
Chapter 3

The Stokes Equations

Remark 3.1. Motivation. The Stokes equations model the simplest incom-
pressible flow problems. These problems are steady-state and the convective
term can be neglected. Hence, the arising model is linear. Thus, the only
difficulty which remains from the problems mentioned in Remark 1.10 is the
coupling of velocity and pressure.

The analysis of the Stokes equations and of finite element discretizations
of these equations introduces already important techniques which are used
also in the analysis of more complicated problems. ✷

3.1 The Continuous Equations

Remark 3.2. The Stokes equations. Consider a stationary flow, i.e., ∂tu = 0.
If the flow is in addition very slow, i.e., the Reynolds number is very small,
then the viscous term Re−1Δu dominates the convective term (u ·∇)u and
the convective term can be neglected. The resulting momentum equation can
be scaled by the Reynolds number, defining a new pressure and right-hand
side in this way. One obtains the so-called Stokes equations

−Δu+∇p = f in Ω,
∇ · u = 0 in Ω,

(3.1)

that have to be equipped with appropriate boundary conditions.
The theory from Sections 2.1 and 2.2 will be applied here to study system

(3.1). For simplicity of presentation, the Stokes equations will be considered
with homogeneous Dirichlet boundary conditions u = 0 on Γ . ✷

Remark 3.3. The weak form of Stokes equations. The weak form of the Stokes
equations equipped with homogeneous Dirichlet boundary conditions is ob-
tained in the usual way by multiplying the equations with test functions, in-
tegrating these equations on Ω, and applying integration by parts to transfer
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48 3 The Stokes Equations

derivatives from the solution to the test functions. One obtains the following
problem: Given f ∈ H−1(Ω), find (u, p) ∈ H1

0 (Ω)× L2
0(Ω) such that

(∇u,∇v)− (∇ · v, p) = �f ,v�H−1(Ω),H1
0 (Ω) ∀ v ∈ H1

0 (Ω),

−(∇ · u, q) = 0 ∀ q ∈ L2
0(Ω).

(3.2)

This weak form can be cast into the framework of the abstract linear saddle
point problem by setting V = H1

0 (Ω) and Q = L2
0(Ω) in (2.4), equipped with

the norms �·�V = |·|H1(Ω) and �·�Q = �·�L2(Ω),

a(u,v) = (∇u,∇v), b(v, q) = −(∇ · v, q), r = 0.

An equivalent formulation of (3.2) is as follows: Find (u, p) ∈ V ×Q such
that

a(u,v) + b(v, p)− b(u, q) = �f ,v�V �,V ∀ (v, q) ∈ V ×Q. (3.3)

If (3.2) holds, one gets (3.3) by subtracting the second equation from the
first equation in (3.2). In turn, if (3.3) is valid, then the individual equations
of (3.2) are obtained by considering in (3.3) the sets {(v, 0)} and {(0, q)} as
test functions.

Let V0 = Vdiv, the space of weakly divergence-free functions defined in
(2.23). Then, the associated problem to (3.2), which corresponds to (2.12),
is: Find u ∈ Vdiv such that

(∇u,∇v) = �f ,v�V �,V ∀ v ∈ Vdiv. (3.4)

✷

Lemma 3.4. The norm of the bilinear form a(·, ·). For the bilinear form
a(·, ·) associated with the Stokes problem it holds �a� = 1.

Proof. One gets with the Cauchy–Schwarz inequality (A.10)

�a� = sup
v,w∈V \{0}

(∇v,∇w)

�∇v�L2(Ω) �∇w�L2(Ω)

≤ sup
v,w∈V \{0}

�∇v�L2(Ω) �∇w�L2(Ω)

�∇v�L2(Ω) �∇w�L2(Ω)

= 1.

Choosing v = w shows that the supremum is not smaller than 1. �

Theorem 3.5. Existence and uniqueness of a solution of the Stokes
equations. Let Ω be a bounded domain in Rd, d ∈ {2, 3}, with a Lipschitz
continuous boundary Γ and let f ∈ H−1(Ω). Then, there exists a unique pair
(u, p) ∈ H1

0 (Ω)× L2
0(Ω) that solves (3.2).

Proof. The bilinear form b(·, ·) satisfies the inf-sup condition, see Theorem 2.37. In addi-

tion, the bilinear form a(·, ·) is Vdiv-elliptic since

a(v,v) = |v|2H1(Ω) = �v�2V ∀ v ∈ V ⊃ Vdiv. (3.5)
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The statement of the theorem follows now from Lemma 2.14. �

Lemma 3.6. Stability of the solution. Let the conditions of Theorem 3.5
be given. Then, the solution (u, p) of the Stokes problem (3.2) depends con-
tinuously on the right-hand side

�u�V = �∇u�L2(Ω) ≤ �f�H−1(Ω) , (3.6)

�p�Q = �p�L2(Ω) ≤
2

βis
�f�H−1(Ω) . (3.7)

If f ∈ L2(Ω), then it holds

�u�V ≤ C �Phelmf�L2(Ω) , (3.8)

where the constant comes from the Poincaré inequality (A.12).

Proof. Inserting u as test function in (3.4) gives

(∇u,∇u) = �f ,u�V �,V .

Applying the dual estimate yields

�∇u�2L2(Ω) ≤ �f�H−1(Ω) �∇u�L2(Ω) .

In the case �∇u�L2(Ω) = 0, the estimate for the velocity is trivially true. Otherwise,

division with �∇u�L2(Ω) leads to (3.6).

For the estimate of the pressure, the inf-sup condition (2.30), the equation (3.2), the
estimate of the dual pairing, and the Cauchy–Schwarz inequality (A.10) are utilized

�p�L2(Ω) ≤ 1

βis
sup

v∈V \{0}

−(∇ · v, p)
�∇v�L2(Ω)

=
1

βis
sup

v∈V \{0}

�f ,v�V �,V − (∇u,∇v)

�∇v�L2(Ω)

≤ 1

βis
sup

v∈V \{0}

�f�H−1(Ω) �∇v�L2(Ω) + �∇u�L2(Ω) �∇v�L2(Ω)

�∇v�L2(Ω)

=
1

βis

�
�f�H−1(Ω) + �∇u�L2(Ω)

�
.

