
Chapter 1

Convection-Diffusion-Reaction
Equations and Maximum Principles

1.1 A Model for Conservation Laws

1.1.1 Conservation of Energy in a Fluid

Let Ω ⊂ R3 be a fixed domain that is occupied by a fluid, let x =
(x1, x2, x3)

T ∈ Ω denote the points in Ω, and let t ∈ R denote the time.
Then, the conservation of energy can be modeled in terms of the tempera-
ture

• u(t,x) – temperature at time t and at the point x with unit [K].

To derive this model, one needs several physical properties of the fluid and
of the given problem:

• ρ(t,x) – density of the fluid with unit [kg/m3],
• c(t,x) – specific heat capacity of the fluid with unit [J/kg K] = [W s/kg K],
• k(t,x) – thermal conductivity of the fluid with unit [W/m K],
• v(t,x) = (v1, v2, v3)

T (t,x) – velocity of the motion of the fluid with unit
[m/s],

• F (t,x) – intensity of heat sources or sinks with unit [W/m3].

The goal consists now in deriving a model for the conservation of energy
in an arbitrary volume V ⊂ Ω with sufficiently smooth boundary ∂V and
in an arbitrary time interval (t, t + Δt). For simplicity of presentation, this
volume will be considered to be fixed. It is also possible to derive the model
for a volume that changes in time, using the Reynolds transport theorem.
Both ways lead finally to the same model.

First, energy can be produced or absorbed in V . Then, the change of
energy in the time interval is given by

Q1 =

� t+Δt

t

�

V

F (t,x) dx dt, [W s] = [J]. (1.1)
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And second, energy heat can enter or leave V through ∂V by molecular
motion and by the convective motion of the fluid with the velocity field.
Let n(x) be the unit outer normal at x ∈ ∂V . Using Fourier’s law for the
molecular motion, one finds that the energy

Q2 =

� t+Δt

t

�

∂V

�
k
∂u

∂n
− cρ (v · n)u

�
(t, s) ds dt

=

� t+Δt

t

�

∂V

(k∇u · n− cρ (v · n)u) (t, s) ds dt, [J],

penetrates through ∂V . Since ∂V is assumed to be sufficiently smooth, one
can apply integration by parts (Gaussian theorem), and obtains equivalently

Q2 =

� t+Δt

t

�

V

∇ · (k∇u− cρuv)(t,x) dx dt, [J]. (1.2)

On the other hand, a law for the change of the temperature in V has to
be derived. Assuming that u is sufficiently smooth and using a Taylor series
expansion with respect to time, one gets that the temperature at x changes
in (t, t+Δt) by

u(t+Δt,x)− u(t,x) =
∂u

∂t
(t,x)Δt+O

�
(Δt)

2
�
.

For the simplest model, a linear ansatz is utilized, i.e.,

u(t+Δt,x)− u(t,x) =
∂u

∂t
(t,x)Δt.

Then, one finds that for the change of the temperature in V and for a suffi-
ciently small Δt, the energy

Q3 =

� t+Δt

t

�

V

cρ
u(t+Δt,x)− u(t,x)

Δt
dx dt

=

� t+Δt

t

�

V

cρ
∂u

∂t
(t,x) dx dt, [J], (1.3)

is needed.
Conservation of energy means that the needed energy equals the sources

of energy, i.e., it has to hold that Q3 = Q1 +Q2, from what follows that

� t+Δt

t

�

V

�
cρ

∂u

∂t
−∇ · (k∇u− cρuv)− F

�
(t,x) dx dt = 0.

