
Chapter 5

Discrete Maximum Principles

A discretization of convection-diffusion-reaction equations should provide a
numerical solution that is in some sense a good approximation of the ana-
lytic solution. In numerical analysis, the quality of approximation is usually
measured in norms of function spaces. However, from the practical point of
view, it is often of utmost importance that the numerical solution is physi-
cally consistent, i.e., that it possesses some basic physical properties that are
valid in the same form for the solution of the continuous problem.

A very important property that should be reflected correctly by a numer-
ical solution is the range of admissible physical values. From the mathemat-
ical point of view, this requirement can be formulated by the satisfaction of
discrete maximum principles (DMPs). This chapter introduces DMPs for lin-
ear discretizations of the steady-state convection-diffusion-reaction problem
(1.27).

5.1 Linear Discrete Problems

Since the convection-diffusion-reaction problem is a linear problem, it seems
to be natural that a discretization of (1.27) leads also to a linear problem,
i.e., to a linear system of equations. This section introduces two approaches
for studying DMPs for linear systems.

In Section 5.1.1, an approach based on the concept of matrices of non-
negative type will be presented. This concept allows the formulation of suf-
ficient conditions on the matrix of the linear system for the satisfaction of
local and global DMPs.

The traditional approach for the study of global DMPs, which is based on
the concept of monotone matrices, is the contents of Section 5.1.2. A special
class of such matrices are M-matrices, which are a popular tool in the analysis
of discretizations concerning the satisfaction of global DMPs. Section 5.1.3
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60 5 Discrete Maximum Principles

contains a brief survey on this class of matrices, which, in particular, intro-
duces all statements that were already used in the previous chapters.

The algebraic representation of a linear discretization of (1.27) is a linear
system of equations. Consider a m× n matrix, 0 < m < n, with entries aij ,
i = 1, . . . ,m, j = 1, . . . , n, given vectors g ∈ Rm and ub ∈ Rn−m with entries

g1, . . . , gm and ub
m+1, . . . , u

b
n, respectively, then this system is of the form

n�

j=1

aij uj = gi , i = 1, . . . ,m , (5.1)

ui = ub
i , i = m+ 1, . . . , n . (5.2)

In matrix-vector notation, this system can be written in the form

Au =

�
Ai Ab

0 I

��
ui

ub

�
=

�
g
ub

�
, (5.3)

with A ∈ Rn×n, Ai ∈ Rm×m, Ab ∈ Rm×(n−m), I being the identity matrix of
dimension (n−m)× (n−m), and ui ∈ Rm.

Lemma 5.1 (Non-singularity of A and Ai). The matrix A is non-singular
if and only if the matrix Ai is non-singular.

Proof. If the matrix A is non-singular, then its inverse is given by

A−1 =

��
Ai

�−1 −
�
Ai

�−1
Ab

0 I

�
. (5.4)

The statement of the lemma follows now directly from this representation. �

Some notations will be introduced now. Let v, w ∈ Rn. Then, one writes
v ≤ w (or v < w) if and only if vi ≤ wi (or vi < wi) for all i = 1, . . . , n.
Analogously, the notation A ≥ 0 (or A > 0) means for a matrix A = (aij) ∈
Rn×n that aij ≥ 0 (or aij > 0 ) for all i, j = 1, . . . , n. A vector consisting only
of zeros is denoted by 0 and a vector consisting only of ones by 1. If it becomes
necessary for clarifying the presentation, the dimension of these vectors will
be indicated by subscripts. The i-th Cartesian unit vector is denoted by ei.
Let α ∈ R, then its positive part α+ and negative part α− are defined as
follows

α+ := max{α, 0} ≥ 0 and α− := min{α, 0} ≤ 0.
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5.1.1 Local and Global DMPs Based on the Concept of
Minkowski Matrices or Matrices of
Non-Negative Type

This section presents general conditions for the satisfaction of local and global
DMPs. The underlying theory is based on the concept of matrices of non-
negative type. It turns out that the corresponding analysis utilizes quite
elementary tools.