Inserting now the stability estimate (3.6) for the velocity gives the estimate (3.7) for the

pressure.

Let f ∈ L2(Ω), then the application of Helmholtz decomposition (2.74)

f = Phelmf +∇r,

using the Helmholtz projection from Definition 2.81, integration by parts, u ∈ Vdiv, the

Cauchy–Schwarz inequality, and Poincaré inequality yields

�∇u�2L2(Ω) = (Phelmf ,u) + (∇r,u) = (Phelmf ,u)

≤ �Phelmf�L2(Ω) �u�L2(Ω) ≤ C �Phelmf�L2(Ω) �∇u�L2(Ω) .

Division by �∇u�L2(Ω) proves the last statement (3.8) of the lemma. �
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Remark 3.7. On the implication of the inf-sup condition. It can be shown
with a straightforward calculation that the inf-sup condition guarantees the
uniqueness of the pressure.

Since the weak form of the homogeneous Stokes equations

a(u,v) + b(v, p) = 0 ∀ v ∈ V,
b(u, q) = 0 ∀ q ∈ Q,

(3.9)

is a linear system, one has to show for uniqueness of a solution that f = 0
implies u = 0 and p = 0. Assume there is a solution (u, p) ∈ V ×Q of (3.9).
Taking (u, p) as test functions gives

a(u,u) + b(u, p) = 0,
b(u, p) = 0.

Including the second equation in the first one leads to a(u,u) = 0. The
ellipticity of a(·, ·) in V , see (3.5), implies u = 0. Up to this point, the inf-
sup condition was not needed.

Considering now the first equation of (3.9) with u = 0 gives

b(v, p) = 0 ∀ v ∈ V.

It follows that

sup
v∈V \{0}

b(v, p)

�v�V
= 0.

The inf-sup condition written in the form (2.29) implies now immediately
p = 0 in L2

0(Ω) since βis > 0. ✷

Remark 3.8. On the balance of different parts of the source term in the mo-
mentum equation. Let f ∈ L2(Ω). According to Theorem 2.80, the right-hand
side admits a Helmholtz decomposition of the form f = Phelmf +∇r, with
Phelmf ∈ Hdiv(Ω) and ∇r ∈ (Hdiv(Ω))

⊥
. Inserting this decomposition in the

momentum balance of the Stokes equations (3.1) yields

−Δu+∇p = Phelmf +∇r. (3.10)

Assume that Δu,∇p ∈ L2(Ω), then it is even Δu ∈ Hdiv(Ω). This property
can be checked by a direct calculation, utilizing that weak derivatives can be
always interchanged, see (Evans, 2010, Section 5.2.3, Theorem 1), and using
∇ · u = 0

∇ ·Δu = ∂x (∂xxu1 + ∂yyu1) + ∂y (∂xxu2 + ∂yyu2)

= ∂xx (∂xu1 + ∂yu2) + ∂yy (∂xu1 + ∂yu2) = 0,

and analogously in three dimensions.
Consider now not only the momentum balance but the complete boundary

value problem. Inserting the decomposition of f in the weak formulation
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(3.2) and assuming that the solution is sufficiently smooth gives, applying
integration by parts,

− (Δu,v)− (∇ · v, p) = (Phelmf ,v)− (∇ · v, r) ∀ v ∈ V. (3.11)

It can be seen that the irrotational forces ∇r are balanced completely by the
pressure. Already the stability estimate (3.8) shows that irrotational forces
do not possess an impact on the velocity. Altogether, one finds that if f
is changed to f + ∇r, then the pressure solution of the Stokes equations
changes to p+r. Likewise, divergence-free forces are balanced by the velocity,
more precisely by −Δu. Thus, there is a separate balance of irrotational and
divergence-free forces.

Note that for the integration by parts leading to (3.11) the respective
boundary integrals have to vanish. This situation is given if the test space
is V = H1

0 (Ω), i.e., if the Stokes equations are equipped with Dirichlet con-
ditions on the whole boundary. There is not such a clear separation of the
impact of different kinds of the forces in the case of other boundary condi-
tions, in particular, in the case of boundary conditions which involve also the
pressure. ✷

3.2 Finite Element Error Analysis

Remark 3.9. The finite element formulation. Let V h be a velocity finite ele-
ment space and let Qh be a pressure finite element space. The finite element
discretization of the Stokes equations (3.2) reads as follows: Let f be given,
find (uh, ph) ∈ V h ×Qh such that

ah
�
uh,vh

�
+ bh

�
vh, ph

�
=

�

K∈T h

�

K

�
fvh

�
(x) dx ∀ vh ∈ V h,

bh
�
uh, qh

�
= 0 ∀ qh ∈ Qh,

(3.12)

with

ah
�
vh,wh

�
=

�

K∈T h

�
∇vh,∇wh

�
K
, bh

�
vh, qh

�
= −

�

K∈T h

�
∇ · vh, qh

�
K
,

(3.13)
and the right-hand side f is assumed to be sufficiently smooth such that the
right-hand side of the momentum equation in (3.12) is well defined. ✷

Theorem 3.10. Existence and uniqueness of a solution of the finite
element Stokes equations. Let (ah(·, ·))1/2 define a norm in V h and let
the discrete inf-sup condition (2.32) hold. Then, (3.12) has a unique solution.
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Proof. If (ah(·, ·))1/2 is a norm in V h, then this bilinear form is V h-elliptic and in partic-

ular V h
div-elliptic. Then, the proof is performed analogously to the proof of Theorem 3.5.