Since the volume V was chosen to be arbitrary and Δt was arbitrary as well,
the term in the integral has to vanish. After having divided by cρ, one obtains
the following partial differential equation
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∂u

∂t
− 1

cρ
∇ · (k∇u− cρuv) =

F

cρ
in (0, T )×Ω. (1.4)

All terms have the physical unit [K/s].
In this course, only the equation for stationary problems will be studied,

i.e., all data of the problem are independent of time and a solution is sought
that also does not depend on time. In particular, it holds that ∂u/∂t = 0.
For a homogeneous fluid, c, ρ, k are positive constants and if the fluid is
incompressible, the convection field is divergence-free, i.e., ∇ · v = 0. Then,
the partial differential equation simplifies to

− ηΔu+ v ·∇u = f in Ω, (1.5)

with η = k/(cρ), [m
2
/s], and f = F/(cρ), [K/s].

To obtain a well-posed problem, (1.5) has to be equipped with appropriate
boundary conditions on the boundary ∂Ω of Ω. For (1.5), one can prescribe
the following types of boundary conditions:

• Dirichlet condition: The temperature u(t,x) at a part of the boundary is
prescribed

u = g1 on ∂ΩD,

with ∂ΩD ⊂ ∂Ω.
• Neumann condition: The heat flux is prescribed at a part of the boundary

k
∂u

∂n
= g2 on ∂ΩN,

with ∂ΩN ⊂ ∂Ω.
• Mixed boundary condition, Robin boundary condition: At a part of the

boundary, there is a heat exchange according to Newton’s law

k
∂u

∂n
+ h(u− uenv) = 0 on ∂ΩR,

with ∂ΩR ⊂ ∂Ω, the heat exchange coefficient h, [W/m2K], and the tem-
perature of the environment uenv, [K].

The next step for deriving a problem that is suited for purposes of math-
ematical analysis and numerical simulations consists in getting rid of the
physical units and to obtain a so-called dimensionless problem. To this end,
let

• L be a characteristic length scale of the problem, [m],
• U be a characteristic temperature scale of the problem, [K].

Denoting the coordinates and functions with dimensions with a prime and
applying the transforms

x =
x�

L
, u =

u�

U

to (1.5) yields the equation
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−η
3�

i=1

∂

∂xi

�
∂

∂xi
(Uu)

∂xi

∂x�
i

�
∂xi

∂x�
i

+
3�

i=1

v�i
∂(Uu)

∂xi

∂xi

∂x�
i

= f � in Ω�

⇐⇒

−ηU

L2

3�

i=1

∂2u

∂ (xi)
2 +

U

L

3�

i=1

v�i
∂u

∂xi
= f � in Ω�.

Let V [m/s] be a characteristic velocity scale, a dimensionless equation of the
following form is derived:

− εΔu+ b ·∇u = f in Ω, (1.6)

with ε = η/(LV ), b = v�/V , f = Lf �/(UV ), and the dimensionless domain
Ω. Also the boundary conditions have to be converted into dimensionless
expressions. One obtains, e.g.,

u =
g1
U

on ∂ΩD, −ε
∂u

∂n
=

g2
cρV U

on ∂ΩN.

Remark 1.1. Modeling the transport of a species by molecular diffusion and
by the movement of a fluid leads to a convection-diffusion equation for the
concentration. If several species are present in the fluid, then one obtains even
a system of convection-diffusion equations. A chemical reaction between the
species couples the equations in the system. If this reaction is modeled with
the law of mass action, then one obtains in each equation a coupling term
that depends on the concentration, but not on derivatives, and the coefficient
σ ≥ 0 depends on the other concentrations. This zeroth order term σu is
called reaction term. ✷

1.1.2 The Stationary Linear
Convection-Diffusion-Reaction Equation

This section introduces the type of equation that will be studied in this course
– the stationary linear convection-diffusion-reaction equation. As motivated
in the previous section, such equations are used as model for certain physical
processes. This issue will be explained at the end of this section.

Let Ω ⊂ Rd, d ∈ {2, 3}, be a bounded domain with Lipschitz boundary ∂Ω,
then the considered stationary linear convection-diffusion-reaction boundary
value problem is given by

−εΔu+ b ·∇u+ σu = f in Ω,
u = uD on ∂ΩD,

ε∇u · n = uN on ∂ΩN,
ε∇u · n+ κu = uR on ∂ΩR.

