
e It holds 2 = Ugen K.
e Each mesh cell K € T is closed and the interior K is non-empty.
e For distinct mesh cells K1 and K5 there holds K 1N I%'Q = 0.
e For each K € T", the boundary 0K is Lipschitz continuous.
e The intersection of two mesh cells is either empty or a common m-face,
me{0,...,d—1}.
O

Remark B.23. Global and local functionals. Let @1,...,¢n : C3(2) = R
be continuous linear functionals of the same types as given in Remark B.18.
The restriction of the functionals to C*(K’) defines a set of local functionals
DPi1,..., Pk Ny, Where it is assumed that the local functionals are unisolvent
on P(K). The union of all mesh cells K, for which there is a p € P(K) with
®,(p) # 0, will be denoted by w;. O
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Ezample B.24. On subdomains w;. Consider the two-dimensional case and let
®; be defined as nodal value of a function in € K. If x € K, then w; = K.
In the case that x is on a face of K but not in a vertex, then w; is the union
of K and the other mesh cell whose boundary contains this face. Last, if @ is
a vertex of K, then w; is the union of all mesh cells that possess this vertex.

O

Definition B.25. Finite element space, global basis. A function v(x)
defined on 2 with v|x € P(K) for all K € T" is called continuous with
respect to the functional @; : 2 — R if

Di(vlk,) = Di(v|K,), YV Ki, Kz € w.

The space

S = {v € L>(£2) : v|g € P(K) and v is continuous with respect to

@i,izl,...,N}

is called finite element space.
The global basis {¢;}.; of S is defined by the condition

quGS, dsi(qu):éija i,j:1,...,N.
O

Remark B.26. On global basis functions. A global basis function coincides on
each mesh cell with a local basis function. This property implies the unique-
ness of the global basis functions.

Whether the continuity with respect to {®;}Y.; implies the continuity of
the finite element functions depends on the functionals that define the finite
element space. O

Definition B.27. Parametric finite elements. Let K be a reference mesh
cell with the local space P(K), the local functionals 431, . ,431\7, and a class
of bijective mappings {Fk : K — K}. A finite element space is called a
parametric finite element space if:

e The images {K} of {Fk} form the set of mesh cells.

e The local spaces are given by
P(K) = {p : p:ﬁoF;,ﬁeP(k)}. (B.16)

e The local functionals are defined by

Pri(v(x)) = i (v(Fk(2))), (B.17)
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where & = (#1,...,24)7 are the coordinates of the reference mesh cell
and it holds @ = Fk (&), 0 = vo Fk.
O

Remark B.28. Motivations for using parametric finite elements. Definition
B.25 of finite elements spaces is very general. For instance, different types
of mesh cells are allowed. However, as well the finite element theory as the
implementation of finite element methods become much simpler if only para-
metric finite elements are considered. |

B.3 Finite Elements on Simplices

Definition B.29. d-simplex. A d-simplex K C R? is the convex hull of
(d+1) points @y, ...,as.1 € R? which form the vertices of K. O

Remark B.30. On d-simplices. It will be always assumed that the simplex is
not degenerated, i.e., its d-dimensional measure is positive. This property is
equivalent to the non-singularity of the matrix

ail @12 - .. A1,d+1
a21 22 ... a2 d4+1

A= ,
ad1 Q42 - .- Ad,d+1
1 1 ... 1
where a; = (a1;,az;,...,a4)%,i=1,...,d+ 1.
For d = 2, the simplices are the triangles and for d = 3 they are the
tetrahedra. a

Definition B.31. Barycentric coordinates. Since K is the convex hull

of the points {ai}?;rll, the parametrization of K with a convex combination

of the vertices reads as follows

d+1 d+1
K:{meRd ra=) Naj, 0< N <1, Z)\izl}.
=1 i=1

The coeflicients A1, ..., A\g4+1 are called barycentric coordinates of x € K. O

Remark B.32. On barycentric coordinates. From the definition, it follows that
the barycentric coordinates are the solution of the linear system of equations

d+1 d+1
Z&ji)\z‘:x]‘, 1<5<d, ZMZL
i=1

i=1
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Fig. B.1 The unit simplices in two and three dimensions.

