
Appendix B

Finite Element Methods

Remark B.1. Contents. This appendix provides a short introduction into fi-
nite element methods. In particular, notations are introduced that are used
throughout this monograph and finite element spaces are described that are
of importance for the discretization of incompressible flow problems. ✷

B.1 The Ritz Method and the Galerkin Method

Remark B.2. Contents. This section studies abstract problems in Hilbert
spaces. The existence and uniqueness of solutions will be discussed. Approx-
imating this solution with finite-dimensional spaces is called Ritz method or
Galerkin method. Some basic properties of this method will be proved.

In this section, a Hilbert space V will be considered with inner product
a(·, ·) : V × V → R and norm �v�V = a(v, v)1/2. ✷

Theorem B.3. Representation theorem of Riesz. Let f ∈ V � be a
continuous and linear functional, then there is a uniquely determined u ∈ V
with

a(u, v) = f(v) ∀ v ∈ V. (B.1)

In addition, u is the unique solution of the variational problem

F (v) =
1

2
a(v, v)− f(v) → min ∀ v ∈ V. (B.2)

Proof. First, the existence of a solution u of the variational problem will be proved. Since

f is continuous, it holds

|f(v)| ≤ C �v�V ∀ v ∈ V,

from what follows that

F (v) ≥ 1

2
�v�2V − C �v�V ≥ −1

2
C2,
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224 B Finite Element Methods

where in the second estimate the necessary criterion for a local minimum of the expression

of the first bound is used. Hence, the function F (·) is bounded from below and

κ = inf
v∈V

F (v)

exists.

Let {vk}k∈N be a sequence with F (vk) → κ for k → ∞. A straightforward calculation
(parallelogram identity in Hilbert spaces) gives

�vk − vl�2V + �vk + vl�2V = 2 �vk�2V + 2 �vl�2V .

Using the linearity of f(·) and κ ≤ F (v) for all v ∈ V , one obtains

�vk − vl�2V

= 2 �vk�2V + 2 �vl�2V − 4
���vk + vl

2

���
2

V
− 4f(vk)− 4f(vl) + 8f

�vk + vl

2

�

= 4F (vk) + 4F (vl)− 8F
�vk + vl

2

�

≤ 4F (vk) + 4F (vl)− 8κ → 0

for k, l → ∞. Hence {vk}k∈N is a Cauchy sequence. Because V is a complete space, there
exists a limit u of this sequence with u ∈ V , see Definition A.5. Since F (·) is continuous,

it is F (u) = κ and u is a solution of the variational problem.

In the next step, it will be shown that each solution of the variational problem (B.2) is
also a solution of (B.1). It is for arbitrary v ∈ V

Φ(ε) = F (u+ εv) =
1

2
a(u+ εv, u+ εv)− f(u+ εv)

=
1

2
a(u, u) + εa(u, v) +

ε2

2
a(v, v)− f(u)− εf(v).

If u is a minimum of the variational problem, then the function Φ(ε) has a local minimum

at ε = 0. The necessary condition for a local minimum leads to

0 = Φ�(0) = a(u, v)− f(v) for all v ∈ V.

Finally, the uniqueness of the solution will be proved. It is sufficient to prove the unique-

ness of the solution of equation (B.1). If the solution of (B.1) is unique, then the existence
of two solutions of the variational problem (B.2) would be a contradiction to the fact proved

in the previous step. Let u1 and u2 be two solutions of (B.1). Computing the difference of
both equations gives

a(u1 − u2, v) = 0 for all v ∈ V.

This equation holds, in particular, for v = u1 − u2. Hence, �u1 − u2�V = 0, such that

u1 = u2. �

Theorem B.4. Theorem of Lax–Milgram. Let b(·, ·) : V × V → R be
a bounded and coercive bilinear form on the Hilbert space V . Then, for each
bounded linear functional f ∈ V � there is exactly one u ∈ V with

b(u, v) = f(v) ∀ v ∈ V. (B.3)

Proof. One defines linear operators T, T � : V → V by

a(Tu, v) = b(u, v) ∀ v ∈ V, a(T �u, v) = b(v, u) ∀ v ∈ V. (B.4)
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Since b(u, ·) and b(·, u) are continuous linear functionals on V , it follows from Theorem B.3

that the elements Tu and T �u exist and they are defined uniquely. The operators satisfy
the relation

a(Tu, v) = b(u, v) = a(T �v, u) = a(u, T �v), (B.5)

T � is called adjoint operator of T . Setting v = Tu in (B.4) and using the boundedness of
b(·, ·) yields

�Tu�2V = a(Tu, Tu) = b(u, Tu) ≤ M �u�V �Tu�V =⇒ �Tu�V ≤ M �u�V

for all u ∈ V . Hence, T is bounded. Since T is linear, it follows that T is continuous, see

Lemma A.62. Using the same argument, one shows that T � is also bounded and continuous.
Define the bilinear form

d(u, v) := a(TT �u, v) = a(T �u, T �v) ∀ u, v ∈ V,

where (B.5) was used. Hence, this bilinear form is symmetric. Using the coercivity of b(·, ·)
and the Cauchy–Schwarz inequality (A.10) gives

m2 �v�4V ≤ b(v, v)2 = a(T �v, v)2 ≤ �v�2V
��T �v

��2

V
= �v�2V a(T �v, T �v) = �v�2V d(v, v).

Applying now the boundedness of a(·, ·) and of T � yields

m2 �v�2V ≤ d(v, v) = a(T �v, T �v) =
��T �v

��2

V
≤ M2 �v�2V . (B.6)

Hence, d(·, ·) is also coercive and, since it is symmetric, it defines an inner product on V .

From (B.6), one has that the norm induced by d(v, v)1/2 is equivalent to the norm �v�V .
From Theorem B.3, it follows that there is a exactly one w ∈ V with

d(w, v) = f(v) ∀ v ∈ V.

Inserting u = T �w in (B.3) gives with (B.4)

b(T �w, v) = a(TT �w, v) = d(w, v) = f(v) ∀ v ∈ V

and consequently, u = T �w is a solution of (B.3).

The uniqueness of the solution is proved analogously as in the symmetric case. �

Remark B.5. Basic idea of the Ritz method. For approximating the solu-
tion of (B.2) or (B.1) with a numerical method, it will be assumed that
V has a countable orthonormal basis (Schauder basis), i.e., V is a separa-
ble Hilbert space. Then, using Parseval’s equality, one finds that there are
finite-dimensional subspaces V1, V2, . . . ⊂ V with dimVk = k, which have the
following property: for each u ∈ V and each ε > 0 there is a K ∈ N and a
uk ∈ Vk with

�u− uk�V ≤ ε ∀ k ≥ K. (B.7)

Note that it is not required that there holds an inclusion of the form Vk ⊂
Vk+1.