Definition 5.2 (Minkowski matrix, Ostrowski (1937), Matrix of non-
negative type, Ciarlet & Raviart (1973)). A matrix A = (aij)

i=1,...,m
j=1,...,n is

said to be a Minkowski matrix or a matrix of non-negative type if it satisfies
the conditions

aij ≤ 0 ∀ i �= j, i = 1, . . . ,m, j = 1, . . . , n , (5.5)
n�

j=1

aij ≥ 0 ∀ i = 1, . . . ,m. (5.6)

The notion of a matrix of non-negative type must not be confused with
the notion of a non-negative matrix as it is studied, e.g., in (Varga, 2000,
Chapter 2).

Theorem 5.3 (Local DMPs). Consider a matrix A = (aij)
i=1,...,m
j=1,...,n with

0 < m < n. Then, the local DMPs

n�

j=1

aij uj ≤ 0 =⇒ ui ≤ max
j �=i, aij �=0

u+
j , (5.7)

n�

j=1

aij uj ≥ 0 =⇒ ui ≥ min
j �=i, aij �=0

u−
j (5.8)

hold for any i ∈ {1, . . . ,m} and any u1, . . . , un ∈ R if and only if A is a
matrix of non-negative type with

aii > 0 ∀ i = 1, . . . ,m . (5.9)

Proof. Since the statements (5.7) and (5.8) are equivalent, because they imply
each other by replacing uj with −uj , it suffices to consider (5.7).

i). (5.7) =⇒ (5.5), (5.6), (5.9). Assume that at least one of the conditions
(5.5), (5.6), and (5.9) is not valid. Then, a counterexample to the validity of
(5.7) will be constructed.

If (5.9) does not hold, i.e., if aii ≤ 0 for some i ∈ {1, . . . ,m}, set ui = 1
and uj = 0 for j �= i. It follows that



62 5 Discrete Maximum Principles

n�

j=1

aij uj = aii ui ≤ 0 and ui > 0 = max
j �=i, aij �=0

u+
j ,

so that (5.7) is not satisfied. Therefore, (5.9) will be assumed to be valid for
the rest of the proof.

If (5.5) does not hold, i.e., if aik > 0 for some i ∈ {1, . . . ,m} and k ∈
{1, . . . , n}, k �= i, then set

ui = 1 , uk = − aii
aik

, uj = 0 ∀ j ∈ {1, . . . , n} \ {i, k}.

Then, it is uk < 0 and hence max{u+
j ; j �= i, aij �= 0} = 0 < ui whereas�n

j=1 aij uj = aii ui + aik uk = 0, so that (5.7) does not hold.

If (5.6) is not valid, i.e., if
�n

j=1 aij < 0 for some i ∈ {1, . . . ,m}, then set

ui = 1− 1

aii

n�

j=1

aij > 1 , uj = 1 ∀ j ∈ {1, . . . , n} \ {i}.

Then, max{u+
j ; j �= i, aij �= 0} = 1 < ui, whereas

�n
j=1 aij uj =

�n
j=1 aij−�n

j=1 aij = 0. One finds again that (5.7) does not hold.
In summary, this proves that the validity of (5.7) for any i ∈ {1, . . . ,m}

and any u1, . . . , un ∈ R implies (5.5), (5.6), and (5.9).
ii). (5.5), (5.6), (5.9) =⇒ (5.7). Assume that (5.5), (5.6), and (5.9) are

satisfied. Consider any i ∈ {1, . . . ,m} and any u1, . . . , un ∈ R such that�n
j=1 aij uj ≤ 0. Setting

r := max
j �=i, aij �=0

u+
j ,

one has with the assumption of (5.7), (5.5), and (5.6),

aii ui ≤
n�

j = 1
j �= i

(−aij)uj =

n�

j = 1
j �= i

(−aij) (uj − r) +

n�

j = 1
j �= i

(−aij) r

≤ r
n�

j = 1
j �= i

(−aij) ≤ r aii , (5.10)

which implies, because of (5.9), that ui ≤ r. �

If a stronger assumption than (5.6) is satisfied, namely that all row sums
vanish, a stronger form of the local DMPs can be proved.

Theorem 5.4 (Local DMPs). Consider a matrix A = (aij)
i=1,...,m
j=1,...,n of non-

negative type with 0 < m < n. Then the local DMPs
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n�

j=1

aij uj ≤ 0 =⇒ ui ≤ max
j �=i, aij �=0

uj , (5.11)

n�

j=1

aij uj ≥ 0 =⇒ ui ≥ min
j �=i, aij �=0

uj (5.12)

hold for any i ∈ {1, . . . ,m} and any u1, . . . , un ∈ R if and only if the condi-
tions (5.9), (5.5), and

n�

j=1

aij = 0 ∀ i = 1, . . . ,m (5.13)

are satisfied.