Since the system matrix is non-singular, see Remark B.30, the barycentric
coordinates are determined uniquely.

The barycentric coordinates of the vertex a;, 7 = 1,...,d+1, of the simplex
are \; = 1 and A; = 0if ¢ # j. Since X\;(a;) = d;;, the barycentric coordinate
\; can be identified with the linear function that has the value 1 in the vertex
a; and that vanishes in all other vertices a; with j # 7.

The barycenter of the simplex is given by

1 d+1 d+1 1
SK = ﬁZaz = Zmaz
i=1 =1

Hence, its barycentric coordinates are \; = 1/(d+1),i=1,...,d+ 1. O

Remark B.33. Simplicial reference mesh cells. A commonly used reference
mesh cell for triangles and tetrahedra is the unit simplex

d
f(—{fceRd DY @ <1 >0, i—l,.‘.,d},

=1

see Figure B.1. The class { Fx } of admissible mappings are the bijective affine
mappings

Frgi# = Bga+b, BgecR™ det(Bg)#0, beRe. (B.18)

The images of these mappings generate the set of the non-degenerated sim-
plices {K} C R%. O

Definition B.34. Affine family of simplicial finite elements. Given a
simplicial reference mesh cell K , affine mappings {Fk}, and an unisolvent
set of functionals on K. Using (B.16) and (B.17), one obtains a local finite
element space on each non-degenerated simplex. The set of these local spaces
is called affine family of simplicial finite elements. a
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Fig. B.2 The finite element Py(K).

Definition B.35. Polynomial space P;. Let * = (z1,... ,xd)T, ke NuU
{0}, and @ = (ay, ..., q)T. Then, the polynomial space Py is given by

d d
Pk:span{Hx?”‘zm“ :a; e NU{0} for i=1,...,d, Zaigk}.
i=1 i=1

]

Remark B.36. Lagrangian finite elements. In many examples given below,
the linear functionals on the reference mesh cell K are the values of the
polynomials with the same barycentric coordinates as on the general mesh
cell K. Finite elements whose linear functionals are values of the polynomials
on certain points in K are called Lagrangian finite elements. a

Ezxample B.37. Py : piecewise constant finite element. The piecewise constant
finite element space consists of discontinuous functions. The linear functional
is the value of the polynomial in the barycenter of the mesh cell, see Fig-
ure B.2. It is dim Py(K) = 1. O

Ezample B.38. Py : conforming piecewise linear finite element. This finite
element space is a subspace of C'(£2). The linear functionals are the values of
the function in the vertices of the mesh cells, see Figure B.3. It follows that
dim P (K)=d+ 1.

The local basis for the functionals {®;(v) = v(a;), i = 1,...,d + 1} is
(N since @;()\) = 6;;, compare Remark B.32. Since a local basis exists,
the functionals are unisolvent with respect to the polynomial space P (K).

Now, it will be shown that the corresponding finite element space consists
of continuous functions. Let K7, Ko be two mesh cells with the common face
E and let v € Py(= S). The restriction of vg, on E is a linear function on
E as well as the restriction of vk, on E. It has to be shown that both linear
functions are identical. A linear function on the (d — 1)-dimensional face E is
uniquely determined with d linearly independent functionals that are defined
on E. These functionals can be chosen to be the values of the function in
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ay

az

Fig. B.3 The finite element P;(K).

Fig. B.4 The finite element P> (K).

the d vertices of E. The functionals in S are continuous by the definition of
S. Thus, it must hold that both restrictions on E have the same values in
the vertices of E. Hence, it is vk, |r = vk, |r and the functions from P, are
continuous. a

Ezxample B.39. Py : conforming piecewise quadratic finite element. This finite
element space is also a subspace of C(£2). It consists of piecewise quadratic
functions. The functionals are the values of the functions in the d+1 vertices
of the mesh cell and the values of the functions in the centers of the edges,
see Figure B.4. Since each vertex is connected to each other vertex, there are
Z?:l i = d(d+1)/2 edges. Hence, it follows that dim P> (K) = (d+1)(d+2)/2.