The Ritz approximation of (B.2) and (B.1) is defined by: Find uk ∈ Vk

with
a(uk, vk) = f(vk) ∀ vk ∈ Vk. (B.8)

✷
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Lemma B.6. Existence and uniqueness of a solution of (B.8). There
exists exactly one solution of (B.8).

Proof. Finite-dimensional subspaces of Hilbert spaces are Hilbert spaces as well. For this

reason, one can apply the representation theorem of Riesz, Theorem B.3, to (B.8) which
gives the statement of the lemma. In addition, the solution of (B.8) solves a minimization

problem on Vk. �

Lemma B.7. Best approximation property. The solution of (B.8) is the
best approximation of u in Vk, i.e., it is

�u− uk�V = inf
vk∈Vk

�u− vk�V . (B.9)

Proof. Since Vk ⊂ V , one can use the test functions from Vk in the weak equation (B.1).

Then, the difference of (B.1) and (B.8) gives the orthogonality, the so-called Galerkin

orthogonality,
a(u− uk, vk) = 0 ∀ vk ∈ Vk. (B.10)

Hence, the error u− uk is orthogonal to the space Vk: u− uk ⊥ Vk. That means, uk is the

orthogonal projection of u onto Vk with respect of the inner product of V .
Let now wk ∈ Vk be an arbitrary element, then it follows with the Galerkin orthogo-

nality (B.10) and the Cauchy–Schwarz inequality (A.10) that

�u− uk�2V = a(u− uk, u− uk) = a(u− uk, u− (uk − wk)� �� �
vk

) = a(u− uk, u− vk)

≤ �u− uk�V �u− vk�V .

Since wk ∈ Vk was arbitrary, also vk ∈ Vk is arbitrary. If �u− uk�V > 0, division by

�u− uk�V gives the statement of the lemma, since the error cannot be smaller than the
best approximation error. If �u− uk�V = 0, the statement of the lemma is trivially true.

�

Theorem B.8. Convergence of the Ritz approximation. The Ritz ap-
proximation converges

lim
k→∞

�u− uk�V = 0.

Proof. The best approximation property (B.9) and property (B.7) give

�u− uk�V = inf
vk∈Vk

�u− vk�V ≤ ε

for each ε > 0 and k ≥ K(ε). Hence, the convergence is proved. �

Remark B.9. Formulation of the Ritz method as linear system of equations.
One can use an arbitrary basis {φi}ki=1 of Vk for the computation of uk.
First of all, the equation for the Ritz approximation (B.8) is satisfied for all
vk ∈ Vk if and only if it is satisfied for each basis function φi. This statement
follows from the linearity of both sides of the equation with respect to the
test function and from the fact that each function vk ∈ Vk can be represented
as linear combination of the basis functions. Let vk =

�k
i=i αiφi, then from

(B.8), it follows that
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a(uk, vk) =
k�

k=1

αia(uk,φi) =
k�

k=1

αif(φi) = f(vk).

This equation is satisfied if a(uk,φi) = f(φi), i = 1, . . . , k. On the other
hand, if (B.8) hold, then it holds in particular for each basis function φi.

One uses as ansatz for the solution also a linear combination of the basis
functions

uk =
k�

j=1

ujφj

with unknown coefficients uj ∈ R. Using as test functions now the basis
functions yields

k�

j=1

a(ujφj ,φi) =

k�

j=1

a(φj ,φi)u
j = f(φi), i = 1, . . . , k.

This equation is equivalent to the linear system of equations Au = f, where

A = (aij)
k
i,j=1 = a(φj ,φi)

k
i,j=1

is called stiffness matrix. Note that the order of the indices is different for the
entries of the matrix and the arguments of the inner product. The right-hand
side is a vector of length k with the entries fi = f(φi), i = 1, . . . , k.

Using the one-to-one mapping between the coefficient vector (v1, . . . , vk)T

and the element vk =
�k

i=1 v
iφi, one can show that the matrix A is symmetric

and positive definite

A = AT ⇐⇒ a(v, w) = a(w, v) ∀ v, w ∈ Vk,

xTAx > 0 for x �= 0 ⇐⇒ a(v, v) > 0 ∀ v ∈ Vk, v �= 0.

✷

Remark B.10. The case of a bounded and coercive bilinear form. If b(·, ·) is
bounded and coercive, but not symmetric, it is possible to approximate the
solution of (B.3) with the same idea as for the Ritz method. In this case, it
is called Galerkin method. The discrete problem consists in finding uk ∈ Vk

such that
b(uk, vk) = f(vk) ∀ vk ∈ Vk. (B.11)

✷

Lemma B.11. Existence and uniqueness of a solution of (B.11). There
is exactly one solution of (B.11).

Proof. The statement of the lemma follows directly from the Theorem of Lax–Milgram,

Theorem B.4. �
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Lemma B.12. Lemma of Cea, error estimate. Let b : V ×V → R be a
bounded and coercive bilinear form on the Hilbert space V and let f ∈ V � be
a bounded linear functional. Let u be the solution of (B.3) and let uk be the
solution of (B.11), then the following error estimate holds

�u− uk�V ≤ M

m
inf

vk∈Vk

�u− vk�V , (B.12)

where the constants M and m are given in (A.47) and (A.48).

Proof. Considering the difference of the continuous equation (B.3) and the discrete equa-

tion (B.11), one obtains the error equation

b(u− uk, vk) = 0 ∀ vk ∈ Vk,

which is also called Galerkin orthogonality. With (A.48), the Galerkin orthogonality, and

(A.47), it follows that

�u− uk�2V ≤ 1

m
b(u− uk, u− uk) =

1

m
b(u− uk, u− vk)

≤ M

m
�u− uk�V �u− vk�V ∀ vk ∈ Vk,

from what the statement of the lemma follows immediately. �

Remark B.13. On the best approximation error. It follows from estimate
(B.12) that the error is bounded by a multiple of the best approximation
error, where the factor depends on properties of the bilinear form b(·, ·).
Thus, concerning error estimates for concrete finite-dimensional spaces, the
study of the best approximation error will be of importance. ✷

Remark B.14. The corresponding linear system of equations. The correspond-
ing linear system of equations is derived analogously to the symmetric case.
The system matrix is still positive definite but not symmetric. ✷

Lemma B.15. Inf-sup criterion for finite-dimensional spaces. Let V h

be a finite-dimensional space with inner product (·, ·)V h and induced norm

�·�V h = (·, ·)1/2
V h . Consider a bilinear form a : V h × V h → R and a linear

functional f : V h → R. Then, the problem to find uh ∈ V h such that

a
�
uh, vh

�
= f

�
vh

�
(B.13)

has a unique solution for all f(·) if and only if

inf
wh∈V h\{0}

sup
vh∈V h\{0}

a
�
vh, wh

�

�vh�V h �wh�V h

≥ βh
is > 0. (B.14)

Proof. Denote by n ∈ N the dimension of V h and let
�
ϕh
i

�n

i=1
be a basis of V h. Then

there are representations

vh =

n�

i=1

viϕ
h
i , wh =

n�

i=1

wiϕ
h
i ,
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with v = (v1, . . . , vn)T , w = (w1, . . . , wn)T and there are matrices A,M ∈ Rn×n such

that

a
�
vh, wh

�
= vTATw,

��vh
��
V h =

�
vTMT v

�1/2
,

��wh
��
V h =

�
wTMTw

�1/2
.