�

Remark 3.11. Goal and approach. The goal of the finite element error anal-
ysis consists in getting information on the order of convergence of the finite
element solution to the solution of the weak problem in norms of interest. To
this end, families of triangulations {T h} with corresponding finite element
spaces {V h ×Qh} are considered. A general approach of obtaining finite el-
ement error estimates consists in the following steps, e.g., see the proof of
Theorem 3.17:

• derive an equation or an inequality for the considered norm of the error,
• modify the equation or the inequality in such a way that approximation
errors to the finite element spaces appear,

• estimate the considered norm of the error by constants times best approx-
imation errors.

In the second step, one has usually to add and subtract terms in a clever way.
The best approximation errors are independent of the considered problem.
They can be estimated by interpolation errors. Interpolation error estimates
are known from the general theory of finite element methods, see Appendix C.

✷

3.2.1 Conforming Inf-Sup Stable Pairs of Finite
Element Spaces

Remark 3.12. Conforming inf-sup stable finite element spaces. This section
studies conforming inf-sup stable finite element spaces, i.e., besides the dis-
crete inf-sup condition (2.32), it holds V h ⊂ V and Qh ⊂ Q. The bilin-
ear forms are identical to the forms of the continuous problem, i.e., it is
ah(·, ·) = a(·, ·) and bh(·, ·) = b(·, ·). ✷

Corollary 3.13. Unique solvability of the finite element problem. Let
V h and Qh be conforming finite element spaces that satisfy the discrete inf-
sup condition (2.32). Then, the finite element problem (3.12) has a unique
solution.

Proof. Based on Theorem 3.10, it is sufficient to show that (a(·, ·))1/2 defines a norm in

V h. This property is given, because (a(·, ·))1/2 defines a norm in V , see (3.5), it defines
also a norm in every subspace V h ⊂ V . �

Lemma 3.14. Stability of the finite element solution. Let V h ×Qh be
a pair of inf-sup stable finite element spaces. Then, the solution of (3.12)
fulfills

��∇uh
��
L2(Ω)

≤ �f�H−1(Ω) ,
��ph

��
L2(Ω)

≤ 2

βh
is

�f�H−1(Ω) .
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Proof. The proof follows the lines of the proof of Lemma 3.6. �

Remark 3.15. Reduction to a problem in the space of discretely divergence-free
functions. From the abstract theory of linear saddle point problems, Section
2.1, Remark 2.11, it follows that the finite element approximation of the
velocity can be computed by solving the following problem: Find uh ∈ V h

div

such that

a
�
uh,vh

�
=

�
∇uh,∇vh

�
= �f ,vh�V �,V ∀ vh ∈ V h

div. (3.14)

✷

3.2.1.1 The case V h
div �⊂ Vdiv

Remark 3.16. The case V h
div �⊂ Vdiv. This case applies for most pairs of inf-sup

stable finite element spaces. ✷

Theorem 3.17. Finite element error estimate for the L2(Ω) norm of
the gradient of the velocity. Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain
with polyhedral and Lipschitz continuous boundary and let (u, p) ∈ V ×Q be
the unique solution of the Stokes problem (3.2). Assume that this problem is
discretized with inf-sup stable conforming finite element spaces V h ×Qh and
denote by uh ∈ V h

div the velocity solution. Then, the following error estimate
holds

��∇(u− uh)
��
L2(Ω)

≤ 2 inf
vh∈V h

div

��∇(u− vh)
��
L2(Ω)

+ inf
qh∈Qh

��p− qh
��
L2(Ω)

.

(3.15)

Proof. The proof starts by formulating the error equation. Since V h
div ⊂ V , functions

from V h
div can be used as test function in the continuous Stokes equations (3.3), which is

equivalent to (3.2). Using that the velocity solution of the continuous equation is weakly

divergence-free, one obtains by subtracting (3.14) from (3.3)

�
∇(u− uh),∇vh

�
−
�
∇ · vh, p

�
= 0 ∀ vh ∈ V h

div. (3.16)

The pressure term appears since in general V h
div �⊂ Vdiv. Equation (3.16) is the error

equation.
Now, the pressure term will be modified such that an approximation term with respect

to the pressure is obtained. Observing that
�
∇ · vh, qh

�
= 0 for all qh ∈ Qh leads to

�
∇(u− uh),∇vh

�
−

�
∇ · vh, p− qh

�
= 0 ∀ vh ∈ V h

div, ∀ qh ∈ Qh. (3.17)

In the next step, the approximation error for the velocity will be introduced. To this
end, the error is decomposed into

u− uh =
�
u− Ihu

�
−
�
uh − Ihu

�
= η − φh.

Here, Ihu denotes an arbitrary interpolant of u in V h
div. Hence, η is just an approximation

error which depends only on the finite element space V h
div but not on the considered
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equation. The goal is to estimate φh ∈ V h
div by approximation errors as well. To this end,

this decomposition is inserted in (3.17) and the test function vh = φh is chosen. It follows
that

��∇φh
��2

L2(Ω)
=

�
∇φh,∇φh

�
=

�
∇η,∇φh

�
−

�
∇ · φh, p− qh

�
∀ qh ∈ Qh. (3.18)

Now, the terms on the right-hand side are estimated using the Cauchy–Schwarz inequality

(A.10) ���∇η,∇φh
��� ≤ �∇η�L2(Ω)

��∇φh
��
L2(Ω)

and, using in addition (2.26),

��−
�
∇ · φh, p− qh

��� ≤
��p− qh

��
L2(Ω)

��∇ · φh
��
L2(Ω)

≤
��p− qh

��
L2(Ω)

��∇φh
��
L2(Ω)

. (3.19)

Inserting these estimates in (3.18) and dividing by
��∇φh

��
L2(Ω)

�= 0 yields

��∇φh
��
L2(Ω)

≤ �∇η�L2(Ω) +
��p− qh

��
L2(Ω)

.

In the case that
��∇φh

��
L2(Ω)

= 0, this estimate trivially holds.