Proof. exercise problem �

Theorem 5.5 (Global DMPs). Consider a matrix A = (aij)
i=1,...,m
j=1,...,n with

0 < m < n satisfying conditions (5.5) and (5.6) and let the matrix Ai =
(aij)

m
i,j=1 be non-singular. Then, for any u1, . . . , un ∈ R, there hold the global

DMPs

n�

j=1

aij uj ≤ 0, i = 1, . . . ,m =⇒ max
i=1,...,n

ui ≤ max
i=m+1,...,n

u+
i , (5.14)

n�

j=1

aij uj ≥ 0, i = 1, . . . ,m =⇒ min
i=1,...,n

ui ≥ min
i=m+1,...,n

u−
i . (5.15)

If, in addition, condition (5.13) is satisfied, then

n�

j=1

aij uj ≤ 0, i = 1, . . . ,m =⇒ max
i=1,...,n

ui = max
i=m+1,...,n

ui , (5.16)

n�

j=1

aij uj ≥ 0, i = 1, . . . ,m =⇒ min
i=1,...,n

ui = min
i=m+1,...,n

ui . (5.17)

Proof. For interested students only, not presented in the class.
Again, it suffices to prove (5.14) and (5.16), so that one can assume that

n�

j=1

aij uj ≤ 0 , i = 1, . . . ,m . (5.18)

Consider (5.14) and let

s = max
i=1,...,n

ui and J = {i ∈ {1, . . . , n} : ui = s} . (5.19)
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It can be assumed that s > 0 since otherwise (5.14) trivially holds. Thus, let
s > 0 and assume that J ⊂ {1, . . . ,m}. As first step, it is proved that

∃k ∈ J such that µk :=
�

j∈J

akj > 0 . (5.20)

The proof is performed by contradiction, showing that in case (5.20) is not
valid, the matrix Ai is singular. Thus, assume that (5.20) does not hold.
Combining (5.5) and (5.6) yields

�

j∈J

aij = 0 ∀ i ∈ J ,

such that the matrix (aij)i,j∈J is singular because the sum of its columns
is zero. Consequently, also its transposed (aji)i,j∈J is singular. Hence, there
exist vi, i ∈ J , not all zero, such that

�

i∈J

aijvi = 0 ∀ j ∈ J . (5.21)

Using that A is a matrix of non-negative type, one concludes that aij = 0 for
all i ∈ J and all j �∈ J . With this property, (5.21), and the vector ṽ = (ṽi)

M
i=1,

where ṽi = vi if i ∈ J , and ṽi = 0 otherwise, one finds that

M�

i=1

aij ṽi =
�

i∈J

aijvi = 0 ∀ j ∈ {1, . . . ,m}.

This result implies that Ai is singular, which contradicts the hypothesis.
Consequently, (5.20) holds.

Defining
r := max

i�∈J
ui ,

and utilizing (5.14), (5.5), and (5.6) leads to

sµk =
�

j∈J

akjuj = fk −
�

j �∈J

akjuj ≤ −
�

j �∈J

akjuj =
�

j �∈J

(−akj)uj

≤ r
�

j �∈J

(−akj) = r




N�

j=1

(−akj) +
�

j∈J

akj


 ≤ rµk ,

which implies that s ≤ r. Since this is a contradiction to the definition of s,
it it can be inferred that J ∩ {m+ 1, . . . , n} �= ∅, such that (5.14) follows.

The proof of (5.16) is performed analogously. If (5.13) is satisfied, one can
also assume that s > 0, since (5.18) still holds if one adds a constant to all
components of the vector (u1, . . . , un)

T . With the same argument, one can
define r by the values of the function itself instead of their positive part. �
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Fig. 5.1 Illustration to Remark 5.7.

Remark 5.6 (On Theorem 5.5).