The matrix M is symmetric and positive definite. The inf-sup condition (B.14) can be

written in the form

inf
w∈Rn\{0}

sup
v∈Rn\{0}

vTATw

(vTMv)1/2 (wTMw)1/2
≥ βh

is > 0. (B.15)

Problem (B.13) has a unique solution for all f if and only if the matrix A is non-singular.
(B.15) holds =⇒ A is non-singular. Assume that (B.15) holds and A is a singular

matrix. Then there is a vector v �= 0 such that Av = 0 or equivalently vTAT = 0T . Hence,
the supremum in (B.15) is zero such that (B.15) cannot hold, which is a contradiction to

the assumption.

A is non-singular =⇒ (B.15) holds. With A also AT is non-singular. Then, for each
v ∈ Rn \ {0} there is a unique w ∈ Rn \ {0} such that v = M−1ATw, since M and AT are

non-singular matrices. Inserting this vector in (B.15) and using the symmetry and positive

definiteness of M gives

inf
w∈Rn\{0}

wTAM−1ATw

(wTAM−1MM−1ATw)1/2 (wTMw)1/2

= inf
w∈Rn\{0}

wTAM−1ATw

(wTAM−1ATw)1/2 (wTMw)1/2

= inf
w∈Rn\{0}

�
wTAM−1ATw

wTMw

�1/2

= inf
w∈Rn\{0}

��
wM1/2

�T �
M−1/2AM−1/2

� �
M−T/2ATM−T/2

� �
M1/2w

�
�
wM1/2

�T �
M1/2w

�
�1/2

.

Hence, one obtains a Rayleigh quotient. From Lemma A.19, it is known that the infimum of

a Rayleigh quotient is attained and it is the smallest eigenvalue of the eigenvalue problem

�
M−1/2AM−1/2

��
M−T/2ATM−T/2

��
M1/2w

�
= λ

�
M1/2w

�
.

This problem is an eigenvalue problem for a symmetric matrix, hence all eigenvalues are
real. Since

wT
�
M−1/2AM−1/2

��
M−T/2ATM−T/2

�
w

=
��

M−T/2ATM−T/2
�
w
�T ��

M−T/2ATM−T/2
�
w
�

=
���
�
M−T/2ATM−T/2

�
w
���
2

2
≥ 0,

the matrix is positive semi-definite, such that all eigenvalues are non-negative. Finally, since
A and M are non-singular matrices, the matrix of this eigenvalue problem is non-singular

and all eigenvalues are positive. Hence, there is a positive constant βh
is such that

inf
w∈Rn\{0}

vTATw

(vTMv)1/2 (wTMw)1/2
≥ βh

is
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with v = M−1ATw. Taking now the supremum with respect to v might only increase the

left-hand side and (B.15) follows. �

B.2 Finite Element Spaces

Remark B.16. Mesh cells, faces, edges, vertices. A mesh cell K is a compact
polyhedron in Rd, d ∈ {2, 3}, whose interior is not empty. The boundary ∂K
of K consists of m-dimensional linear manifolds (points, pieces of straight
lines, pieces of planes), 0 ≤ m ≤ d− 1, which are called m-faces. The 0-faces
are the vertices of the mesh cell, the 1-faces are the edges, and the (d−1)-faces
are just called faces. ✷

Remark B.17. Finite-dimensional spaces defined on K. Let s ∈ N. Finite ele-
ment methods use finite-dimensional spaces P (K) ⊂ Cs(K) that are defined
on K. In general, P (K) consists of polynomials. The dimension of P (K) will
be denoted by dimP (K) = NK . ✷

Remark B.18. Linear functionals defined on P (K), nodal functionals. For the
definition of finite elements, linear functional that are defined on P (K) are
of importance. These functionals are called nodal functionals.

Consider linear and continuous functionals ΦK,1, . . . ,ΦK,NK
: Cs(K) → R

which are linearly independent. There are different types of functionals that
can be utilized in finite element methods:

• point values: Φ(v) = v(x), x ∈ K,
• point values of a first partial derivative: Φ(v) = ∂iv(x), x ∈ K,
• point values of the normal derivative on a face E of K: Φ(v) = ∇v(x)·nE ,
nE is the outward pointing unit normal vector on E,

• integral mean values on K: Φ(v) = 1
|K|

�
K
v(x) dx,

• integral mean values on faces E: Φ(v) = 1
|E|

�
E
v(s) ds.

The smoothness parameter s has to be chosen in such a way that the func-
tionals ΦK,1, . . . ,ΦK,NK

are continuous. If, e.g., a functional requires the eval-
uation of a partial derivative or a normal derivative, then one has to choose
at least s = 1. For the other functionals given above, s = 0 is sufficient. ✷

Definition B.19. Unisolvence of P (K) with respect to the function-
als ΦK,1, . . . ,ΦK,NK

. The space P (K) is called unisolvent with respect to the
functionals ΦK,1, . . . ,ΦK,NK

if there is for each a ∈ RNK , a = (a1, . . . , aNK
)T ,

exactly one p ∈ P (K) with

ΦK,i(p) = ai, 1 ≤ i ≤ NK .

✷

Remark B.20. Local basis. Unisolvence means that for each vector a ∈ RNK ,
a = (a1, . . . , aNK

)T , there is exactly one element in P (K) such that ai is the
image of the i-th functional, i = 1, . . . , NK .
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Choosing in particular the Cartesian unit vectors for a, then it follows
from the unisolvence that a set {φK,i}NK

i=1 exists with φK,i ∈ P (K) and

ΦK,i(φK,j) = δij , i, j = 1, . . . , NK .