With the triangle inequality, it follows that

��∇(u− uh)
��
L2(Ω)

≤
��∇φh

��
L2(Ω)

+ �∇η�L2(Ω)

≤ 2 �∇η�L2(Ω) +
��p− qh

��
L2(Ω)

for all Ihu ∈ V h
div and for all qh ∈ Qh, from what (3.15) follows. �

Remark 3.18. On error estimates (3.15). The error in the V norm of the
velocity is estimated with (3.15) by best approximation errors for both, the
velocity and the pressure. The occurrence of the best approximation error for
the velocity is natural, since the velocity finite element space has certainly an
impact on the error. Inspecting the proof of Theorem 3.17, one finds that the
reason for the appearance of the best approximation error for the pressure is
the property V h

div �⊂ Vdiv. Otherwise, the second term on the left-hand side
of (3.3) would vanish and the pressure would have been eliminated from the
estimate. The case V h

div ⊂ Vdiv will be studied in more detail in Section 3.2.1.2.
✷

Corollary 3.19. Finite element error estimate for the L2(Ω) norm of
the divergence of the velocity. Let the assumptions of Theorem 3.17 be
fulfilled, then

��∇ · uh
��
L2(Ω)

≤ 2 inf
vh∈V h

div

��∇(u− vh)
��
L2(Ω)

+ inf
qh∈Qh

��p− qh
��
L2(Ω)

. (3.20)

Proof. The estimate follows easily from ∇ · u = 0, (2.26), and the estimate (3.15)

��∇ · uh
��
L2(Ω)

=
��∇ · (u− uh)

��
L2(Ω)

≤
��∇(u− uh)

��
L2(Ω)

.

�
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Theorem 3.20. Finite element error estimate for the L2(Ω) norm of
the pressure. Let the assumption of Theorem 3.17 be satisfied. Then the
following error estimate holds

��p− ph
��
L2(Ω)

≤ 2

βh
is

inf
vh∈V h

div

��∇(u− vh)
��
L2(Ω)

+

�
1 +

2

βh
is

�
inf

qh∈Qh

��p− qh
��
L2(Ω)

. (3.21)

Proof. Let qh ∈ Qh be arbitrary, then one gets with the triangle inequality

��p− ph
��
L2(Ω)

≤
��p− qh

��
L2(Ω)

+
��ph − qh

��
L2(Ω)

.

Replacing the right-hand side of momentum equation of the finite element Stokes prob-

lem (3.12) by the left-hand side of the the momentum equation of the continuous Stokes
problem (3.2) for vh ∈ V h gives

b
�
vh, ph − qh

�
= −a

�
uh,vh

�
+ �f ,vh�V �,V − b

�
vh, qh

�

= a
�
u− uh,vh

�
+ b

�
vh, p− qh

�
∀ vh ∈ V h,∀ qh ∈ Qh.

With the discrete inf-sup condition (2.32), the Cauchy–Schwarz inequality (A.10), and
(2.26), it follows now that

��ph − qh
��
L2(Ω)

≤ 1

βh
is

sup
vh∈V h\{0}

b
�
vh, ph − qh

�
��∇vh

��
L2(Ω)

=
1

βh
is

sup
vh∈V h\{0}

a
�
u− uh,vh

�
+ b

�
vh, p− qh

�
��∇vh

��
L2(Ω)

≤ 1

βh
is

sup
vh∈V h\{0}

��∇
�
u− uh

���
L2(Ω)

��∇vh
��
L2(Ω)

+
��p− qh

��
L2(Ω)

��∇vh
��
L2(Ω)��∇vh

��
L2(Ω)

=
1

βh
is

���∇
�
u− uh

���
L2(Ω)

+
��p− qh

��
L2(Ω)

�
∀ qh ∈ Qh.

Inserting the error estimate (3.15) for the velocity yields the error estimate for the pressure.

�

Remark 3.21. Error of the velocity in the L2(Ω) norm. A simple error esti-
mate of the velocity error in the L2(Ω) can be obtained with the Poincaré
inequality (A.12)

��u− uh
��
L2(Ω)

≤ C
��∇(u− uh)

��
L2(Ω)

and the application of (3.15). However, the resulting estimate is not opti-
mal. The derivation of an optimal error estimate for

��u− uh
��
L2(Ω)

requires

additional assumptions and analytical tools. ✷

Remark 3.22. Regular dual Stokes problem. To obtain an estimate for the
velocity error in L2(Ω), the classical argument by Aubin (1967) and Nitsche
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(1968) is applied. To this end, a dual problem of the Stokes equations has to
be considered. The dual or adjoint operator is obtained by bringing the test
function of the weak formulation of the Stokes equations (3.3) in the place
of the solution and vice versa. Using the symmetry of the viscous term and
changing position of terms, one gets from the left-hand side of (3.3)

(∇v,∇u) + (∇ · u, q)− (∇ · v, p).

Now, the test function is replaced by the solution of the dual problem�
φf̂ , ξf̂

�
and the solution (u, p) by the test function, leading to the following

left-hand side of the weak form of the dual problem

�
∇φf̂ ,∇v

�
+

�
∇ · v, ξf̂

�
−
�
∇ · φf̂ , q

�
.

Using integration by parts, one gets the strong form of the dual Stokes prob-
lem for a velocity in Vdiv: For given f̂ ∈ L2(Ω), find (φf̂ , ξf̂ ) ∈ V ×Q such
that

−Δφf̂ −∇ξf̂ = f̂ in Ω,

∇ · φf̂ = 0 in Ω.
(3.22)

Note that in the general dual problem, the right-hand side of the divergence
constraint might be different than zero.