• Note that if a matrix (aij)
i=1,...,m
j=1,...,n with 0 < m < n satisfies conditions

(5.5) and (5.6) and, at the same time, akk ≤ 0 for some k ∈ {1, . . . ,m},
then the kth row of this matrix vanishes and hence the matrix (aij)

m
i,j=1

is singular. Therefore, the assumptions of Theorem 5.5 imply the validity
of (5.9).

• It will be stated below, Remark 5.21, that the matrix Ai from Theorem 5.5
is an M-matrix. Since M-matrices are a special class of monotone matri-
ces, see Section 5.1.3, it turns out that the statement of Theorem 5.5,
namely (5.14) and (5.15), is a special case of the statement given below
in Theorem 5.13.

✷

Remark 5.7 (Local DMPs do not imply global DMPs). Global DMPs do not
follow from local DMPs, e.g., the validity of the right-hand sides of (5.11)
does not imply the validity of the right-hand side of (5.16). This fact can
be seen from the example depicted in Figure 5.1 where a mesh consisting of
4×4 vertices is shown. Assume that the values at interior vertices x1, . . . ,x4

(denoted by black circles) are equal to 1 whereas the values at boundary
vertices x5, . . . ,x16 (denoted by white circles) are equal to 0. Typically, for
each interior vertex xi, there is another interior vertex xj such that aij �= 0.
Then, the right-hand sides of (5.7) and (5.11) hold for all interior vertices
whereas the right-hand sides of (5.14) and (5.16) are not satisfied. ✷

5.1.2 Global DMPs Based on the Concept of
Monotone Matrices

The concept of monotone matrices is a popular tool for investigating global
DMPs. This section introduces the class of monotone matrices and states
sufficient and necessary criteria for the satisfaction of global DMPs. An im-
portant subset of monotone matrices are M-matrices, which will be discussed
in some detail in Section 5.1.3.
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Definition 5.8 (Monotone matrix). A square matrix A is called mono-
tone or inverse-monotone or inverse-positive if A is non-singular and A−1 ≥ 0.

✷

The notion ‘monotone matrix’, which will be used in this course, comes
from the following equivalent characterization.

Lemma 5.9 (Equivalent characterization of a monotone matrix). A
matrix A ∈ Rn×n is monotone if and only if

Av ≥ 0 =⇒ v ≥ 0 ∀ v ∈ Rn. (5.22)

Proof. exercise problem. �

Lemma 5.10 (Discrete comparison principle). Let A ∈ Rn×n be a
monotone matrix. If Av ≤ Aw for v, w ∈ Rn, then it follows that v ≤ w.

Proof. exercise problem. �

Lemma 5.11 (Product of two monotone matrices). The product of two
monotone matrices is a monotone matrix.

Proof. exercise problem. �

Theorem 5.12 (Sufficient and necessary conditions for the satisfac-
tion of a global DMP, Ciarlet (1970)). Let A ∈ Rn×n be given with the
block structure (5.3) and let u ∈ Rn with u = (ui, ub)T , ui ∈ Rm, ub ∈ Rn−m.
Then, the global DMP

Aiui +Abub ≤ 0 =⇒ max
i=1,...,m

ui ≤ max
i=m+1,...,n

u+
i (5.23)

holds if and only if the following two conditions are satisfied:

1) A is monotone,

2) −
�
Ai

�−1
Ab1n−m ≤ 1m, i.e., the row sums of −

�
Ai

�−1
Ab, which is the

right upper block of A−1, see (5.4), are smaller than 1.

Proof. The proof follows Ciarlet (1970).
i) Assume that A satisfies the global DMP, show conditions 1) and 2).

These conditions will be derived by considering problem (5.3) with special
right-hand sides.

Condition 1) will be shown. The first step consists in proving that A is
non-singular. From Lemma 5.1 it is known that this statement is equivalent
to the statement that Ai is non-singular. Let ui ∈ Rm such that Aiui = 0.

Consider the vector u =
�
ui, 0

�T ∈ Rn. Using the decomposition of A, one
finds that Au = 0 ∈ Rn. Since the global DMP is assumed to hold, it follows
that ui ≤ 0. The same reasoning applied to −ui leads to the the conclusion
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that −ui ≤ 0. In summary, it is ui = 0, which proves the non-singularity of
Ai.

In the next step, A−1 ≥ 0 will be proved, which will be done for both
upper blocks in (5.4) individually.