The part of the local basis that belongs to the functionals {®;(v) = v(a;),
i=1,...,d+ 1}, is given by

{p:iN) = N2\ = 1), i=1,...,d+1}.

Denote the center of the edge between the vertices a; and a; by a;;. The
corresponding part of the local basis is given by

{ij =4N\;, i,j=1,...,d+1, i<j}
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221

Fig. B.5 The finite element P3(K).

The unisolvence follows from the fact that there exists a local basis. The
continuity of the corresponding finite element space is shown in the same way
as for the P; finite element. The restriction of a quadratic function defined
in a mesh cell to a face F is a quadratic function on that face. Hence, the
function on FE is determined uniquely with d(d + 1)/2 linearly independent
functionals on E.

The functions ¢;; are called in two dimensions edge bubble functions. O

Example B.40. P5 : conforming piecewise cubic finite element. This finite el-
ement space consists of continuous piecewise cubic functions. It is a subspace
of C(£2). The functionals in a mesh cell K are defined to be the values in
the vertices ((d + 1) values), two values on each edge (dividing the edge in
three parts of equal length) (2 Z?Zli = d(d 4+ 1) values), and the values
in the barycenter of the 2-faces of K, see Figure B.5. Each 2-face of K is
defined by three vertices. If one considers for each vertex all possible pairs
with other vertices, then each 2-face is counted three times. Hence, there are
(d+1)(d —1)d/6 2-faces. The dimension of P3(K) is given by

(d=1)d(d+1) _ (d+1)(d+2)(d+3)
6 6 '

dimP3(K)=(d+1)+d(d+1)+
For the functionals

{@i(v) =v(a;), i=1,...,d+1, (vertex),
@”—j(v) = v(aii]—), Z,] = 1, ey d+ 17i 7é j, (pOiIlt on edge)7
Diin(v) =v(aik), i=1,...,d+1,i < j <k, (point on 2—face)},

the local basis is given by
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1 9
di(N) = 5)\1-(3)\1- —1DBN —2), ¢ii(N) = §>\i>\j(3)\i -1,

dijk(N) = 27&&&}.

In two dimensions, the function ¢;;;(A) is called cell bubble function. O

Ezample B.41. PPUPPe The PPubPle finite element is just the P; finite element
enriched with mesh cell bubbles. In two dimensions, the functionals are given
by the point values of a function v(x) in the vertices a1, az, as, and by

3[’1)(0,1) + U(ag) + "U(a3)] + 8[1) (a12) +v (a13) + v (023)] + 27v (a123)
27 ’

see Figures B.4 and B.5 for the notations. The corresponding local basis is
{A1 = 20X 2023, A1 — 2001 00A3, A1 — 2071 A2)3, 27A1 A3 ).
O

Ezample B.42. PY"®Pe In this space, the P, finite element is enriched with
bubble functions.

In two dimensions, one can take as nodal functionals the same functionals
as for the P, element and as seventh functional

3[v(ar) +v(az) + v(as)] + 8[v (a12) + v (a13) + v (az3) | + 27v (@123)
20 ’

compare Figures B.4 and B.5 for the notations. Then, the local basis is given
by

{40 A0 — 2001 AoXg, 4A1As — 2001 Ao hs, 4Aahs — 20A; Aos,
201 (A1 — 0.5), 2Xa(Aa — 0.5), 2X\1 (Aa — 0.5), 20\ A)s ).