Problem (3.22) is said to be regular, if the mapping

�
φf̂ , ξf̂

�
�→ −Δφf̂ −∇ξf̂ (3.23)

is an isomorphism from
�
H2(Ω) ∩ V

�
×

�
H1(Ω) ∩Q

�
onto L2(Ω). That

means, in comparison with the Stokes equations, the higher regularity condi-
tions φf̂ ∈ H2(Ω) and ξf̂ ∈ H1(Ω) are required. It can be proved that this
regularity is given, e.g., for bounded convex polyhedral domains in two and
three dimensions, see Kellogg & Osborn (1976); Dauge (1989). ✷

Theorem 3.23. Finite element error estimate for the L2(Ω) norm of
the velocity. Let the assumption of Theorem 3.17 hold and let (φf̂ , ξf̂ ) be

the solution of (3.22). Then, the L2(Ω) error of the velocity can be estimated
as follows

��u− uh
��
L2(Ω)

≤
���∇

�
u− uh

���
L2(Ω)

+ inf
qh∈Qh

��p− qh
��
L2(Ω)

�

× sup
f̂∈L2(Ω)\{0}

1���f̂
���
L2(Ω)

�
inf

φh∈V h
div

���∇
�
φf̂ − φh

����
L2(Ω)

+ inf
rh∈Qh

���ξf̂ − rh
���
L2(Ω)

�
. (3.24)
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Proof. For interested students only, not presented in the class.

It is, by definition,

��u− uh
��
L2(Ω)

= sup
f̂∈L2(Ω)\{0}

�
f̂ ,u− uh

�

���f̂
���
L2(Ω)

. (3.25)

The weak form of the dual problem (3.22) is: Find (φf̂ , ξf̂ ) ∈ V ×Q such that

�
∇v,∇φf̂

�
+

�
∇ · v, ξf̂

�
=

�
f̂ ,v

�
∀ v ∈ V,�

∇ · φf̂ , q
�

= 0 ∀ q ∈ Q.

Choosing v = u− uh ∈ V gives for the numerator of (3.25)

�
f̂ ,u− uh

�
=

�
∇

�
u− uh

�
,∇φf̂

�
+
�
∇ ·

�
u− uh

�
, ξf̂

�
. (3.26)

The aim consists now in adding terms to this equation such that approximation errors are

obtained. For all φh ∈ V h
div ⊂ V and qh ∈ Qh it holds, using the weak form of the Stokes

problem (3.2) and the finite element problem (3.14),

�
∇
�
u− uh

�
,∇φh

�
=

�
∇ · φh, p

�
+ �f ,φh�V �,V −

�
∇ · φh, ph

�
− �f ,φh�V �,V

=
�
∇ · φh, p

�
=

�
∇ · φh, p− qh

�
∀ qh ∈ Qh. (3.27)

In addition, it is �
∇ · φf̂ , p− qh

�
= 0 ∀ qh ∈ Qh,

and �
∇ ·

�
u− uh

�
, rh

�
= 0 ∀ rh ∈ Qh,

since Qh ⊂ Q. Inserting these terms in (3.26) leads to

�
f̂ ,u− uh

�
=

�
∇
�
u− uh

�
,∇

�
φf̂ − φh

��
+

�
∇ ·

�
φf̂ − φh

�
, p− qh

�

+
�
∇ ·

�
u− uh

�
, ξf̂ − rh

�
(3.28)

for all φh ∈ V h
div and all qh, rh ∈ Qh. The application of the Cauchy–Schwarz inequality

(A.10) and of (2.26) yields

���
�
f̂ ,u− uh

���� ≤
��∇

�
u− uh

���
L2(Ω)

���∇
�
φf̂ − φh

����
L2(Ω)

+
��p− qh

��
L2(Ω)

���∇
�
φf̂ − φh

����
L2(Ω)

+
���ξf̂ − rh

���
L2(Ω)

��∇
�
u− uh

���
L2(Ω)

≤
���∇

�
u− uh

���
L2(Ω)

+
��p− qh

��
L2(Ω)

�

×
����∇

�
φf̂ − φh

����
L2(Ω)

+
���ξf̂ − rh

���
L2(Ω)

�
(3.29)

for all φh ∈ V h
div and all qh, rh ∈ Qh. Taking the infimum of all approximation errors gives

(3.24). �
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Remark 3.24. On the dependency of the error bounds on the discrete inf-sup
constant. One can estimate the best approximation error with respect to V h

div

in (3.15), (3.20), (3.21), and (3.24) with (2.45) giving a term with
�
βh
is

�−1
.

The obtained estimates are worst case estimates.
There are finite element spaces where a local interpolation operator that

preserves the discrete divergence can be constructed, see Girault & Scott
(2003). Then, the constants in the velocity estimates depend on the inverse
of local discrete inf-sup constants. In contrast to the error estimates with
respect to the velocity, the error bound (3.21) for the pressure depends always

on
�
βh
is

�−1
.

In all cases, if the local inf-sup constants or βh
is depend on the mesh width,

then an optimal order of convergence cannot be expected. ✷

Corollary 3.25. Finite element error estimates for conforming inf-
sup stable pairs of finite element spaces. Let Ω ⊂ Rd, d ∈ {2, 3}, be
a bounded domain with polyhedral and Lipschitz continuous boundary which
is decomposed by a regular and quasi-uniform family of triangulations {T h}.
Let (u, p) be the solution of the Stokes equations (3.2) with u ∈ Hk+1(Ω)∩V
and p ∈ Hk(Ω)∩Q. Then for the inf-sup stable pairs of finite element spaces

• P bubble
k /Pk, k = 1 (MINI element),

• Pk/Pk−1, Qk/Qk−1, k ≥ 2 (Taylor–Hood element),
• P bubble

2 /P disc
1 , P bubble

3 /P disc
2 , PBR

2 /P disc
1 , Qk/P

disc
k−1, k ≥ 2,

the following error estimates hold

��∇(u− uh)
��
L2(Ω)

≤ Chk
�
�u�Hk+1(Ω) + �p�Hk(Ω)

�
, (3.30)

��∇ · uh
��
L2(Ω)

≤ Chk
�
�u�Hk+1(Ω) + �p�Hk(Ω)

�
, (3.31)

��p− ph
��
L2(Ω)

≤ Chk
�
�u�Hk+1(Ω) + �p�Hk(Ω)

�
. (3.32)

If the dual Stokes problem (3.22) possesses a regular solution (φf̂ , ξf̂ ) in the
sense of Remark 3.22, then it holds in addition

��u− uh
��
L2(Ω)

≤ Chk+1
�
�u�Hk+1(Ω) + �p�Hk(Ω)

�
. (3.33)

The constants C depend either on the inverse of the discrete inf-sup constant
βh
is or on the inverse of local inf-sup constants, compare Remark 3.24.