(1.7)
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The dimensionless diffusion coefficient is assumed to be a positive constant,
i.e., ε > 0. Appropriate requirements concerning the dimensionless convection
field b(x) and reaction field σ(x) will be formulated in the mathematical
and numerical analysis. It is ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩR where all these sets
are mutually disjoint and measd−1(∂ΩD) > 0. The non-negative function
κ : ∂ΩR → R, κ(x) ≥ 0, and the data on the boundary uD(x), uN(x), and
uR(x) are given.

Let the closed set

∂Ωin = {x ∈ ∂Ω : b(x) · n(x) < 0} (1.8)

denote the inlet boundary, i.e., the part of the boundary where u enters the
domain driven by the convection field. It will be assumed that ∂Ωin ⊂ ∂ΩD.

The results of the physical processes described in the previous sections
possess some properties that become obvious by using physical understand-
ing. Consider first the energy balance from Section 1.1.1. If there is a problem
without (positive) energy sources in Ω and with a prescribed temperature at
∂Ω, then it is not possible that the temperature at any point in Ω is larger
than the highest temperature at the boundary. Concerning the concentration
balance from Remark 1.1, it is clear by the definition of a concentration as
the amount of species particles per volume that each concentration has to
be non-negative. A well-posed problem for the concentration balance has to
ensure non-negativity. These fundamental physical properties can be proved
mathematically for the boundary value problem (1.7), which will be the con-
tents of Section 1.2 on so-called Maximum Principles.

Usually, the solution of the boundary value problem (1.7) cannot be com-
puted analytically and it has to be approximated by means of numerical
methods. It turned out that the satisfaction of fundamental physical proper-
ties, which has the solution of (1.7), by the numerical solution is not guar-
anteed. Such physical properties are the range of admissible values or con-
servation properties. In fact, it is well known that many methods, also very
popular ones, compute in important situations from applications numerical
solutions that have (some) values which are not physically consistent, e.g.,
undershoots that lead to negative values for concentrations. The desired kind
of physical consistency of solutions obtained with numerical methods can
be described mathematically with so-called Discrete Maximum Principles
(DMPs), see Chapter 4.

1.2 Classical Maximum Principles

Maximum principles are the mathematical formulation of the fundamental
physical properties mentioned in the previous section. It is a classical topic
of analysis of partial differential equations that is presented, e.g., in (Gilbarg
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& Trudinger, 2001, Sec. 3.1, 3.2) and (Renardy & Rogers, 2004, Sec. 4.1).
A consequence of a maximum principle is the uniqueness of the solution of
the classical Dirichlet problem. This section contains a concise presentation
of this topic.

Let Ω ⊂ Rd, d ∈ N, be a bounded domain and let us consider the operator
L : C2(Ω) → C(Ω) defined by

Lu := −A : D2 u+ b ·∇u+ σ u , u ∈ C2(Ω) , (1.9)

where D2 u is the Hessian matrix given by

D2 u :=

�
∂2u

∂xi∂xj

�d

i,j=1

and A : Ω → Rd×d, b : Ω → Rd, and σ : Ω → R are given continuous
functions. Moreover, we assume that the matrix A (x) is symmetric and
positive definite for any x ∈ Ω. If d = 1, then D2 u = u�� and A : Ω → R is
only assumed to be positive in Ω. Consequently, L is an elliptic second order
linear differential operator. The operator from problem (1.7) is a special case
with A = εI, I ∈ Rd×d being the identity tensor.

It is well known that, under suitable assumptions, solutions of boundary
value problems with an elliptic partial differential equation attain there max-
imum or minimum on the boundary of the domain. The aim of this section
is to formulate and prove assertions of this type and to explore their conse-
quences. To assure that boundary values are well defined, it shall be always
assumed that u ∈ C2(Ω)∩C(Ω) throughout this section. From the Theorem
of Weierstrass, it follows that u possesses a minimum and a maximum in Ω
and also on ∂Ω, since ∂Ω is a closed set (Rd \ ∂Ω is open).