In the three-dimensional case, the enrichment is performed with the mesh
cell bubble function and with the four bubble functions on the faces. The
functionals are the four values in the vertices, the six values on the mid
points of the edges, the four values in the barycenters of the faces, and the
value in the barycenter of the mesh cell. Altogether, there are 15 functionals.
The local basis is given by

{A1(2A1 = 1) + 3M1 (Aads + Asds + Asha) — 4A1 dadg Ay, . -,
Ado(4 — 12Xg — 123 + 3203\4), . . .,

27A A3 (1 — 4Ms), 27A1 Aa (1 — 403) A, 27A1 (1 — 4X9) A3,
27(1 — 4A1) Aadads, 256701 Aashs ),
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a2

Fig. B.6 The finite element P}°(K).

where the remaining basis functions are given by appropriate permutations
of the indices. a

Ezample B.43. P{*° : non-conforming linear finite element, Crouzeiz—Raviart
finite element, Crouzeiz & Raviart (1973). This finite element consists
of piecewise linear but discontinuous functions. The functionals are given
by the values of the functions in the barycenters of the faces such that
dim PP¢(K) = (d + 1). It follows from the definition of the finite element
space, Definition B.25, that the functions from Pj¢ are continuous in the
barycenter of the faces

PP ={ve L*(2) : v|g € P(K), v(z) is continuous at the barycenter
of all faces}. (B.19)

Equivalently, the functionals can be defined to be the integral mean values
on the faces and then the global space is defined to be

Pr¢ = {v € L*(0) : vk € P(K),

/EU|K dSZ/Ev\KI ds‘v’EEE(K)ﬂE(K')}, (B.20)

where £(K) is the set of all (d — 1)-dimensional faces of K.
For the description of this finite element, one defines the functionals by

@Z(U) = v(ai,u“) for d = 2, @Z<U) = 'U(aifg’ifl’i{,l) for d = 37

where the points are the barycenters of the faces with the vertices that corre-
spond to the indices, see Figure B.6. This system is unisolvent with the local
basis

pi(N)=1—dN;, i=1,...,d+1
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Ezample B.44. P, This space consists of piecewise linear but discontinuous
functions.

On the reference mesh cell K in two dimensions, one can use the functionals
applied to a function v(&) given by

/ 2u(x) dz, / (24z — 8) v(x) dx, / (245 — 8) v(x) dx
and the corresponding local basis is
{1, Xo — Ay, xg_xl} — (1,28 +9—1, #+25—1}.

In three dimensions, let a1, as,as, as be the vertices of the tetrahedron
and Sk its barycenter. Then, the following functionals can be used

v(ay) +v(az) + v(as) + v(as) + 16v(Sk)

120 ’
—v(ay) + 3v(az) —v(as) —v(as) —v(ar) —v(az)+ 3v(asz) —v(as)
4 ’ 4 ’
—v(al) — U(ag) — U(ag) + 31)((14) '

4
The corresponding local basis is given by
{6, Ao — A1, Az — A1, A — A
O

Ezxample B.45. Raviart—Thomas finite elements RT). Raviart—Thomas finite
elements are a class of vector-valued finite elements that approximate the
space H (div, £2), see (2.22). Details of their definition and important prop-
erties can be found, e.g., in (Boffi et al., 2013, pp. 84).

Consider a simplicial triangulation with mesh cells {K} and let P (K) =
(Po(K))*, k > 0. Then, the following local polynomial space is defined di-
rectly on K

RTk(K):{UE(Pk(K)+CCPk(K)) : 'U”I’LaKERk(aK)}, k>0,
where
Ri(0K) = {p € L*(0K) : ¢|g € Py(E) for all faces E C 0K } .

It is noted in (Boffi et al., 2013, Rem. 2.3.1) that this definition of RTj(K)
is different than the original definition in Raviart & Thomas (1977).
In particular, the Raviart—-Thomas element of lowest order is given by

RTO(K) = {’U S (Po(K) +$P0(K)) LV Ny € Ro(aK)},



B.4 Finite Elements on Parallelepipeds and Quadrilaterals 241

i.e., it is linear on K. Its local functionals are v -npg,, i = 1,...,d+ 1. A
function from RT¢(K) can be written in the form

v(r)=a+bxr, acRLbeR xcK. (B.21)
A face E C OK is a hyperplane that can be represented in the form
r-ngp=c ceR VxekE.
Inserting this representation in (B.21) yields
v(x) ngp=a-ng+br-ng=a-ng+bc=const Vaeclk.