Consider problem (5.3) with the right-hand side g
j
= (0, . . . , 0,−1, 0, . . . , 0)

T
,

j = 1, . . . ,m, where the non-zero entry is in the j-th component, and ub = 0.
Using the representation (5.4) of the inverse matrix, one finds that the unique

solution of this problem is −
�
ainv1j , . . . , ainvmj , 0, . . . , 0

�T
. By the global DMP,

it follows that −ainvij ≤ 0, or ainvij ≥ 0, for all i, j = 1, . . . ,m, which proves

that
�
Ai

�−1 ≥ 0.

Consider next (5.3) with g = 0 and ub = (0, . . . , 0,−1, 0, . . . , 0)
T
, j =

1, . . . , n−m. Similarly as in the previous step, one calculates that the unique

solution of this problem is −
�
0, . . . , 0, ainvm+1,j , . . . , a

inv
nj

�T
. With the global

DMP, it can be concluded that −
�
Ai

�−1
Ab ≥ 0. This step finishes the proof

of condition 1).
The final part of this direction of the proof consists in showing condition 2).

To this end, consider (5.3) with g = 0 and ub = 1. Applying the inverse matrix

(5.4) yields for the unique solution that u =
�
−
�
Ai

�−1
Ab1n−m, 1n−m

�T

.

From the satisfaction of the DMP, it follows that
�
−
�
Ai

�−1
Ab1n−m

�
i
≤ 1

for all i = 1, . . . ,m, which proves condition 2).
ii). Assume conditions 1) and 2) to hold, show the satisfaction of the global

DMP. From condition 1), it follows that A is non-singular. Hence, the identity

ui =
�
Ai

�−1 �
Aiui +Abub

�
−
�
Ai

�−1
Abub

is valid for any u =
�
ui, ub

�T ∈ Rn. Writing this identity component by
component and using the form of the right upper block of the inverse of A
given in (5.4) yields

ui =
m�

j=1

ainvij

�
Aiui +Abub

�
j
+

n−m�

j=1

ainvi,j+m

�
ub

�
j
, i = 1, . . . ,m. (5.24)

Consider a vector that satisfies the assumption of the DMP, i.e, that satis-
fies the left-hand side of (5.23). Then, the corresponding factor in the first
sum is non-positive. By condition 1), all coefficients ainvij are non-negative.
Consequently, the first sum is non-positive.

If maxj=1,...,n−m

�
ub

�
j
≤ 0, then also the second sum in (5.24) is non-

positive and ui ≤ 0, consequently the right-hand side of (5.23) is satisfied.
In the case maxj=1,...,n−m

�
ub

�
j
> 0, condition 2) has to be used, which

states
�n−m

j=1 ainvi,j+m ≤ 1. Hence, one obtains from (5.24)
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ui ≤
n−m�

j=1

ainvi,j+m

�
ub

�
j
≤ max

j=1,...,n−m

�
ub

�
j

n−m�

j=1

ainvi,j+m ≤ max
j=1,...,n−m

�
ub

�
j
.

Also in this case, the right-hand side of (5.23) is satisfied. �

Both conditions of Theorem 5.12 are based on the inverse of
�
Ai

�
, which

is usually not available in practice. Consequently, these conditions cannot be
checked. From the practical point of view, sufficient conditions are needed
that can be used more easily to decide whether a discretization satisfies the
DMP.

Theorem 5.13 (Sufficient condition for the satisfaction of the global
DMP). Let condition 1) of Theorem 5.12 be satisfied and let

n�

j=1

aij ≥ 0, 1 ≤ i ≤ m, (5.25)

then the matrix A satisfies the global DMP (5.23).

Proof. Consider the vector u =
�
ui, ub

�
= 1. From (5.25), one gets

Aiui +Abub =
n�

j=1

aij ≥ 0. (5.26)

By condition 1) from Theorem 5.12, it is known that Ai is invertible and the
entries of its inverse are non-negative. Applying the inverse of this matrix
from the left to (5.26) will not change the relation and one obtains

1m +
�
Ai

�−1
Ab1n−m ≥ 0,

which is exactly condition 2) of Theorem 5.12. Hence, both conditions of
Theorem 5.12 are fulfilled, such that A satisfies the global DMP. �

The conditions of Theorem 5.13 are not necessary for a matrix to fulfil the
global DMPs.

