
Chapter 6

Satisfaction of DMPs for a Finite
Element Discretization of the Poisson
Problem

In this chapter, necessary and sufficient conditions for the satisfaction of
DMPs for a finite element discretization of the Poisson problem with P1

finite elements will be discussed. The proofs of the DMP consists of checking
the hypotheses of Theorem 5.3 and 5.5.

Consider the Poisson problem

−Δu = f in Ω,
u = uD on ∂Ω.

(6.1)

A weak formulation is derived as presented in Section 1.3 and Theorem 1.11
shows the existence and uniqueness of a weak solution. Then, a finite element
discretization on a simplicial grid Th with P1 finite elements is applied, leading
to an algebraic system of form (5.1)-(5.2). The entries of the system matrix
are given by

aij = (∇φj ,∇φi) , i = 1, . . . ,m, j = 1, . . . .n, (6.2)

where {φi}ni=1 are the standard basis functions (hat functions).
The analysis requires a formula for the entries (6.2) of A. To this end, a

formula relating the gradient of the basic functions and the normal outward
vector to the mesh cell K is utilized. Since the basis function φi|K vanishes on
the facet FK

i ⊂ ∂K, its derivative in any direction tangent to FK
i vanishes.

Hence, ∇φi|K is proportional to the unit normal nK
i . Consider the height

vector hi from FK
i to xi, compare Figure 6.1. This vector is parallel to nK

i ,
pointing in the opposite direction, and the derivative of φi|K in the direction
of hi is the constant 1/ �hi�2. Altogether, using the formula for the volume
of the simplex K leads to

∇φi|K = − 1

�hi�2
nK

i = − |FK
i |

d|K|n
K
i . (6.3)

So, the local matrix entry is given by
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Fig. 6.1 Illustration for the derivation of (6.3).

aKij = (∇φj ,∇φi)K = |K|
|FK

j | |FK
i |

d2|K|2 nK
j · nK

i = −
|FK

j | |FK
i |

d2|K| cos θKE . (6.4)

Here, θKE is the angle formed by FK
i and FK

j , or, more precisely, θKE is the
dihedral angle given by

cos θKE = −nK
i · nK

j .

A careful inspection of the statements of the results from Section 5.1.1
reveals that one only needs to show properties for the first m rows of the
coefficient matrix of the system (5.1)-(5.2), that is, one only needs to worry
about the equations associated to nodes interior to Ω. This observation mo-
tivates to define, for a matrix A ∈ Rn×n, the matrix (A)m ∈ Rm×n as the
matrix containing only the first m rows of A. In fact, showing that (A)m is
of non-negative type is what is needed to use Theorems 5.3 and 5.5 due to
the expression (5.3) for the matrix associated to the system (5.1)-(5.2).

The statement given next was proved in (Xu & Zikatanov, 1999, Lemma 2.1).
It presents a necessary and sufficient condition on the mesh to guarantee the
satisfaction of the DMP.

Theorem 6.1 (Sufficient and necessary condition for (A)m to be
of non-negative type, Xu & Zikatanov (1999)). The matrix (A)m is
of non-negative type if and only if the mesh Th satisfies so-called the XZ-
criterion: for every edge that is not contained on the boundary of Ω, it holds

�

K⊂ωE

��κK
E

�� cot θKE ≥ 0, (6.5)
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where for each edge E, it is

ωE = ∪{K ∈ Th : E ⊂ K},

E = FK
i ∩ FK

j , where FK
i and FK

j are facets of K with i �= j, and

��κK
E

�� =
�
1 if d = 2,��FK

i ∩ FK
j

�� if d = 3, i.e., the length of the edge.
(6.6)

In addition, (A)m satisfies (5.13).

Proof. Let xi,xj be two different nodes contained in the same mesh cell
K ∈ Th, let E be the connecting edge, and assume that i ∈ {1, . . . ,m}.
Recall the following formulas for the volume of a simplex

|K| =
|FK

i ||FK
j |

2
sin θKE if d = 2, |K| =

2|FK
i ||FK

j |
3
��κK

E

�� sin θKE if d = 3 .

Inserting them in (6.4), and using (6.6) gives

aKij = − 1

d(d− 1)

��κK
E

�� cot θKE . (6.7)

Thus, it is

aij =
�

K⊂ωE

aKij = −
�

K⊂ωE

|κK
E | cot θKE
d(d− 1)

, (6.8)

and then (5.5) is satisfied if and only if (6.5) holds. Finally, since the basis
functions form a partition of unity, one has

N�

j=1

aij =

N�

j=1

(∇φj ,∇φi) = (∇1,∇φi) = 0 . (6.9)

So, (5.13) is satisfied, and in particular (5.6). �

In Drăgănescu et al. (2005); Brandts et al. (2009), counterexamples are
constructed showing that for meshes that violate the XZ-criterion the local
DMP may not hold, thus confirming the optimality of the XZ-criterion. On
the other hand, the condition on the matrix A being of non-negative type is
not necessary for the validity, see Example 5.14.

Remark 6.2 (XZ-criterion). One can show that in two dimensions, the XZ-
criterion (6.5) is equivalent to a Delaunay triangulation, e.g., see Xu &
Zikatanov (1999). In two and three dimensions, so-called non-obtuse trian-
gulations, i.e., triangulations where all dihedral angles θKE ≤ π/2, satisfy the
XZ-criterion. ✷
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Remark 6.3 (Convection-diffusion-reaction equations). The construction of
finite element discretizations for the convection-diffusion-reaction equation
(2.3) that are on the one hand sufficiently accurate and on the other hand
satisfy DMPs is quite complicated. There are only few such methods. All off
them are nonlinear, i.e., there is a stabilization term where the parameter
depends on the concrete numerical solution. In particular, such methods ap-
plying different strategies in a vicinity of layers and away from layers. The
numerical analysis of those methods is an active topic of research. For some
ideas concerning the construction of such methods and the corresponding
analysis, it is referred to Barrenechea et al. (2018). ✷