Thus, the normal component of v on each face is a constant.

The global space RT is defined as usual by defining global functionals on
the basis of the local functionals and requiring the continuity of the global
functionals, see Definition B.25. Consequently, the normal component of func-
tions from RT is continuous across faces of the mesh cells. Since the normal
component on each face is a constant, it is sufficient for requiring its continuity
to require the continuity in the barycenters {mpg} of { E'}. From Lemma 2.56,
it follows that RTy C H (div, £2). O

B.4 Finite Elements on Parallelepipeds and
Quadrilaterals

Remark B.46. Reference mesh cells, reference map to parallelepipeds. One can
find in the literature two reference cells: the unit cube [0,1]¢ and the large
unit cube [—1,1]¢. Tt does not matter which reference cell is chosen. Here, the
large unit cube will be used: K = [~1,1]%. The class of admissible reference
maps {Fk } to parallelepipeds consists of bijective affine mappings of the form

Frx& = Bga& +b, Bg eR™ beR%

If By is a diagonal matrix, then K is mapped to d-rectangles.

The class of mesh cells that is obtained in this way is not sufficient to
triangulate general domains. If one wants to use more general mesh cells
than parallelepipeds, then the class of admissible reference maps has to be
enlarged, see Remark B.55. |

Definition B.47. Polynomial space Q. Let = = (z1,...,24)" and denote
by a = (ai,...,aq)T a multi-index. Then, the polynomial space Qy, is given
by
d
Qrk :span{Hm?l =x% : 0<; <k for i= 1,...,d}.

i=1



242 B Finite Element Methods

as ay

ai az

Fig. B.7 The finite element Q1 (K).

]

Remark B.48. Finite elements on d-rectangles. For simplicity of presentation,
the examples below consider d-rectangles. In this case, the finite elements
are just tensor products of one-dimensional finite elements. In particular, the
basis functions can be written as products of one-dimensional basis functions.

O

Ezxample B.49. Qo : piecewise constant finite element. Similarly to the P,
space, the space (Qy consists of piecewise constant, discontinuous functions.
The functional is the value of the function in the barycenter of the mesh
cell K and it holds dim Qy(K) = 1. |

Ezxample B.50. Q1 : conforming piecewise d-linear finite element. This fi-
nite element space is a subspace of C(£2). The functionals are the values
of the function in the vertices of the mesh cell, see Figure B.7. Hence, it is
dim Q; (K) = 2%.

The one-dimensional local basis functions, which will be used for the tensor
product, are given by

Gi@)=5(1-3), dald) = (1 +3)

With these functions, e.g., the basis functions in two dimensions are computed
by
¢1(2)P1(9), G1(2)$2(9), $2(2)D1(), D2(2)P2(9).
The continuity of the functions of the finite element space Q1 is proved in
the same way as for simplicial finite elements. It is used that the restriction

of a function from Q(K) to a face E is a function from the space Qx(E),
k> 1. O

Ezample B.51. Q2 : conforming piecewise d-quadratic finite element. It holds
that Q2 C C({2). The functionals in one dimension are the values of the
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Fig. B.8 The finite element Q2(K).
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Fig. B.9 The finite element Q3(K).

function at both ends of the interval and in the center of the interval, see
Figure B.8. In d dimensions, they are the corresponding values of the tensor
product of the intervals. It follows that dim Qo(K) = 3.