Consequently, the set {φK,i}NK
i=1 forms a basis of P (K). This basis is called

local basis. ✷

Remark B.21. Transform of an arbitrary basis to the local basis. If an arbi-
trary basis {pi}NK

i=1 of P (K) is known, then the local basis can be computed
by solving a linear system of equations. To this end, represent the local basis
in terms of the known basis

φK,j =

NK�

k=1

cjkpk, cjk ∈ R, j = 1, . . . , NK ,

with unknown coefficients cjk. Applying the definition of the local basis leads
to the linear system of equations

ΦK,i(φK,j) =

NK�

k=1

cjkaik = δij , i, j = 1, . . . , NK , aik = ΦK,i(pk).

Because of the unisolvence, the matrix A = (aij) is non-singular and the
coefficients cjk are determined uniquely. ✷

Remark B.22. Triangulation, grid, mesh, grid cell. For the definition of global
finite element spaces, a decomposition of the domain Ω into polyhedra K is
needed. This decomposition is called triangulation T h and the polyhedra K
are called mesh cells. The union of the polyhedra is called grid or mesh.

A triangulation is called admissible, see the definition in (Ciarlet, 1978,
p. 38, p. 51), if:

• It holds Ω = ∪K∈T hK.

• Each mesh cell K ∈ T h is closed and the interior K̊ is non-empty.
• For distinct mesh cells K1 and K2 there holds K̊1 ∩ K̊2 = ∅.
• For each K ∈ T h, the boundary ∂K is Lipschitz continuous.
• The intersection of two mesh cells is either empty or a common m-face,
m ∈ {0, . . . , d− 1}.

✷

Remark B.23. Global and local functionals. Let Φ1, . . . ,ΦN : Cs(Ω) → R
be continuous linear functionals of the same types as given in Remark B.18.
The restriction of the functionals to Cs(K) defines a set of local functionals
ΦK,1, . . . ,ΦK,NK

, where it is assumed that the local functionals are unisolvent
on P (K). The union of all mesh cells Kj , for which there is a p ∈ P (Kj) with
Φi(p) �= 0, will be denoted by ωi. ✷
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Example B.24. On subdomains ωi. Consider the two-dimensional case and let
Φi be defined as nodal value of a function in x ∈ K. If x ∈ K̊, then ωi = K.
In the case that x is on a face of K but not in a vertex, then ωi is the union
of K and the other mesh cell whose boundary contains this face. Last, if x is
a vertex of K, then ωi is the union of all mesh cells that possess this vertex.

✷

Definition B.25. Finite element space, global basis. A function v(x)
defined on Ω with v|K ∈ P (K) for all K ∈ T h is called continuous with
respect to the functional Φi : Ω → R if

Φi(v|K1) = Φi(v|K2), ∀ K1,K2 ∈ ωi.

The space

S =
�
v ∈ L∞(Ω) : v|K ∈ P (K) and v is continuous with respect to

Φi, i = 1, . . . , N
�

is called finite element space.
The global basis {φj}Nj=1 of S is defined by the condition

φj ∈ S, Φi(φj) = δij , i, j = 1, . . . , N.

✷

Remark B.26. On global basis functions. A global basis function coincides on
each mesh cell with a local basis function. This property implies the unique-
ness of the global basis functions.

Whether the continuity with respect to {Φi}Ni=1 implies the continuity of
the finite element functions depends on the functionals that define the finite
element space. ✷

Definition B.27. Parametric finite elements. Let K̂ be a reference mesh
cell with the local space P̂ (K̂), the local functionals Φ̂1, . . . , Φ̂N̂ , and a class

of bijective mappings {FK : K̂ → K}. A finite element space is called a
parametric finite element space if:

• The images {K} of {FK} form the set of mesh cells.
• The local spaces are given by

P (K) =
�
p : p = p̂ ◦ F−1

K , p̂ ∈ P̂ (K̂)
�
. (B.16)

• The local functionals are defined by

ΦK,i(v(x)) = Φ̂i (v(FK(x̂))) , (B.17)
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where x̂ = (x̂1, . . . , x̂d)
T are the coordinates of the reference mesh cell

and it holds x = FK(x̂), v̂ = v ◦ FK .

✷

Remark B.28. Motivations for using parametric finite elements. Definition
B.25 of finite elements spaces is very general. For instance, different types
of mesh cells are allowed. However, as well the finite element theory as the
implementation of finite element methods become much simpler if only para-
metric finite elements are considered. ✷

B.3 Finite Elements on Simplices

Definition B.29. d-simplex. A d-simplex K ⊂ Rd is the convex hull of
(d+ 1) points a1, . . . ,ad+1 ∈ Rd which form the vertices of K. ✷

Remark B.30. On d-simplices. It will be always assumed that the simplex is
not degenerated, i.e., its d-dimensional measure is positive. This property is
equivalent to the non-singularity of the matrix

A =




a11 a12 . . . a1,d+1

a21 a22 . . . a2,d+1

...
...

. . .
...

ad1 ad2 . . . ad,d+1

1 1 . . . 1




,

where ai = (a1i, a2i, . . . , adi)
T , i = 1, . . . , d+ 1.

For d = 2, the simplices are the triangles and for d = 3 they are the
tetrahedra. ✷

Definition B.31. Barycentric coordinates. Since K is the convex hull
of the points {ai}d+1

i=1 , the parametrization of K with a convex combination
of the vertices reads as follows

K =

�
x ∈ Rd : x =

d+1�

i=1

λiai, 0 ≤ λi ≤ 1,
d+1�

i=1

λi = 1

�
.

The coefficients λ1, . . . ,λd+1 are called barycentric coordinates of x ∈ K. ✷

Remark B.32. On barycentric coordinates. From the definition, it follows that
the barycentric coordinates are the solution of the linear system of equations

d+1�

i=1

ajiλi = xj , 1 ≤ j ≤ d,
d+1�

i=1

λi = 1.
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z
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y

y

1 1

1

�K �K

11

Fig. B.1 The unit simplices in two and three dimensions.

Since the system matrix is non-singular, see Remark B.30, the barycentric
coordinates are determined uniquely.

The barycentric coordinates of the vertex ai, i = 1, . . . , d+1, of the simplex
are λi = 1 and λj = 0 if i �= j. Since λi(aj) = δij , the barycentric coordinate
λi can be identified with the linear function that has the value 1 in the vertex
ai and that vanishes in all other vertices aj with j �= i.

The barycenter of the simplex is given by

SK =
1

d+ 1

d+1�

i=1

ai =
d+1�

i=1

1

d+ 1
ai.

