
Chapter 1

The Stokes Equations as Simplest
Model for Incompressible Flows

Remark 1.1. Basic principles and variables. The basic equations of fluid dy-
namics are called Navier–Stokes equations. In the case of an isothermal flow,
i.e., a flow at constant temperature, they represent two physical conservation
laws: the conservation of mass and the conservation of linear momentum.
There are various ways for deriving these equations. Here, the classical one
of continuum mechanics will sketched.

The flow will be described with the variables

• ρ(t,x) : density [kg/m3],
• v(t,x) : velocity [m/s],
• P (t,x) : pressure [Pa = N/m2],

which are assumed to be sufficiently smooth functions in the time interval
[0, T ] and the domain Ω ⊂ R3. ✷

1.1 The Conservation of Mass

Remark 1.2. General conservation law. Let ω be an arbitrary open volume in
Ω with sufficiently smooth surface ∂ω, which is constant in time, and with
mass

m(t) =

�

ω

ρ(t,x) dx [kg].

If mass in ω is conserved, the rate of change of mass in ω must be equal to
the flux of mass ρv(t,x) [kg/(m2s)] across the boundary ∂ω of ω

d

dt
m(t) =

d

dt

�

ω

ρ(t,x) dx = −
�

∂ω

(ρv) (t, s) · n(s) ds, (1.1)

where n(s) is the outward pointing unit normal on s ∈ ∂ω. Since all functions
and ∂ω are assumed to be sufficiently smooth, the divergence theorem can
be applied (integration by parts), which gives
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�

ω

∇ · (ρv) (t,x) dx =

�

∂ω

(ρv) (t, s) · n(s) ds.

Inserting this identity in (1.1) and changing differentiation with respect to
time and integration with respect to space leads to

�

ω

(∂tρ(t,x) +∇ · (ρv) (t,x)) dx = 0.

Since ω is an arbitrary volume, it follows that

(∂tρ+∇ · (ρv)) (t,x) = 0 ∀ t ∈ (0, T ], x ∈ Ω. (1.2)

This relation is the first equation of fluid dynamics, which is called continuity
equation. ✷

Remark 1.3. Time-dependent domain. It is also possible to consider a time-
dependent domain ω(t). In this case, the Reynolds transport theorem can be
applied. Let φ(t,x) be a sufficiently smooth function defined on an arbitrary
volume ω(t) with sufficiently smooth boundary ∂ω(t), then the Reynolds
transport theorem has the form

d

dt

�

ω(t)

φ(t,x) dx =

�

ω(t)

∂tφ(t,x) dx+

�

∂ω(t)

(φv · n) (t, s) ds. (1.3)

In the special case that φ(t,x) is the density, one gets for the change of
mass

d

dt

�

ω(t)

ρ(t,x) dx =

�

ω(t)

∂tρ(t,x) dx+

�

∂ω(t)

(ρv · n) (t, s) ds.

Conservation of mass and the divergence theorem yields

0 =

�

ω(t)

(∂tρ+∇ · (ρv)) (t,x) dx.

Since ω(t) is assumed to be arbitrary, equation (1.2) follows. ✷

Remark 1.4. Incompressible, homogeneous fluids. If the fluid is incompressible
and homogeneous, i.e., composed of one fluid only, then ρ(t,x) = ρ > 0
and (1.2) reduces to

(∂xv1 + ∂yv2 + ∂zv3) (t,x) = ∇ · v(t,x) = 0 ∀ t ∈ (0, T ], x ∈ Ω, (1.4)

where

v(t,x) =




v1(t,x)
v2(t,x)
v3(t,x)


 .



1.2 The Conservation of Linear Momentum 5

Thus, the conservation of mass for an incompressible, homogeneous fluid
imposes a constraint on the velocity only. ✷

1.2 The Conservation of Linear Momentum

Remark 1.5. Newton’s second law of motion. The conservation of linear mo-
mentum is the formulation of Newton’s second law of motion

net force = mass × acceleration (1.5)

for flows. It states that the rate of change of the linear momentum must be
equal to the net force acting on a collection of fluid particles. ✷

Remark 1.6. Conservation of linear momentum. The linear momentum in an
arbitrary volume ω is given by

�

ω

ρv(t,x) dx [Ns].