The one-dimensional basis function on the reference interval are defined
by

Bi@) =521~ 2), G@)= (-2 +8), do(d) = 50+

The basis function Hle $2(&;) is called cell bubble function. O

Ezxample B.52. Qs : conforming piecewise d-cubic finite element. This finite
element space is a subspace of C(£2). The functionals on the reference interval
are given by the values at the end of the interval and the values at the points
& = —1/3, & = 1/3. In multiple dimensions, it is the corresponding tensor
product, see Figure B.9. The dimension of the local space is dim Q3(K) = 49,

The one-dimensional basis functions in the reference interval are given by
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Fig. B.10 The finite element Q}°*(K).

B1(#) =~ 1= (38 4+ )3~ 1)@ 1), Ba(d) = 15(E + 1)(3E 1)@~ 1),

ba(3) = —%(i PG+ 1)E 1), ) = %(3@ )38 —1)(@ +1).

O
FEzample B.53. Q%" : rotated non-conforming element of lowest order, Ran-
nacher—Turek element, Rannacher & Turek (1992). This finite element space
is a generalization of the P finite element to quadrilateral and hexahedral
mesh cells. It consists of discontinuous functions that are continuous at the

barycenter of the faces. The dimension of the local finite element space is
dim Q}°*(K) = 2d. The space on the reference mesh cell is defined by

() ={p : pespan{l,2,9,8* - ¢ ord=2,
ot (K 1 T for d =2
QP (K) ={p : pespan{l, &,y 23 — §,9% — £2}} for d = 3.
Note that the transformed space
Q' (K) = {p=po Fg',p € Qr(K)}

contains polynomials of the form axz? — by?, where a,b depend on F.
For d = 2, the local basis on the reference cell is given by

O FoC S N PO R SN JPC S N O
o1 (2,9) = 8(96 y°) 59+ 1 ¢2(w7y)—8(x y)+2x+4,
PP JOC R N PN S S FOC B N
¢3(,9) = 8(1“ y)+2y+4, si>41(967$/)—8(m ) 5T+
(B.22)

Analogously to the Crouzeix—Raviart finite element, the functionals can
be defined as point values of the functions in the barycenters of the faces,
see Figure B.10, or as integral mean values of the functions at the faces.
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Consequently, the finite element spaces are defined in the same way as (B.19)
or (B.20), with P}*(K) replaced by Q}°*(K).

For a discussion of the practical use of this finite element, it is referred to
Remark 2.145. m]

Ezample B.54. P3¢, k > 1. The space P3¢, k > 1, is given by
plisc={ve L*(2) : v|g € Py (K)}.

The construction of a basis on the reference mesh cell is based on the Legendre
polynomials in [—1, 1], which are given by

lx% (33% —1),.... (B.23)

Then, the basis of P,ghsc(f( ) in multiple dimensions is defined as a tensor
product of polynomials of type (B.23) that gives a polynomial of degree
smaller than or equal to k. Concretely, the basis of Plis¢(K) is given by

(B.24)

and of P§isc(K)

2d: {1,%,9,29,3 (322 —1),5 (39> - 1)},
So ) d 1) (62 1)
R (B.25)
For the definition of the local nodal functionals, the L?(K) orthogonality of
the Legendre polynomials is used. Denoting the basis functions of (B.24) and
(B.25) by ¢;(&), then these functionals are defined by

v, (65) = ([ 02) h | iy aa

such that @f(,z ((ZBJ) = 51] O

Remark B.55. Parametric mappings. The image of an affine mapping of the
reference mesh cell K = [~1,1]%, d € {2,3}, is a parallelepiped. If one wants
to consider finite elements on general d-quadrilaterals, then the class of ad-
missible reference maps has to be enlarged.