Proof. The best approximation errors in estimates (3.15), (3.20), (3.21), and (3.24) can
be estimated by interpolation errors, since an interpolation error cannot be lower than the

best approximation error. Then, estimates (3.30) – (3.32) follow directly from interpolation

error estimates for finite element spaces, see (2.45) for the velocity.
The additional power of h in estimate (3.33) comes from the application of the interpo-

lation estimates (2.45) and for the pressure to the second factor of (3.24) and the regularity

of (φf̂ , ξf̂ )

inf
φh∈V h

div

���∇
�
φf̂ − φh

����
L2(Ω)

+ inf
rh∈Qh

���ξf̂ − rh
���
L2(Ω)
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≤ Ch

����φf̂

���
H2(Ω)

+
���ξf̂

���
H1(Ω)

�
. (3.34)

Since (3.23) is an isomorphism from
�
H2(Ω) ∩ V

�
×

�
H1(Ω) ∩Q

�
onto L2(Ω) there is a

constant C such that
���φf̂

���
H2(Ω)

+
���ξf̂

���
H1(Ω)

≤ C
���f̂

���
L2(Ω)

. (3.35)

Inserting (3.34) and (3.35) in (3.24) proves (3.33). �

Example 3.26. A two-dimensional steady-state example with prescribed solu-
tion in the unit square and with homogeneous Dirichlet boundary conditions.
Consider Ω = (0, 1)2 and the stream function

φ = 1000x2(1− x)4y3(1− y)2.

Then, the velocity field is defined by

u =

�
u1

u2

�
=

�
∂yφ
−∂xφ

�
= 1000

�
x2(1− x)4y2(1− y)(3− 5y)

−2x(1− x)3(1− 3x)y3(1− y)2

�
. (3.36)

It follows, using the Theorem of Schwarz, that

∇ · u = ∂xu1 + ∂yu2 = ∂xyφ− ∂yxφ = ∂xyφ− ∂xyφ = 0.

The equations will be equipped with Dirichlet boundary conditions on the
whole boundary. It is u = 0 on Γ .

Because of the Dirichlet boundary conditions on Γ , the pressure should be
in L2

0(Ω). This is the only essential requirement. The following pressure was
chosen for the definition of this example

p = π2(xy3 cos(2πx2y)− x2y sin(2πxy)) +
1

8
.

The stream function, velocity, and pressure are presented in Figure 3.1. It
can be seen that the velocity field consists essentially of one big vortex.

Because of the homogeneous Dirichlet boundary conditions on Γ , this
example fits into the framework of many results obtained in the numerical
analysis of finite element methods. ✷

Example 3.27. Analytical example which supports the error estimates (3.30) –
(3.33). Error estimates of form (3.30) – (3.33) are usually supported by using
problems with a known (prescribed) solution and by measuring the errors to
this solution on a sequence of subsequently refined grids. Here, Example 3.26
will be considered, which is defined on the unit square. Initial grids (level 0)
of the form presented in Figure 3.2 were used in the simulations. On such
unstructured or distorted grids, it is not likely to obtain superconvergence
effects in the numerical results. The right-hand side was integrated with a
quadrature rule of high order to reduce the influence of quadrature errors.



60 3 The Stokes Equations

Fig. 3.1 Example 3.26. Stream function (top left) velocity (top right) and pressure (bot-

tom). These plots are based on results obtained with numerical simulations.

Fig. 3.2 Example 3.27. Initial grids (level 0).

The errors in different norms are presented in Figures 3.3 – 3.61. It can
be observed that in the most cases the orders of convergence predicted by
the numerical analysis coincide with the orders of convergence in the numer-
ical simulations. Generally, different discretizations of the same order show
a similar accuracy. Only the pressure error obtained with P bubble

2 /P disc
1 , see

Figure 3.5, is much higher than with all other discretizations with second
order velocity and first order pressure.

For the P bubble
1 /P1 pair of finite element spaces, the order of convergence

for the L2(Ω) error of the pressure is higher by 0.5 than predicted by the
analysis. ✷

1 2D graphics were plotted with Matplotlib, Hunter (2007), http://matplotlib.org.
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Fig. 3.3 Example 3.27. Convergence of the errors
��∇(u− uh)

��
L2(Ω)

for different dis-

cretizations with different orders k. In the top right and bottom left pictures, the magenta
line is on top of the green line.

Remark 3.28. Scaled Stokes problem. A scaled Stokes problem of the form

−νΔu+∇p = f in Ω,
∇ · u = 0 in Ω,

(3.37)

ν > 0, is sometimes of interest for academic purposes, since in (3.37), the
viscous term is scaled in the same form as for the Navier–Stokes equations.
Dividing the momentum equation in (3.37) by ν yields

−Δu+∇
�p
ν

�
=

f

ν
in Ω,

∇ · u = 0 in Ω,

which is of the same form as the unscaled version (3.1) with a new pressure
and a new source term. Now, the finite element error analysis can be applied
in the same way as presented in this section, leading to the estimates of form
(3.15), (3.20), (3.21), and (3.24), where the pressure terms are scaled with
ν−1. Consequently, one obtains also estimates of the form (3.30) and (3.31)
with ν−1 in front of �p�Hk(Ω)



62 3 The Stokes Equations

� � � � � � � �

������

��
��

��
�

||
∇

∇
�
�
||
�
2
(Ω

)
�

� bubble

1
��

1

� � � � � � � �

������

��
��

��
��

��
��

��
��

||
∇

∇
�
�
||
�
2
(Ω

)

�2

�
2
��

1

� bubble

2
�� disc

1

�
2
��

1

�
2
�� disc

1

� � � � � � �

������

��
��

��
��

��
��

��
��

��
��

��
��

||
∇

∇
�
�
||
�
2
(Ω

)

�3

�
3
��

2

� bubble

3
�� disc

2

�
3
��

2

�
3
�� disc

2

� � � � � � �

������

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

||
∇

∇
�
�
||
�
2
(Ω

)

�4

�
4
��

3

�
4
��

3

�
4
�� disc

3

Fig. 3.4 Example 3.27. Convergence of the errors
��∇ · uh

��
L2(Ω)

for different discretiza-

tions with different orders k. In the top right and bottom left pictures, the magenta line is
on top of the green line.