Then, the conservation of linear momentum in ω can be formulated analo-
gously to the conservation of mass in (1.1)

d

dt

�

ω

ρv(t,x) dx = −
�

∂ω

(ρv) (v · n) (t, s) ds+

�

ω

fnet(t,x) dx [N],

where the term on the left-hand side describes the change of the momentum
in ω, the first term on the right-hand side models the flux of momentum
across the boundary of ω, and fnet [N/m3] represents the force density in ω.
It is

v(v · n) =



v1v1n1 + v1v2n2 + v1v3n3

v2v1n1 + v2v2n2 + v2v3n3

v3v1n1 + v3v2n2 + v3v3n3


 = vvTn.

Applying integration by parts and changing differentiation with respect to
time and integration on ω gives

�

ω

�
∂t (ρv) +∇ ·

�
ρvvT

��
(t,x) dx =

�

ω

fnet(t,x) dx.

The divergence of a tensor is defined row-wise

∇ · A =



∂xa11 + ∂ya12 + ∂za13
∂xa21 + ∂ya22 + ∂za23
∂xa31 + ∂ya32 + ∂za33


 .

The product rule yields
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�

ω

�
∂tρv + ρ∂tv + vvT∇ρ+ ρ(∇ · v)v + ρ(v ·∇)v

�
(t,x) dx

=

�

ω

fnet(t,x) dx. (1.6)

In the usual notation (v ·∇)v, one can think of v ·∇ = v1∂x + v2∂y + v3∂z
acting on each component of v. In the literature, one often finds the notation
v ·∇v.

In the case of incompressible fluids, i.e., ρ is constant, it is known that
∇ · v = 0, see (1.4), such that (1.6) simplifies to

�

ω

ρ (∂tv + (v ·∇)v) (t,x) dx =

�

ω

fnet(t,x) dx.

Since ω was chosen to be arbitrary, one gets the conservation law

ρ (∂tv + (v ·∇)v) = fnet ∀ t ∈ (0, T ], x ∈ Ω.

The same conservation law can be derived for a time-dependent volume
ω(t) using the Reynolds transport theorem (1.3). ✷

Remark 1.7. The Navier–Stokes equations. The modeling of the net forces
shall be only sketched here. In short, there might be external forces f ext

acting on the fluid and there are internal forces, i.e., forces that exerts the fluid
on itself. The latter forces lead, via the so-called stress principle of Cauchy,
to the inclusion of the pressure P [Pa] into the equation and a viscous stress
tensor with viscosity µ [kg/(m s)]. For a detailed derivation, it is referred to
(John, 2016, Chapter 1.2).

If the fluid is incompressible and homogeneous, such that µ and ρ are
positive constants, the Navier–Stokes equations read as follows:

∂tv − 2ν∇ · D (v) + (v ·∇)v +∇P

ρ
=

f ext

ρ
in (0, T ]×Ω,

∇ · v = 0 in (0, T ]×Ω.

(1.7)

Here, ν = µ/ρ [m
2
/s] is the kinematic viscosity of the fluid and D (v) is

the symmetric part of the velocity gradient, the so-called velocity rate-of-
deformation tensor or shortly velocity deformation tensor

D (v) =
∇v + (∇v)

T

2
[1/s].

The gradient of the velocity is a tensor with the components

(∇v)ij = ∂jvi =
∂vi
∂xj

, i, j = 1, 2, 3.