Hence, its barycentric coordinates are λi = 1/(d+ 1), i = 1, . . . , d+ 1. ✷

Remark B.33. Simplicial reference mesh cells. A commonly used reference
mesh cell for triangles and tetrahedra is the unit simplex

K̂ =

�
x̂ ∈ Rd :

d�

i=1

x̂i ≤ 1, x̂i ≥ 0, i = 1, . . . , d

�
,

see Figure B.1. The class {FK} of admissible mappings are the bijective affine
mappings

FK x̂ = BK x̂+ b, BK ∈ Rd×d, det (BK) �= 0, b ∈ Rd. (B.18)

The images of these mappings generate the set of the non-degenerated sim-
plices {K} ⊂ Rd. ✷

Definition B.34. Affine family of simplicial finite elements. Given a
simplicial reference mesh cell K̂, affine mappings {FK}, and an unisolvent
set of functionals on K̂. Using (B.16) and (B.17), one obtains a local finite
element space on each non-degenerated simplex. The set of these local spaces
is called affine family of simplicial finite elements. ✷



B.3 Finite Elements on Simplices 235

Fig. B.2 The finite element P0(K).

Definition B.35. Polynomial space Pk. Let x = (x1, . . . , xd)
T , k ∈ N ∪

{0}, and α = (α1, . . . ,αd)
T . Then, the polynomial space Pk is given by

Pk = span

�
d�

i=1

xαi
i = xα : αi ∈ N ∪ {0} for i = 1, . . . , d,

d�

i=1

αi ≤ k

�
.

✷

Remark B.36. Lagrangian finite elements. In many examples given below,
the linear functionals on the reference mesh cell K̂ are the values of the
polynomials with the same barycentric coordinates as on the general mesh
cell K. Finite elements whose linear functionals are values of the polynomials
on certain points in K are called Lagrangian finite elements. ✷

Example B.37. P0 : piecewise constant finite element. The piecewise constant
finite element space consists of discontinuous functions. The linear functional
is the value of the polynomial in the barycenter of the mesh cell, see Fig-
ure B.2. It is dimP0(K) = 1. ✷

Example B.38. P1 : conforming piecewise linear finite element. This finite
element space is a subspace of C(Ω). The linear functionals are the values of
the function in the vertices of the mesh cells, see Figure B.3. It follows that
dimP1(K) = d+ 1.

The local basis for the functionals {Φi(v) = v(ai), i = 1, . . . , d + 1} is
{λi}d+1

i=1 since Φi(λj) = δij , compare Remark B.32. Since a local basis exists,
the functionals are unisolvent with respect to the polynomial space P1(K).

Now, it will be shown that the corresponding finite element space consists
of continuous functions. Let K1,K2 be two mesh cells with the common face
E and let v ∈ P1(= S). The restriction of vK1

on E is a linear function on
E as well as the restriction of vK2

on E. It has to be shown that both linear
functions are identical. A linear function on the (d−1)-dimensional face E is
uniquely determined with d linearly independent functionals that are defined
on E. These functionals can be chosen to be the values of the function in
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a2

a3

a1

Fig. B.3 The finite element P1(K).

a2

a3

a1

a12

a23

a13

Fig. B.4 The finite element P2(K).

the d vertices of E. The functionals in S are continuous by the definition of
S. Thus, it must hold that both restrictions on E have the same values in
the vertices of E. Hence, it is vK1 |E = vK2 |E and the functions from P1 are
continuous. ✷

Example B.39. P2 : conforming piecewise quadratic finite element. This finite
element space is also a subspace of C(Ω). It consists of piecewise quadratic
functions. The functionals are the values of the functions in the d+1 vertices
of the mesh cell and the values of the functions in the centers of the edges,
see Figure B.4. Since each vertex is connected to each other vertex, there are�d

i=1 i = d(d+1)/2 edges. Hence, it follows that dimP2(K) = (d+1)(d+2)/2.
The part of the local basis that belongs to the functionals {Φi(v) = v(ai),

i = 1, . . . , d+ 1}, is given by

{φi(λ) = λi(2λi − 1), i = 1, . . . , d+ 1}.

Denote the center of the edge between the vertices ai and aj by aij . The
corresponding part of the local basis is given by

{φij = 4λiλj , i, j = 1, . . . , d+ 1, i < j}.
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a112
a221

a223

a332

a123

a331

a113

a2

a3

a1

Fig. B.5 The finite element P3(K).

The unisolvence follows from the fact that there exists a local basis. The
continuity of the corresponding finite element space is shown in the same way
as for the P1 finite element. The restriction of a quadratic function defined
in a mesh cell to a face E is a quadratic function on that face. Hence, the
function on E is determined uniquely with d(d + 1)/2 linearly independent
functionals on E.

The functions φij are called in two dimensions edge bubble functions. ✷

Example B.40. P3 : conforming piecewise cubic finite element. This finite el-
ement space consists of continuous piecewise cubic functions. It is a subspace
of C(Ω). The functionals in a mesh cell K are defined to be the values in
the vertices ((d + 1) values), two values on each edge (dividing the edge in

three parts of equal length) (2
�d

i=1 i = d(d + 1) values), and the values
in the barycenter of the 2-faces of K, see Figure B.5. Each 2-face of K is
defined by three vertices. If one considers for each vertex all possible pairs
with other vertices, then each 2-face is counted three times. Hence, there are
(d+ 1)(d− 1)d/6 2-faces. The dimension of P3(K) is given by

dimP3(K) = (d+ 1) + d(d+ 1) +
(d− 1)d(d+ 1)

6
=

(d+ 1)(d+ 2)(d+ 3)

6
.

For the functionals
�
Φi(v) = v(ai), i = 1, . . . , d+ 1, (vertex),

Φiij(v) = v(aiij), i, j = 1, . . . , d+ 1, i �= j, (point on edge),

Φijk(v) = v(aijk), i = 1, . . . , d+ 1, i < j < k, (point on 2-face)
�
,

the local basis is given by
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�
φi(λ) =

1

2
λi(3λi − 1)(3λi − 2), φiij(λ) =

9

2
λiλj(3λi − 1),

φijk(λ) = 27λiλjλk

�
.

In two dimensions, the function φijk(λ) is called cell bubble function. ✷

Example B.41. P bubble
1 . The P bubble

1 finite element is just the P1 finite element
enriched with mesh cell bubbles. In two dimensions, the functionals are given
by the point values of a function v(x) in the vertices a1,a2, a3, and by

3
�
v(a1) + v(a2) + v(a3)

�
+ 8

�
v (a12) + v (a13) + v (a23)

�
+ 27v (a123)

27
,

see Figures B.4 and B.5 for the notations. The corresponding local basis is

�
λ1 − 20λ1λ2λ3, λ1 − 20λ1λ2λ3, λ1 − 20λ1λ2λ3, 27λ1λ2λ3

�
.