��∇(u− uh)
��
L2(Ω)

≤ Chk
�
�u�Hk+1(Ω) + ν−1 �p�Hk(Ω)

�
, (3.38)

��∇ · uh
��
L2(Ω)

≤ Chk
�
�u�Hk+1(Ω) + ν−1 �p�Hk(Ω)

�
.

For the estimate of the L2(Ω) error of the velocity, one considers again
the dual Stokes problem (3.22). Since this problem is formulated with unit

viscosity, neither φf̂ nor ξf̂ nor f̂ depend on ν. The error estimate is per-

formed in the same way as in the proof of Theorem 3.23. Instead of (3.27),
one obtains

�
∇
�
u− uh

�
,∇φh

�
=

1

ν

�
∇ · φh, p− qh

�
∀ qh ∈ Qh.

Then, the middle term on the right-hand side of (3.28) is scaled with ν−1

and one gets the scaling ν−1 in (3.29) in front of
��p− qh

��
L2(Ω)

. Finally, the

error estimate

��u− uh
��
L2(Ω)

≤ Chk+1
�
�u�Hk+1(Ω) + ν−1 �p�Hk(Ω)

�
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Fig. 3.5 Example 3.27. Convergence of the errors
��p− ph

��
L2(Ω)

for different discretiza-

tions with different orders k.

×
����φf̂

���
H2(Ω)

+
���ξf̂

���
H1(Ω)

�
(3.39)

is derived.
Thus, for small values of ν, the term ν−1 �p�Hk(Ω) might dominate the

right-hand side of all velocity error bounds.
In estimate (3.32) for the pressure, one has to scale also the term on the

left-hand side with ν−1. Rescaling this estimate leads to

��p− ph
��
L2(Ω)

≤ Chk
�
ν �u�Hk+1(Ω) + �p�Hk(Ω)

�
. (3.40)

✷

Example 3.29. Scaled Stokes problem. Again, the problem defined in Exam-
ple 3.26 is considered, see Example 3.27 for the simulations with the unscaled
Stokes equations. From the estimates (3.38) and (3.39), one would expect that
the velocity errors become large for small ν and then they scale linearly with
ν−1. In contrast, from (3.40) one has the expectation that the pressure error
becomes large for large values of ν and then it scales linearly with ν.
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Fig. 3.6 Example 3.27. Convergence of the errors
��u− uh

��
L2(Ω)

for different discretiza-

tions with different orders k.

Representative results for the second order Taylor–Hood pair of finite el-
ement spaces P2/P1 on the unstructured grid from Figure 3.2 are presented
in Figure 3.7. The dependency of the velocity errors on ν−1 and the pressure
error on ν is clearly visible. On coarse grids, also the linear dependencies on
ν−1 and ν, respectively, can be observed. However, one can also see a higher
order of decrease for the curves with large errors until they reach the curves
for which a dependency on the value of ν cannot be observed. This decrease is
higher by half an order for the velocity errors and by one order for the L2(Ω)
error of the pressure. To the best of our knowledge, there is no explanation
for this behavior so far. ✷

3.2.1.2 The case V h
div ⊂ Vdiv

Remark 3.30. Pairs of finite element spaces with V h
div ⊂ Vdiv. This section

inspects the proofs of the error estimates from Section 3.2.1.1 under the
condition that V h

div ⊂ Vdiv. It turns out that some terms vanish. An important
consequence is that the error estimates for the velocity do not depend any
longer on the best approximation errors of the pressure finite element space.
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Fig. 3.7 Example 3.29. Convergence of the errors for the scaled Stokes problem and the
P2/P1 pair of finite element spaces.

In addition, also a scaling of the viscous term as discussed in Remark 3.28
does not influence the velocity error estimates. The estimates in the case
V h
div ⊂ Vdiv reflect the physics of the problem properly, in contrast to the

estimates for the case V h
div �⊂ Vdiv, compare Remark 3.8.

The most important pair of conforming inf-sup stable finite element spaces
satisfying V h

div ⊂ Vdiv is the Scott–Vogelius pair of finite element spaces
Pk/P

disc
k−1, k ≥ d, on special grids, see Remarks 2.76 and 2.77. ✷

Corollary 3.31. Finite element error estimates for the velocity for
inf-sup stable pairs of finite element spaces with V h

div ⊂ Vdiv. Let the
assumptions of Theorem 3.17 be fulfilled and consider an inf-sup stable pair
of finite element spaces with V h

div ⊂ Vdiv, then

��∇(u− uh)
��
L2(Ω)

≤ 2 inf
vh∈V h

div

��∇(u− vh)
��
L2(Ω)

(3.41)

and ��∇ · uh
��
L2(Ω)

= 0. (3.42)
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Proof. The proof of (3.41) is performed in the same way as the proof of Theorem 3.17.

Inspecting this proof for pairs of spaces with V h
div ⊂ Vdiv, one finds that (3.19) equals zero

since
��∇ · φh

��
L2(Ω)

= 0 for all φh ∈ V h
div.