✷
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1.3 The Dimensionless Navier–Stokes Equations

Remark 1.8. Characteristic scales. Mathematical analysis and numerical sim-
ulations are based on dimensionless equations. To derive dimensionless equa-
tions from system (1.7), the quantities

• L [m] – a characteristic length scale of the flow problem,
• U [m/s] – a characteristic velocity scale of the flow problem,
• T ∗ [s] – a characteristic time scale of the flow problem,

are introduced. ✷

Remark 1.9. The Navier–Stokes equations in dimensionless form. Denote by
(t�,x�) [s,m] the old variables. Applying the transform of variables

x =
x�

L
, u =

v

U
, t =

t�

T ∗ , (1.8)

one obtains from (1.7) and a rescaling

L

UT ∗ ∂tu− 2ν

UL
∇ · D (u) + (u ·∇)u+∇ P

ρU2
=

L

ρU2
f ext in (0, T ]×Ω,

∇ · u = 0 in (0, T ]×Ω,

where all derivatives are with respect to the new variables. Without having
emphasized this issue in the notation, also the domain and the time interval
are now dimensionless. Defining

p =
P

ρU2
, Re =

UL

ν
, St =

L

UT ∗ , f =
L

ρU2
f ext, (1.9)

the incompressible Navier–Stokes equations in dimensionless form

St∂tu− 2

Re
∇ · D (u) + (u ·∇)u+∇p = f in (0, T ]×Ω,

∇ · u = 0 in (0, T ]×Ω,
(1.10)

are obtained. The constant Re is called Reynolds number and the constant
St Strouhal number. These numbers allow the classification and comparison
of different flows. ✷

Remark 1.10. Inherent difficulties of the dimensionless Navier–Stokes equa-
tions. To simplify the notations, one uses the characteristic time scale
T ∗ = L/U such that (1.10) simplifies to

∂tu− 2ν∇ · D (u) + (u ·∇)u+∇p = f in (0, T ]×Ω,

∇ · u = 0 in (0, T ]×Ω,
(1.11)

with the dimensionless viscosity ν = Re−1. Here, with an abuse of notation,
the same symbol is used as for the kinematic viscosity.
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This transform and the resulting equations (1.11) are the basic equations
for the mathematical analysis of the incompressible Navier–Stokes equations
and the numerical simulation of incompressible flows. System (1.11) com-
prises two important difficulties:

• the coupling of velocity and pressure,
• the nonlinearity of the convective term.

Additionally, difficulties for the numerical simulation occur if

• the convective term dominates the viscous term, i.e., if ν is small.

✷

Remark 1.11. Different form of the viscous term. With the help of the diver-
gence constraint, i.e., the second equation in (1.11), the viscous term of the
Navier–Stokes equations can be reformulated equivalently.

Assume that u is sufficiently smooth with ∇ ·u = 0. Then, straightforward
calculations, using the Theorem of Schwarz and the second equation of (1.11),
give

∇ · (∇u) = Δu, ∇ ·
�
∇uT

�
= ∇ (∇ · u) =



∂x (∇ · u)
∂y (∇ · u)
∂z (∇ · u)


 = 0. (1.12)

Thus, the viscous term becomes

− 2ν∇ · D (u) = −νΔu. (1.13)

✷

Remark 1.12. Special cases of incompressible flow models.

• In a stationary flow, the velocity and the pressure do not change in time.
Hence ∂tu = 0 and these flows are modeled by the so-called stationary or
steady-state Navier–Stokes equations

−νΔu+ (u ·∇)u+∇p = f in Ω,

∇ · u = 0 in Ω.
(1.14)

A necessary condition for the time-independence of a flow field is that the
data of the problem, i.e., the right-hand side and the boundary conditions,
are time-independent. But this condition is not sufficient.

• If in a stationary flow the viscous transport dominates the convective
transport, i.e., if the fluid moves very slowly, the nonlinear convective term
of the Navier–Stokes equations (1.14) can be neglected. This situation
leads to a linear system of equations, the so-called Stokes equations

−νΔu+∇p = f in Ω,

∇ · u = 0 in Ω.
(1.15)
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Finite element methods for the Stokes equations will be the topic of this
course. In order to define a well-posed problem, (1.15) has to be equipped
with appropriate boundary conditions. For simplicity, in this course al-
ways homogeneous Dirichlet boundary conditions are considered:

u = 0 on Γ, (1.16)

where Γ is the boundary of Ω.

✷