Example 5.14 (An operator fulfilling the global DMPs that does not satisfy
(5.25), Ciarlet (1970)). Consider the matrix

A =



−1 2 0
2 −3 0
0 0 1


 ,

where m = 2, n = 3. Obviously, (5.25) is not satisfied. A direct calculation
gives
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A−1 =



3 2 0
2 1 0
0 0 1


 ,

such that A is monotone. In addition, it is −
�
Ai

�−1
Ab = 0 < 1, hence

condition 2) from Theorem 5.12 is fulfilled. Theorem 5.12 gives now that A
satisfies the global DMP. ✷

5.1.3 M-Matrices

The most important subset of monotone matrices is the class of M-matrices.
This class is widely used for studying global DMPs. M-matrices are in a
somewhat hidden sense diagonally dominant, compare a problem from the
exercises. In this course, only M-matrices will be considered that are non-
singular and these matrices will be called just M-matrices.

There are at least forty equivalent definitions of an M-matrix, see the
survey Plemmons (1977). In connection with DMPs, most often the following
definition is used.

Definition 5.15 (M-matrix). A matrix A = (aij)
n
i,j=1 is an M-matrix if:

i) The off-diagonal entries are non-positive

aij ≤ 0, i, j = 1, . . . , n, i �= j.

ii) A is non-singular.
iii) It holds A−1 ≥ 0.

✷

With Definition 5.15 it becomes clear that the set of M-matrices is a subset
of the set of monotone matrices since condition i) is an additional requirement
to Definition 5.8. Example 5.14 shows that the set of M-matrices is a proper
subset.

Corollary 5.16 (M-matrices and the global DMP). A discretization
leading to an M-matrix that has the additional property (5.25) gives a discrete
solution that satisfies the global DMP.

Proof. The statement follows from Theorem 5.13 and the fact that the set of
M-matrices forms a subset of the set of monotone matrices. �

Corollary 5.17 (Restriction to the inner nodes). Let A be a non-
singular matrix of form (5.3) that possesses that correct sign pattern for an
M-matrix, i.e., Definition 5.15 i) is satisfied. Then, A is an M-matrix if and
only if Ai is an M-matrix.
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Proof. By Lemma 5.1, it follows that A is non-singular if and only if Ai is
non-singular. Noting that Ab ≤ 0 by assumption, the representation (5.4) of

the inverse of A shows also that A−1 ≥ 0 if and only if
�
Ai

�−1 ≥ 0. Hence,
both matrices A and Ai satisfy the requirements of Definition 5.15. �

Given the sign property of the off-diagonal entries of an M-matrix, Corol-
lary 5.17 states in particular that it is sufficient to prove that the restriction
of the matrix to the inner nodes is an M-matrix in order to show that the
complete matrix is an M-matrix.

The following theorem provides an explicit connection between general
monotone matrices and M-matrices.

Theorem 5.18 (Connection of general monotone and M-matrices).
The matrix A ∈ Rn×n is monotone if and only if there exist matrices B1 ≥ 0
and B2 ≥ 0, B1, B2 ∈ Rn×n, such that B1AB2 is an M-matrix.

Proof. The proof follows Bramble & Hubbard (1964). Let A be a monotone
matrix, then A is invertible. Now, one can choose B1 = I ≥ 0 and B2 =
A−1 ≥ 0, such that B1AB2 = I, which is an M-matrix.

LetB1AB2 be an M-matrix, then this matrix is invertible with (B1AB2)
−1 ≥

0 and in particular all factors are invertible. It follows that

A−1 = B2 (B1AB2)
−1

B1 ≥ 0,

such that A is a monotone matrix, compare Definition 5.8. �

Definition 5.19 (Proper Minkowski matrix, Ostrowski (1937)). A
matrix of non-negative type defined in Definition 5.2 is is called a proper
Minkowski matrix if all row sums are positive, i.e., the matrix is diagonally
dominant. ✷

Theorem 5.20 (Connection of M-matrices and proper Minkowski
matrices). Each M-matrix A ∈ Rn×n can be obtained from a proper
Minkowski matrix Ã by scaling each column of Ã with an appropriate positive
number.

Proof. Exercise problem. �

Here, just a summary of important algebraic properties of M-matrices is
given.