Theorem 1.2 (Maximum principle for σ = 0). Let σ = 0 in Ω. Then

Lu ≤ 0 in Ω =⇒ max
Ω

u = max
∂Ω

u , (1.10)

Lu ≥ 0 in Ω =⇒ min
Ω

u = min
∂Ω

u . (1.11)

Proof. It is sufficient to prove statement (1.10). Statement (1.11) follows by
replacing u with −u.

First, let us assume that Lu < 0 in Ω and let x0 ∈ Ω satisfy maxΩ u =
u(x0). Assume that x0 ∈ Ω. Then (∇u)(x0) = 0 and the Hessian matrix
(D2u)(x0) is negative semi-definite ((D2u)(x0) = u��(x0) ≤ 0 if d = 1). If

d ≥ 2, the matrix A (x0) can be written in the form A (x0) =
�d

k=1 λkqkq
T
k ,

where λk are the eigenvalues of A (x0) and qk are the corresponding eigen-
vectors which are orthonormal. A direct calculation1 shows that

1 Let A = (aij)
d
i,j=1, B = (bij)

d
i,j=1 and A = aaT with a = (α1, . . . ,αd)

T , then



1.2 Classical Maximum Principles 9

A (x0) : (D
2u)(x0) =

d�

k=1

λkqk · (D2u)(x0)qk ≤ 0,

since the eigenvalues λk are positive. If d = 1, then the validity of A (x0) :
(D2u)(x0) ≤ 0 is obvious. Thus, for any d ∈ N, one has (Lu)(x0) ≥ 0, which
is a contradiction. Therefore, x0 ∈ ∂Ω and hence the right-hand side of (1.10)
holds.

Now, let Lu ≤ 0 in Ω. To prove (1.10), we introduce the function

uδ(x) := u(x) + δ eα x1 , x ∈ Ω ,

for any δ > 0 and suitable α > 0 to be determined later. Then, one has

(Luδ)(x) = (Lu)(x) + δ α eα x1 [−(A )11(x)α+ b1(x)] .

Since (A )11 > 0 in Ω, one can define α in such a way that [−(A )11(x)α +
b1(x)] < 0 for any x ∈ Ω. Then, Luδ < 0 in Ω and hence maxΩ uδ =
max∂Ω uδ for any δ > 0, according to the first part of the proof. Now, state-
ment (1.10) follows from letting δ → 0. �

Definition 1.3 (Positive and negative part of a real number and a
real-valued function). Let α ∈ R, then its positive part α+ and negative
part α− are defined as follows

α+ := max{α, 0} ≥ 0 and α− := min{α, 0} ≤ 0 . (1.12)

The same notation is used to define the positive and negative parts of a
real-valued function.

Theorem 1.4 (Maximum principle). Let σ ≥ 0 in Ω. Then

Lu ≤ 0 in Ω =⇒ max
Ω

u ≤ max
∂Ω

u+ , (1.13)

Lu ≥ 0 in Ω =⇒ min
Ω

u ≥ min
∂Ω

u− . (1.14)

In particular, it is

Lu = 0 in Ω =⇒ max
Ω

|u| = max
∂Ω

|u| . (1.15)

Proof. Again, it is sufficient to prove the first statement since (1.14) follows
from (1.13) by replacing u with −u, and (1.15) is a simple consequence of
(1.13) and (1.14).

A : B =

d�

i,j=1

aijbij =

d�

i,j=1

αiαjbij =

d�

i=1

αi

d�

j=1

αjbij = a ·Ba = aTBa.
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The proof of (1.13) can be divided into two cases. If maxΩ u ≤ 0, then
(1.13) trivially holds. If maxΩ u > 0, then

max
Ω

u ≤ max
∂Ω

u+ ⇐⇒ max
Ω

u = max
∂Ω

u,

so that (1.13) is equivalent to (1.10). Then, the proof can be performed in
the same way as in Theorem 1.2 since, due to the assumption on σ, one has
(Lu)(x0) ≥ σ(x0)u(x0) ≥ 0, with x0 introduced in the proof of Theorem 1.2.