✷

Example B.42. P bubble
2 . In this space, the P2 finite element is enriched with

bubble functions.
In two dimensions, one can take as nodal functionals the same functionals

as for the P2 element and as seventh functional

3
�
v(a1) + v(a2) + v(a3)

�
+ 8

�
v (a12) + v (a13) + v (a23)

�
+ 27v (a123)

20
,

compare Figures B.4 and B.5 for the notations. Then, the local basis is given
by

�
4λ1λ2 − 20λ1λ2λ3, 4λ1λ3 − 20λ1λ2λ3, 4λ2λ3 − 20λ1λ2λ3,

2λ1(λ1 − 0.5), 2λ2(λ2 − 0.5), 2λ1(λ2 − 0.5), 20λ1λ2λ3

�
.

In the three-dimensional case, the enrichment is performed with the mesh
cell bubble function and with the four bubble functions on the faces. The
functionals are the four values in the vertices, the six values on the mid
points of the edges, the four values in the barycenters of the faces, and the
value in the barycenter of the mesh cell. Altogether, there are 15 functionals.
The local basis is given by

�
λ1(2λ1 − 1) + 3λ1(λ2λ3 + λ2λ4 + λ3λ4)− 4λ1λ2λ3λ4, . . . ,

λ1λ2(4− 12λ4 − 12λ3 + 32λ3λ4), . . . ,

27λ1λ2λ3(1− 4λ4), 27λ1λ2(1− 4λ3)λ4, 27λ1(1− 4λ2)λ3λ4,

27(1− 4λ1)λ2λ3λ4, 256λ1λ2λ3λ4

�
,
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a13

a12

a23

Fig. B.6 The finite element Pnc
1 (K).

where the remaining basis functions are given by appropriate permutations
of the indices. ✷

Example B.43. P nc
1 : non-conforming linear finite element, Crouzeix–Raviart

finite element, Crouzeix & Raviart (1973). This finite element consists
of piecewise linear but discontinuous functions. The functionals are given
by the values of the functions in the barycenters of the faces such that
dimP nc

1 (K) = (d + 1). It follows from the definition of the finite element
space, Definition B.25, that the functions from P nc

1 are continuous in the
barycenter of the faces

P nc
1 =

�
v ∈ L2(Ω) : v|K ∈ P1(K), v(x) is continuous at the barycenter

of all faces
�
. (B.19)

Equivalently, the functionals can be defined to be the integral mean values
on the faces and then the global space is defined to be

P nc
1 =

�
v ∈ L2(Ω) : v|K ∈ P1(K),

�

E

v|K ds =

�

E

v|K� ds ∀ E ∈ E(K) ∩ E(K �)

�
, (B.20)

where E(K) is the set of all (d− 1)-dimensional faces of K.
For the description of this finite element, one defines the functionals by

Φi(v) = v(ai−1,i+1) for d = 2, Φi(v) = v(ai−2,i−1,i+1) for d = 3,

where the points are the barycenters of the faces with the vertices that corre-
spond to the indices, see Figure B.6. This system is unisolvent with the local
basis

φi(λ) = 1− dλi, i = 1, . . . , d+ 1.

✷
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Example B.44. P disc
1 . This space consists of piecewise linear but discontinuous

functions.
On the reference mesh cell K̂ in two dimensions, one can use the functionals

applied to a function v(x̂) given by

�

K̂

2v(x̂) dx̂,

�

K̂

(24x̂− 8) v(x̂) dx̂,

�

K̂

(24ŷ − 8) v(x̂) dx̂

and the corresponding local basis is

�
1, λ̂2 − λ̂1, λ̂3 − λ̂1

�
= {1, 2x̂+ ŷ − 1, x̂+ 2ŷ − 1} .

In three dimensions, let a1,a2,a3,a4 be the vertices of the tetrahedron
and SK its barycenter. Then, the following functionals can be used

v(a1) + v(a2) + v(a3) + v(a4) + 16v(SK)

120
,

−v(a1) + 3v(a2)− v(a3)− v(a4)

4
,

−v(a1)− v(a2) + 3v(a3)− v(a4)

4
,

−v(a1)− v(a2)− v(a3) + 3v(a4)

4
.

The corresponding local basis is given by

{6, λ2 − λ1, λ3 − λ1, λ4 − λ1}.

✷

Example B.45. Raviart–Thomas finite elements RTk. Raviart–Thomas finite
elements are a class of vector-valued finite elements that approximate the
space H (div,Ω), see (2.22). Details of their definition and important prop-
erties can be found, e.g., in (Boffi et al., 2013, pp. 84).

Consider a simplicial triangulation with mesh cells {K} and let P k(K) =

(Pk(K))
d
, k ≥ 0. Then, the following local polynomial space is defined di-

rectly on K

RTk(K) = {v ∈ (P k(K) + xPk(K)) : v · n∂K ∈ Rk(∂K)} , k ≥ 0,

where

Rk(∂K) =
�
ϕ ∈ L2(∂K) : ϕ|E ∈ Pk(E) for all faces E ⊂ ∂K

�
.

It is noted in (Boffi et al., 2013, Rem. 2.3.1) that this definition of RTk(K)
is different than the original definition in Raviart & Thomas (1977).

In particular, the Raviart–Thomas element of lowest order is given by

RT0(K) = {v ∈ (P 0(K) + xP0(K)) : v · n∂K ∈ R0(∂K)} ,
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i.e., it is linear on K. Its local functionals are v · nEi
, i = 1, . . . , d + 1. A

function from RT0(K) can be written in the form

v(x) = a+ bx, a ∈ Rd, b ∈ R,x ∈ K. (B.21)

A face E ⊂ ∂K is a hyperplane that can be represented in the form

x · nE = c, c ∈ R, ∀ x ∈ E.

Inserting this representation in (B.21) yields

v(x) · nE = a · nE + bx · nE = a · nE + bc = const ∀ x ∈ E.

Thus, the normal component of v on each face is a constant.
The global space RT0 is defined as usual by defining global functionals on

the basis of the local functionals and requiring the continuity of the global
functionals, see Definition B.25. Consequently, the normal component of func-
tions from RT0 is continuous across faces of the mesh cells. Since the normal
component on each face is a constant, it is sufficient for requiring its continuity
to require the continuity in the barycenters {mE} of {E}. From Lemma 2.56,
it follows that RT0 ⊂ H (div,Ω). ✷

B.4 Finite Elements on Parallelepipeds and
Quadrilaterals

Remark B.46. Reference mesh cells, reference map to parallelepipeds. One can
find in the literature two reference cells: the unit cube [0, 1]d and the large
unit cube [−1, 1]d. It does not matter which reference cell is chosen. Here, the
large unit cube will be used: K̂ = [−1, 1]d. The class of admissible reference
maps {FK} to parallelepipeds consists of bijective affine mappings of the form

FK x̂ = BK x̂+ b, BK ∈ Rd×d, b ∈ Rd.