Remark 5.21 (Properties of M-Matrices). The class of M-matrices is a subset
of monotone matrices. A matrix is a monotone matrix if and only if it can
be represented as a product of an M-matrix and two non-negative matrices,
see Theorem 5.18.

Let A ∈ Rn×n with aii > 0 and aij ≤ 0, i, j = 1, . . . n, i �= j.
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• The matrix A is an M-matrix if and only if all principal minors of A are
positive. For example, let

A =

�
4 −8
−2 5

�
, (5.27)

then the principal minors of first order are just the diagonal entries, which
are both positive. The principal minor of second order is det(A) = 4,
which is also positive.

• The matrix A is an M-matrix if and only if A is non-singular and A−1 ≥ 0
(Definition 5.15).

• If A is of block form (5.3), then A is an M-matrix if and only if Ai is an
M-matrix (Corollary 5.17).

• If A is an M-matrix, then there is a proper Minkowski matrix Ã and
a diagonal matrix D with dii > 0, i = 1, . . . , n, such that A = ÃD
(Theorem 5.20).

• If A is irreducible and weakly diagonally dominant, i.e., all row sums are
non-negative and at least one row sum is positive, then A is an M-matrix.

• If A is a non-singular matrix of non-negative type, then A is an M-matrix.
Not every M-matrix is a matrix of non-negative type, e.g., see the matrix
given in (5.27).

• The matrix A is an M-matrix, if and only if there is a vector v ∈ Rn,
v > 0, with Av > 0. The vector v is called majorizing element.

Let A ∈ Rn×n be an M-matrix. Then, the following properties hold.

• It is ainvii > 0, i = 1, . . . , n, exercise problem.
• Multiplying arbitrary rows or columns of A with positive constants gives
an M-matrix, exercise problem.

• Let B ∈ Rn×n with aij ≤ bij for i, j = 1, . . . , n and bij ≤ 0 for i, j =
1, . . . , n, i �= j, then B is an M-matrix, comparison criterion.

• Let D ≥ 0 be a diagonal matrix, then A+D is an M-matrix.
• The sum of two M-matrices is generally not a monotone matrix, exercise
problem.

• The product of two M-matrices is a monotone matrix, exercise problem.
• The row sum norm of A−1 can be estimated by the maximum norm of a
majorizing element of A (Lemma 5.22).

✷

The following estimate is sometimes used for obtaining a bound for the
stability of a discretization, compare Lemma 3.9 for finite difference methods.

Lemma 5.22 (Bound of a norm of the inverse of an M-matrix by a
norm of a majorizing element). Let A ∈ Rn×n be an M-matrix and let
v ∈ Rn be a majorizing element. Then, it holds that

��A−1
��
∞ ≤ �v�∞

minj=1,...,n (Av)j
. (5.28)
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Proof. From v = A−1Av, one gets, because v > 0,

0 < vi = ainvi1 (Av)1 + · · ·+ ainvin (Av)n.

Since all terms are non-negative, one obtains for all i = 1, . . . , n,

vi ≥
�
ainvi1 + . . .+ ainvin

�
min

j=1,...,n
(Av)j ,

such that

�v�∞ = max
i=1,...,n

vi ≥ max
i=1,...,n

�
ainvi1 + . . .+ ainvin

�
min

j=1,...,n
(Av)j

=
��A−1

��
∞ min

j=1,...,n
(Av)j .

This inequality is just the statement of the lemma because Av > 0. �

Remark 5.23 (Constructing a majorizing element). Let A be a an M-matrix
that represents a discretization of a linear differential operator L. The follow-
ing approach is often successful for the construction of a majorizing element.

• Find a function v(x) > 0 such that (Lv)(x) > 0 for x ∈ Ω. This function
is a majorizing element of L.

• Interpolate v(x) with a corresponding discrete function vh(x), which is
represented by a vector v. For finite difference methods, one takes usually
the values of v(x) in the nodes. In finite element methods, v depends on
the chosen basis. Using for continuous Lagrangian finite elements a local
basis, then the Lagrangian interpolation operator can be used, which also
takes the values at the positions of the degrees of freedom.

If the first step of this approach is possible and if the discretization of L is
consistent, then this approach generally works, at least if the mesh width is
sufficiently small. ✷