Property (3.42) follows directly from the definition of Vdiv. �

Corollary 3.32. Finite element error estimate for the L2(Ω) norm of
the velocity for inf-sup stable pairs of finite element spaces with
V h
div ⊂ Vdiv. Let the assumptions of Theorem 3.23 be fulfilled. If for an inf-sup

stable pair of finite element spaces V h
div ⊂ Vdiv, then

��u− uh
��
L2(Ω)

≤
��∇

�
u− uh

���
L2(Ω)

× sup
f̂∈L2(Ω)

1���f̂
���
L2(Ω)

inf
φh∈V h

div

���∇
�
φf̂ − φh

����
L2(Ω)

. (3.43)

Proof. The proof proceeds in the same way as the proof of Theorem 3.23. In addition,

one can use in (3.28) that ∇ ·
�
φh − φf̂

�
= 0 and ∇ ·

�
u− uh

�
= 0 in the weak sense. �

Remark 3.33. Pairs of finite element spaces with V h
div ⊂ Vdiv. For pairs of

finite element spaces with the property V h
div ⊂ Vdiv, it follows from (3.41)

and (3.42) that

��∇(u− uh)
��
L2(Ω)

≤ Chk �u�Hk+1(Ω) , (3.44)
��∇ · uh

��
L2(Ω)

= 0, (3.45)
��u− uh

��
L2(Ω)

≤ Chk+1 �u�Hk+1(Ω) . (3.46)

These estimates are in particular true for the Scott–Vogelius spaces Pk/P
disc
k−1,

k ≥ d, on barycentric-refined grids. ✷

Remark 3.34. Scaled Stokes problem. Considering a scaled Stokes problem of
the form (3.37), one finds that the scaling ν−1 does not affect the velocity
error estimates, in contrast to pairs of finite element spaces with V h

div �⊂ Vdiv,
see Remark 3.28. ✷

Example 3.35. The Scott–Vogelius pair of finite element spaces P2/P
disc
1 on

a barycentric-refined grid for a no-flow problem. In this example, the scaled
Stokes problem (3.37) is considered in Ω = (0, 1)2 and with the prescribed
solution u = 0 and the pressure

p(x, y) = 10

�
(x− 0.5)3y + (1− x)2(y − 0.5)2 − 1

36

�
.

The Scott–Vogelius pair is known to satisfy the discrete inf-sup condition
on barycentric-refined grids, see Remark 2.76. The grids were constructed
as follows. The unit square was divided into two triangles by connecting
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Fig. 3.8 Example 3.35. Convergence of the errors for the scaled Stokes problem and the
P2/Pdisc

1 pair of finite element spaces on a barycentric-refined grid.

the lower left and the upper right corner. This triangulation was uniformly
refined once. Then a barycentric-refined grid as depicted in Figure 2.3 was
created, giving level 0. After having simulated the problem on this grid, the
barycentric refinements were removed, the grid was uniformly refined once
more, and again a barycentric refinement was applied, leading to level 1. This
process was continued.

The results are presented in Figure 3.8. The velocity error is always a small
constant, independently of the value of ν. The increase of this constant is due
to the increase of the condition number of the linear saddle point problems
for small ν. Hence, this increase reflects round-off errors of the solver. Since
the first term on the right-hand side of estimate (3.40) vanishes, one expects
that the pressure error in L2(Ω) is independent of ν, which can be observed
very well in the computational results.

As comparison, results obtained with the Taylor–Hood finite element
P2/P1 computed on the irregular grid from Figure 3.2 are depicted in Fig-
ure 3.9. Even for moderate values of ν, the discrete velocity field is far away
from being a no-flow field. The dependency of the velocity errors on the vis-
cosity can be clearly observed in this simple example. This result reflects once
more the potential impact of the pressure on the error of the velocity for pairs
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Fig. 3.9 Example 3.35. Convergence of the velocity errors for the scaled Stokes problem
and the P2/P1 pair of finite element spaces.

of spaces that do not satisfy V h
div ⊂ Vdiv. Note that the order of convergence

of both velocity errors is higher by 0.5 than predicted by the analysis. ✷

3.3 Stabilized Finite Element Methods Circumventing
the Discrete Inf-Sup Condition

Remark 3.36. Motivation. The application of inf-sup stable pairs of finite ele-
ments requires the use of different spaces for velocity and pressure. Moreover,
it is not possible to use conforming spaces of lowest order for the discrete
velocity, i.e., P1 or Q1 finite element spaces. However, software for solving
incompressible flow problems contains often just one finite element space and
then usually P1 or Q1. In such situations, it is necessary to modify the discrete
problem such that the satisfaction of the discrete inf-sup condition (2.32) is
not longer necessary. To this end, one has to remove the saddle point struc-
ture of the discrete problem, i.e., one has to remove the zero matrix block in
the pressure-pressure coupling of the saddle point problem.

There are several proposals in the literature for defining appropriate
pressure-pressure couplings, so-called stabilization terms. One class are so-
called pseudo-compressibility methods. The strong form of such methods
might look as follows:

• Pressure Stabilization Petrov–Galerkin (PSPG) method

−∇ · u+ δΔp = 0,

• penalty method
−∇ · u− δp = 0,

• artificial compressibility method
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−∇ · u− δ∂tp = 0,

where δ is some parameter which has to be chosen appropriately.
Note that the introduction of a pressure-pressure coupling perturbs the

continuity equation and thus the conservation of mass. It is not possible that
such a method leads to estimates for velocity errors without pressure terms
in the error bounds. In addition, each stabilization term contains parameters.
The asymptotic optimal choice of stabilization parameters can be determined
often with results from numerical analysis, e.g., with conditions for the exis-
tence and uniqueness of a solution of the stabilized problem or from optimal
error estimates. However, the user still has to choose concrete parameters
in simulations and, depending on the parameter, different concrete choices of
the same asymptotic type might sometimes lead to rather different numerical
solutions.

Detailed information on pressure-stabilized methods can be found in the
recent review paper John et al. (2020). ✷