�

Corollary 1.5 (Inverse monotonicity, comparison principle). Let σ ≥
0 in Ω and u, v ∈ C2(Ω) ∩ C(Ω). Then

Lu ≤ Lv in Ω , u ≤ v on ∂Ω =⇒ u ≤ v in Ω , (1.16)

Lu = Lv in Ω , u = v on ∂Ω =⇒ u = v in Ω . (1.17)

Proof. The statements follow by applying (1.13) and (1.15) to the difference
u− v. �

Corollary 1.6 (Uniqueness of the solution of the fully homogeneous
Dirichlet problem). Consider the boundary value problem Lu = 0 in Ω
and u = 0 on ∂Ω. If σ ≥ 0 in Ω, then the problem has only the trivial
solution u ≡ 0.

Proof. This statement follows directly from (1.17) with v = 0. �

Corollary 1.7 (Uniqueness of the solution of the inhomogeneous
Dirichlet problem). If σ ≥ 0 in Ω, then the boundary value problem
Lu = f in Ω and u = uD on ∂Ω has at most one solution, a so-called
classical solution.

Proof. Assume that there are two different classical solutions and consider
their difference. Then, it follows directly from (1.17) that this difference van-
ishes identically. �

Theorem 1.8 (A priori estimates). Let u satisfies Lu = f with f ∈
C(Ω). If σ ≥ 0 in Ω, then

min
∂Ω

u− + C min
Ω

f−

λ
≤ u(x) ≤ max

∂Ω
u+ + C max

Ω

f+

λ
∀ x ∈ Ω , (1.18)

where C depends on A , b, and Ω, and λ(x) := min{v · A (x)v ; v ∈
Rd, �v�2 = 1} is the smallest eigenvalue of A (x), x ∈ Ω.

If σ > 0 in Ω, then

min

�
min
∂Ω

u,min
Ω

f

σ

�
≤ u(x) ≤ max

�
max
∂Ω

u,max
Ω

f

σ

�
∀ x ∈ Ω . (1.19)
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Proof. For interested students only, not presented in the class. Let us prove
first the upper bound in (1.18), i.e.,

u(x) ≤ max
∂Ω

u+ + C max
Ω

f+

λ
∀ x ∈ Ω . (1.20)

Let Ω ⊂ (xmin
1 , xmax

1 )×Rd−1 and set s := xmax
1 − xmin

1 . Let us introduce the
function

v(x) := max
∂Ω

u+ +
�
eα s − eα (x1−xmin

1 )
�
max
Ω

f+

λ
, x ∈ Ω ,

where α > 0 will be fixed later. Set

β := max
Ω

|b|
λ

.

Then, the operator

L0 u := −A : D2 u+ b ·∇u , u ∈ C2(Ω) ,

satisfies

(L0 v)(x) = α eα (x1−xmin
1 ) [(A )11(x)α− b1(x)] max

Ω

f+

λ
.

One has (A )11(x)α − b1(x) ≥ (α − β)λ(x) and hence, setting α := β + 1,
one obtains (L0 v)(x) ≥ f+(x) for any x ∈ Ω. Since v ≥ 0 in Ω, one gets

Lv ≥ L0 v ≥ f+ ≥ f = Lu in Ω .

Furthermore, it is v ≥ u+ ≥ u on ∂Ω. Thus, Corollary 1.5 implies that u ≤ v
in Ω, which proves (1.20) with C = e(β+1)s−1. The lower bound in (1.18)
follows from (1.20) by replacing u and f with −u and −f , respectively.

To prove the upper bound in (1.19), let us set

K := max

�
max
∂Ω

u,max
Ω

f

σ

�
.

