
72 5 Discrete Maximum Principles

Proof. From v = A−1Av, one gets, because v > 0,

0 < vi = ainvi1 (Av)1 + · · ·+ ainvin (Av)n.

Since all terms are non-negative, one obtains for all i = 1, . . . , n,

vi ≥
�
ainvi1 + . . .+ ainvin

�
min

j=1,...,n
(Av)j ,

such that

�v�∞ = max
i=1,...,n

vi ≥ max
i=1,...,n

�
ainvi1 + . . .+ ainvin

�
min

j=1,...,n
(Av)j

=
��A−1

��
∞ min

j=1,...,n
(Av)j .

This inequality is just the statement of the lemma because Av > 0. �

Remark 5.23 (Constructing a majorizing element). Let A be a an M-matrix
that represents a discretization of a linear differential operator L. The follow-
ing approach is often successful for the construction of a majorizing element.

• Find a function v(x) > 0 such that (Lv)(x) > 0 for x ∈ Ω. This function
is a majorizing element of L.

• Interpolate v(x) with a corresponding discrete function vh(x), which is
represented by a vector v. For finite difference methods, one takes usually
the values of v(x) in the nodes. In finite element methods, v depends on
the chosen basis. Using for continuous Lagrangian finite elements a local
basis, then the Lagrangian interpolation operator can be used, which also
takes the values at the positions of the degrees of freedom.

If the first step of this approach is possible and if the discretization of L is
consistent, then this approach generally works, at least if the mesh width is
sufficiently small. ✷



Chapter 6

Satisfaction of the DMP for a Finite
Element Discretization of the Poisson
Problem

In this chapter, necessary and sufficient conditions for the satisfaction of the
DMP for a finite element discretization of the Poisson problem with P1 finite
elements will be discussed. The proofs of the DMP will consist of checking
the hypotheses of Theorem 5.3.

Consider the Poisson problem

−Δu = f in Ω,
u = uD on ∂Ω,

(6.1)

A weak formulation is derived as presented in Section 1.3 and Theorem 1.11
shows the existence and uniquness of a weak solution. Then, a finite element
discretization on a simplicial grid Th with P1 finite elements is applied, leading
to an algebraic system of form (5.1)-(5.2). The entries of the system matrix
are given by

aij = (∇φj ,∇φi) , i = 1, . . . ,m, j = 1, . . . .n, (6.2)

where {φi}ni=1 are the standard basis functions (hat functions).
The analysis requires a formula for the entries (6.2) of A. To this end, a

formula relating the gradient of the barycentric coordinates and the normal
outward vector to the mesh cell K is utilized. Since the basis function φi|K
vanishes on the facet FK

i ⊂ ∂K, its derivative in any direction tangent to
FK
i vanishes. Hence, ∇φi|K is proportional to the unit normal nK

i . Consider
the height vector hi from FK

i to xi. This vector is parallel to nK
i , pointing in

the opposite direction, and the derivative of φi|K in the direction of hi is the
constant 1/|hi|. Altogether, using the formula for the volume of the simplex
K leads to

∇φi|K = − 1

|hi|
nK

i = − |FK
i |

d|K|n
K
i .

So, the local matrix entry is given by
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aKij = (∇φj ,∇φi)K = |K|
|FK

j | |FK
i |

d2|K|2 nK
j · nK

i = −
|FK

j | |FK
i |

d2|K| cos θKE . (6.3)

Here, θKE is the angle formed by FK
i and FK

j , or, more precisely, θKE is the
dihedral angle given by

cos θKE = −nK
i · nK

j .

A careful inspection of the statements of the results from Section 5.1.1
reveals that one only needs to show properties for the first m rows of the
coefficient matrix of the system (5.1)-(5.2), that is, one only needs to worry
about the equations associated to nodes interior to Ω. This observation mo-
tivates to define, for a matrix A ∈ Rn×n, the matrix (A)m ∈ Rm×n as the
matrix containing only the first m rows of A. In fact, showing that (A)m is
of non-negative type is what is needed to use Theorems 5.3 and 5.5 due to
the expression (5.3) for the matrix associated to the sytem (5.1)-(5.2).

The statement given next was proved in (Xu & Zikatanov, 1999, Lemma 2.1).
It presents a necessary and sufficient condition on the mesh to guarantee the
satisfaction of the DMP.

Theorem 6.1 (Sufficient and necessary condition for (A)m to be
of non-negative type, Xu & Zikatanov (1999)). The matrix (A)m is
of non-negative type if and only if the mesh Th satisfies so-called the XZ-
criterion �

K⊂ωE

|κK
E | cot θKE ≥ 0, (6.4)

where for each edge E, it is

ωE = ∪{K ∈ Th : E ⊂ K}

and

��κK
E

�� =
�
1 if d = 2,��FK

i ∩ FK
j

�� if d = 3, i.e., the length of the edge.
(6.5)

In addition, (A)m satisfies (5.13).

Proof. Let xi,xj be two different nodes contained in the same mesh cell
K ∈ Th, and let us assume that i ∈ {1, . . . ,M}. We recall the following
formulas for the volume of a simplex

|K| =
|FK

i ||FK
j |

2
sin θKEij

if d = 2, |K| =
2|FK

i ||FK
j |

3|κK
Eij

| sin θKEij
if d = 3 .

Inserting them in (6.3), and using (6.5) gives

aKij = − 1

d(d− 1)
|κK

Eij
| cot θKEij

. (6.6)
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Thus, for i ∈ {1, . . . , N} and j ∈ Si,

aij =
�

K⊂ωEij

aKij = −
�

K⊂ωEij

|κK
Eij

| cot θKEij

d(d− 1)
, (6.7)

and then (5.5) is satisfied if and only if (6.4) holds. Finally, since the basis
functions form a partition of unity, one has

N�

j=1

aij =
N�

j=1

(∇φj ,∇φi) = (∇1,∇φi) = 0 . (6.8)

So, (5.13) is satisfied, and in particular (5.6). �

In Drăgănescu et al. (2005); Brandts et al. (2009), counterexamples are
constructed showing that for meshes that violate the XZ-criterion the local
DMP may not hold, thus confirming the optimality of the XZ-criterion. On
the other hand, the condition on the matrix A being of non-negative type is
not necessary for the validity of a global DMP, as examples in Ciarlet (1970);
Korotov et al. (2001) show.

Remark 6.2 (XZ-criterion and Delaunay triangulations.). On can show that
in two dimensions, the XZ-criterion (6.4) is equivalent to a Delaunay triangu-
lation, e.g., see Xu & Zikatanov (1999). In three dimensions, the XZ-criterion
is a little bit more general. ✷