If BK is a diagonal matrix, then K̂ is mapped to d-rectangles.
The class of mesh cells that is obtained in this way is not sufficient to

triangulate general domains. If one wants to use more general mesh cells
than parallelepipeds, then the class of admissible reference maps has to be
enlarged, see Remark B.55. ✷

Definition B.47. Polynomial space Qk. Let x = (x1, . . . , xd)
T and denote

by α = (α1, . . . ,αd)
T a multi-index. Then, the polynomial space Qk is given

by

Qk = span

�
d�

i=1

xαi
i = xα : 0 ≤ αi ≤ k for i = 1, . . . , d

�
.
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a2a1

a3 a4

Fig. B.7 The finite element Q1(K).

✷

Remark B.48. Finite elements on d-rectangles. For simplicity of presentation,
the examples below consider d-rectangles. In this case, the finite elements
are just tensor products of one-dimensional finite elements. In particular, the
basis functions can be written as products of one-dimensional basis functions.

✷

Example B.49. Q0 : piecewise constant finite element. Similarly to the P0

space, the space Q0 consists of piecewise constant, discontinuous functions.
The functional is the value of the function in the barycenter of the mesh
cell K and it holds dimQ0(K) = 1. ✷

Example B.50. Q1 : conforming piecewise d-linear finite element. This fi-
nite element space is a subspace of C(Ω). The functionals are the values
of the function in the vertices of the mesh cell, see Figure B.7. Hence, it is
dimQ1(K) = 2d.

The one-dimensional local basis functions, which will be used for the tensor
product, are given by

φ̂1(x̂) =
1

2
(1− x̂), φ̂2(x̂) =

1

2
(1 + x̂).

With these functions, e.g., the basis functions in two dimensions are computed
by

φ̂1(x̂)φ̂1(ŷ), φ̂1(x̂)φ̂2(ŷ), φ̂2(x̂)φ̂1(ŷ), φ̂2(x̂)φ̂2(ŷ).

The continuity of the functions of the finite element space Q1 is proved in
the same way as for simplicial finite elements. It is used that the restriction
of a function from Qk(K) to a face E is a function from the space Qk(E),
k ≥ 1. ✷

Example B.51. Q2 : conforming piecewise d-quadratic finite element. It holds
that Q2 ⊂ C(Ω). The functionals in one dimension are the values of the
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Fig. B.8 The finite element Q2(K).

Fig. B.9 The finite element Q3(K).

function at both ends of the interval and in the center of the interval, see
Figure B.8. In d dimensions, they are the corresponding values of the tensor
product of the intervals. It follows that dimQ2(K) = 3d.

The one-dimensional basis function on the reference interval are defined
by

φ̂1(x̂) = −1

2
x̂(1− x̂), φ̂2(x̂) = (1− x̂)(1 + x̂), φ̂3(x̂) =

1

2
(1 + x̂)x̂.

The basis function
�d

i=1 φ̂2(x̂i) is called cell bubble function. ✷

Example B.52. Q3 : conforming piecewise d-cubic finite element. This finite
element space is a subspace of C(Ω). The functionals on the reference interval
are given by the values at the end of the interval and the values at the points
x̂ = −1/3, x̂ = 1/3. In multiple dimensions, it is the corresponding tensor
product, see Figure B.9. The dimension of the local space is dimQ3(K) = 4d.

The one-dimensional basis functions in the reference interval are given by
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Fig. B.10 The finite element Qrot
1 (K).

φ̂1(x̂) = − 1

16
(3x̂+ 1)(3x̂− 1)(x̂− 1), φ̂2(x̂) =

9

16
(x̂+ 1)(3x̂− 1)(x̂− 1),

φ̂3(x̂) = − 9

16
(x̂+ 1)(3x̂+ 1)(x̂− 1), φ̂4(x̂) =

1

16
(3x̂+ 1)(3x̂− 1)(x̂+ 1).

✷

Example B.53. Qrot
1 : rotated non-conforming element of lowest order, Ran-

nacher–Turek element, Rannacher & Turek (1992). This finite element space
is a generalization of the P nc

1 finite element to quadrilateral and hexahedral
mesh cells. It consists of discontinuous functions that are continuous at the
barycenter of the faces. The dimension of the local finite element space is
dimQrot

1 (K) = 2d. The space on the reference mesh cell is defined by

Qrot
1

�
K̂
�
=

�
p̂ : p̂ ∈ span{1, x̂, ŷ, x̂2 − ŷ2}

�
for d = 2,

Qrot
1

�
K̂
�
=

�
p̂ : p̂ ∈ span{1, x̂, ŷ, ẑ, x̂2 − ŷ2, ŷ2 − ẑ2}

�
for d = 3.

Note that the transformed space

Qrot
1 (K) = {p = p̂ ◦ F−1

K , p̂ ∈ Qrot
1 (K̂)}

contains polynomials of the form ax2 − by2, where a, b depend on FK .
For d = 2, the local basis on the reference cell is given by

φ̂1(x̂, ŷ) = −3

8
(x̂2 − ŷ2)− 1

2
ŷ +

1

4
, φ̂2(x̂, ŷ) =

3

8
(x̂2 − ŷ2) +

1

2
x̂+

1

4
,

φ̂3(x̂, ŷ) = −3

8
(x̂2 − ŷ2) +

1

2
ŷ +

1

4
, φ̂4(x̂, ŷ) =

3

8
(x̂2 − ŷ2)− 1

2
x̂+

1

4
.

(B.22)

Analogously to the Crouzeix–Raviart finite element, the functionals can
be defined as point values of the functions in the barycenters of the faces,
see Figure B.10, or as integral mean values of the functions at the faces.
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Consequently, the finite element spaces are defined in the same way as (B.19)
or (B.20), with P nc

1 (K) replaced by Qrot
1 (K).

For a discussion of the practical use of this finite element, it is referred to
Remark 2.145. ✷

Example B.54. P disc
k , k ≥ 1. The space P disc

k , k ≥ 1, is given by

P disc
k =

�
v ∈ L2 (Ω) : v|K ∈ Pk (K)

�
.

The construction of a basis on the reference mesh cell is based on the Legendre
polynomials in [−1, 1], which are given by

1, x̂,
1

2

�
3x̂2 − 1

�
, . . . . (B.23)

Then, the basis of P disc
k (K̂) in multiple dimensions is defined as a tensor

product of polynomials of type (B.23) that gives a polynomial of degree
smaller than or equal to k. Concretely, the basis of P disc

1 (K̂) is given by

�
2d : {1, x̂, ŷ},
3d : {1, x̂, ŷ, ẑ}, (B.24)

and of P disc
2 (K̂)

�
2d :

�
1, x̂, ŷ, x̂ŷ, 1

2

�
3x̂2 − 1

�
, 1
2

�
3ŷ2 − 1

��
,

3d :
�
1, x̂, ŷ, ẑ, x̂ŷ, x̂ẑ, ŷẑ, 1

2

�
3x̂2 − 1

�
, 1
2

�
3ŷ2 − 1

�
, 1
2

�
3ẑ2 − 1

��
.