The simplest non-affine parametric finite element on quadrilaterals in two
dimensions uses bilinear mappings. Let K= [~1,1]? and let

. FL(2) a11 + a2? + a3y + a4ty ; :
F = KA = . 2 7 F} =1,2
K(w) <F12(((B) a91 + a99d + as3) + a4 27 ) K € Qla 1 )<y
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be a bilinear mapping from K on the class of admissible quadrilaterals. A
quadrilateral K is called admissible if

e the length of all edges of K is larger than zero,

e the interior angles of K are smaller than 7, i.e., K is convex.
This class contains, e.g., trapezoids and rhombi. O

Remark B.56. Parametric finite element functions. The functions of the local
space P(K) on the mesh cell K are defined by p = p o Fic', where p is
a polynomial. These functions are in general rational functions. However,
using d-linear mappings, then the restriction of F on an edge of K is an
affine map. For instance, in the case of the @1 finite element, the functions on
K are linear functions on each edge of K. It follows that the functions of the
corresponding finite element space are continuous, compare Example B.38.

O

B.5 Transform of Integrals

Remark B.57. Motivation. The transformation of integrals from the reference
mesh cell to mesh cells of the grid and vice versa is used as well for the analysis
as for the implementation of finite element methods. This section provides
an overview of the most important formulae for transformations.

Let K C R? be the reference mesh cell, K be an arbitrary mesh cell, and
Fr K — K with z = Fk (&) be the reference map. It is assumed that the
reference map is a continuous differentiable one-to-one map. The inverse map
is denoted by Fgl : K — K. For the integral transforms, the derivatives
(Jacobians) of Fyc and Fj' are needed

9z
&5’

DFy' ()i = gj, i,j=1,...,d.
J

DFg(&);; =
O

Remark B.58. Integral with a function without derivatives. This integral trans-
forms with the standard rule of integral transforms

/K o(@) do = /K o(&) |det DFy (&) dab, (B.26)

where 0(&) = v(Fg(2)). O

Remark B.59. Transform of derivatives. Using the chain rule, one obtains
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aCCi = fj i

= Vei(@) - ((DFg' (Fi(@))") (B.27)
0. = v, O T
% ® = 2 g, @ g, = V@) (DFx@)"),

— Vo(z) - ((DFK(F,;l(m)))T)i . (B.28)

The index 7 denotes the i-th row of a matrix. Derivatives on the reference
mesh cell are marked with a symbol on the operator. a

Remark B.60. Integrals with a gradients. Using the rule for transforming in-
tegrals and (B.27) gives

/K b(z) - Vu(z) dz

_ /K b(Fie(@) - [(DF)" (Fie(@)] Vail@)|det DFic(#)] da. (B.29)

Similarly, one obtains
/K Vou(zx) - Vw(x) de
= [ [0 (Fe(@)] Vao(@) - [(DFR) (Fi@))] Tau(a)
x |det DFk(&)| d. (B.30)
O

Remark B.61. Integral with the divergence. Integrals of the following type are
important for the Navier—Stokes equations

d
/K V- v(@)g(z) dz = /K g;; (@)q(x) de

= /K Zil: [((DF;?(FK(:%)))T)Z,~v@f0i<i~)} G(#) |det DFy (&)| dé
=/R [(DFI;I(FK(@)))TID{C@(@)} §(#) |det DFy(2)| d&.  (B.31)

In the derivation, (B.27) was used. O

Ezxample B.62. Affine transform. The most important class of reference maps
are affine transforms (B.18), where the invertible matrix By and the vector
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b are constants. It follows that
& = By' (x — b) = By'z — Bi'b.
In this case, there are
DFg = Bg, DFg'=By', det DFi = det(Bg).

One obtains for the integral transforms from (B.26), (B.29), (B.30), and
(B.31)

/Kv(a:) dzx = |det (BK)‘/A (&) di, (B.32)
/b( ) - Vo(z) dz = |det (Bg \/ (Fr(2)) - B! Vgo(2) dz, (B.33)

/vu - Vw(z) de = |det (Bg) \/ V(&) - B! Ve () dz,
(B.34)

/Kv-u(m)q(:c) d:c:\det(BK)\/R[BgT:D@f:(ﬁz)} §(&) dz.  (B.35)

Setting v(x) = 1 in (B.32) yields

|det (Bk)| = |IA(| . (B.36)
K