(B.25)
For the definition of the local nodal functionals, the L2(K̂) orthogonality of
the Legendre polynomials is used. Denoting the basis functions of (B.24) and

(B.25) by φ̂j(x̂), then these functionals are defined by

ΦK̂,i

�
φ̂j

�
=

��

K̂

φ̂2
j dx̂

�−1 �

K̂

φ̂iφ̂j dx̂,

such that ΦK̂,i

�
φ̂j

�
= δij . ✷

Remark B.55. Parametric mappings. The image of an affine mapping of the
reference mesh cell K̂ = [−1, 1]d, d ∈ {2, 3}, is a parallelepiped. If one wants
to consider finite elements on general d-quadrilaterals, then the class of ad-
missible reference maps has to be enlarged.

The simplest non-affine parametric finite element on quadrilaterals in two
dimensions uses bilinear mappings. Let K̂ = [−1, 1]2 and let

FK(x̂) =

�
F 1
K(x̂)

F 2
K(x̂)

�
=

�
a11 + a12x̂+ a13ŷ + a14x̂ŷ
a21 + a22x̂+ a23ŷ + a24x̂ŷ

�
, F i

K ∈ Q1, i = 1, 2,
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be a bilinear mapping from K̂ on the class of admissible quadrilaterals. A
quadrilateral K is called admissible if

• the length of all edges of K is larger than zero,
• the interior angles of K are smaller than π, i.e., K is convex.

This class contains, e.g., trapezoids and rhombi. ✷

Remark B.56. Parametric finite element functions. The functions of the local
space P (K) on the mesh cell K are defined by p = p̂ ◦ F−1

K , where p̂ is
a polynomial. These functions are in general rational functions. However,
using d-linear mappings, then the restriction of FK on an edge of K̂ is an
affine map. For instance, in the case of the Q1 finite element, the functions on
K are linear functions on each edge of K. It follows that the functions of the
corresponding finite element space are continuous, compare Example B.38.

✷

B.5 Transform of Integrals

Remark B.57. Motivation. The transformation of integrals from the reference
mesh cell to mesh cells of the grid and vice versa is used as well for the analysis
as for the implementation of finite element methods. This section provides
an overview of the most important formulae for transformations.

Let K̂ ⊂ Rd be the reference mesh cell, K be an arbitrary mesh cell, and
FK : K̂ → K with x = FK(x̂) be the reference map. It is assumed that the
reference map is a continuous differentiable one-to-one map. The inverse map
is denoted by F−1

K : K → K̂. For the integral transforms, the derivatives
(Jacobians) of FK and F−1

K are needed

DFK(x̂)ij =
∂xi

∂ξj
, DF−1

K (x)ij =
∂ξi
∂xj

, i, j = 1, . . . , d.

✷

Remark B.58. Integral with a function without derivatives. This integral trans-
forms with the standard rule of integral transforms

�

K

v(x) dx =

�

K̂

v̂(x̂) |detDFK(x̂)| dx̂, (B.26)

where v̂(x̂) = v(FK(x̂)). ✷

Remark B.59. Transform of derivatives. Using the chain rule, one obtains
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∂v

∂xi
(x) =

d�

j=1

∂v̂

∂ξj
(x̂)

∂ξj
∂xi

= ∇x̂v̂(x̂) ·
��

DF−1
K (x)

�T�
i

= ∇x̂v̂(x̂) ·
��

DF−1
K (FK(x̂))

�T�
i
, (B.27)

∂v̂

∂ξi
(x̂) =

d�

j=1

∂v

∂xj
(x)

∂xj

∂ξi
= ∇v(x) ·

�
(DFK(x̂))

T
�
i

= ∇v(x) ·
��

DFK(F−1
K (x))

�T�
i
. (B.28)

The index i denotes the i-th row of a matrix. Derivatives on the reference
mesh cell are marked with a symbol on the operator. ✷

Remark B.60. Integrals with a gradients. Using the rule for transforming in-
tegrals and (B.27) gives

�

K

b(x) ·∇v(x) dx

=

�

K̂

b (FK(x̂)) ·
��
DF−1

K

�T
(FK(x̂))

�
∇x̂v̂(x̂) |detDFK(x̂)| dx̂. (B.29)

Similarly, one obtains

�

K

∇v(x) ·∇w(x) dx

=

�

K̂

��
DF−1

K

�T
(FK(x̂))

�
∇x̂v̂(x̂) ·

��
DF−1

K

�T
(FK(x̂))

�
∇x̂ŵ(x̂)

× |detDFK(x̂)| dx̂. (B.30)

✷

Remark B.61. Integral with the divergence. Integrals of the following type are
important for the Navier–Stokes equations

�

K

∇ · v(x)q(x) dx =

�

K

d�

i=1

∂vi
∂xi

(x)q(x) dx

=

�

K̂

d�

i=1

���
DF−1

K (FK(x̂))
�T�

i
·∇x̂v̂i(x̂)

�
q̂(x̂) |detDFK(x̂)| dx̂

=

�

K̂

��
DF−1

K (FK(x̂))
�T

: Dx̂v̂(x̂)
�
q̂(x̂) |detDFK(x̂)| dx̂. (B.31)

In the derivation, (B.27) was used. ✷

Example B.62. Affine transform. The most important class of reference maps
are affine transforms (B.18), where the invertible matrix BK and the vector
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b are constants. It follows that

x̂ = B−1
K (x− b) = B−1

K x−B−1
K b.

In this case, there are

DFK = BK , DF−1
K = B−1

K , detDFK = det (BK) .

One obtains for the integral transforms from (B.26), (B.29), (B.30), and
(B.31)

�

K

v(x) dx = |det (BK)|
�

K̂

v̂(x̂) dx̂, (B.32)

�

K

b(x) ·∇v(x) dx = |det (BK)|
�

K̂

b (FK(x̂)) ·B−T
K ∇x̂v̂(x̂) dx̂, (B.33)

�

K

∇v(x) ·∇w(x) dx = |det (BK)|
�

K̂

B−T
K ∇x̂v̂(x̂) ·B−T

K ∇x̂ŵ(x̂) dx̂,

(B.34)�

K

∇ · v(x)q(x) dx = |det (BK)|
�

K̂

�
B−T

K : Dx̂v̂(x̂)
�
q̂(x̂) dx̂. (B.35)

Setting v(x) = 1 in (B.32) yields

|det (BK)| = |K|���K̂
���
. (B.36)

✷