Then, for any x ∈ Ω, it is

L(u−K)(x) = (Lu)(x)− σ(x)K ≤ f(x)− σ(x) max
Ω

f

σ
≤ 0 .

In addition, it holds u − K ≤ 0 on ∂Ω. Thus, u ≤ K in Ω according to
Corollary 1.5. The lower bound in (1.19) again follows from the upper bound
by replacing u and f with −u and −f , respectively. �
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Corollary 1.9 (Stability of the solution, continuous dependency on
the data). Let u satisfies Lu = f with f ∈ C(Ω) and let σ ≥ 0 in Ω. Then

�u�C(Ω) ≤ �u�C(∂Ω) + Λ �f�C(Ω) ,

where Λ depends on A , b, σ, and Ω, but not on f .

Proof. The statement is an immediate consequence of the previous theorem.
�

One can see that this estimate is in fact a stability estimate: if u and ũ
are solutions of Lu = f and L ũ = f̃ , respectively, then

�u− ũ�C(Ω) ≤ �u− ũ�C(∂Ω) + Λ �f − f̃�C(Ω) .

Hence, changes in the solution depend continuously, in the norm of C(Ω), on
changes of the data of the problem.

In the previous statements, conditions were specified under which a so-
lution of the Dirichlet problem attains its extremum at the boundary of Ω.
However, these results do not exclude that the extremum is also attained at
some interior point. The following theorem presents conditions under which
this situation is not possible.

Theorem 1.10 (Strong maximum principle). Let Lu ≤ 0 in Ω and let
u be not constant in Ω. Then

σ = 0 in Ω =⇒ u(x) < max
Ω

u ∀ x ∈ Ω , (1.21)

σ ≥ 0 in Ω & max
Ω

u ≥ 0 =⇒ u(x) < max
Ω

u ∀ x ∈ Ω , (1.22)

u(x̃) = 0 for some x̃ ∈ Ω =⇒ u(x̃) < max
Ω

u . (1.23)

If Lu ≥ 0 in Ω and u is not constant in Ω, then

σ = 0 in Ω =⇒ u(x) > min
Ω

u ∀ x ∈ Ω ,

σ ≥ 0 in Ω & min
Ω

u ≤ 0 =⇒ u(x) > min
Ω

u ∀ x ∈ Ω ,

u(x̃) = 0 for some x̃ ∈ Ω =⇒ u(x̃) > min
Ω

u .

Proof. For interested students only, not presented in the class. Again, it suf-
fices to prove the statements for Lu ≤ 0 since the remaining statements
follow by replacing u with −u.

Assume that u attains its maximum M := maxΩ u at an interior point.
Since it is assumed that u is not constant, the set G = {x ∈ Ω ; u(x) < M}
is not empty. Consequently, Ω ∩ ∂G is not empty as well. Let y ∈ G be any
point satisfying
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0 < dist(y, ∂G) < dist(y, ∂Ω) .

Let us introduce the ball B = {x ∈ Rd ; |x−y| < dist(y, ∂G)}. Then B ⊂ Ω
and ∂B ∩ ∂G contains at least one point x0 ∈ Ω. Then, one has

u ∈ C2(B) , u(x0) = M > u(x) ∀ x ∈ B .

Set
v(x) = e−α |x−y|2 − e−αR2

, x ∈ B ,

with a positive constant α to be determined later. Then, v is a smooth func-
tion such that v > 0 in B and v = 0 on ∂B. One has

(Lv)(x)

= e−α |x−y|2�− 4α2 (x− y) · A (x) (x− y) + 2α trA (x)

−2α b(x) · (x− y)
�
+ σ(x) v(x)

�

≤ e−α |x−y|2 �−4α2 λ(x) |x− y|2 + 2α (trA (x) + |b(x)| |x− y|) + σ(x)
�
,

where λ(x) is the smallest eigenvalue of A (x). Since A (x)/λ(x), |b(x)|/λ(x),
and σ(x)/λ(x) are bounded in B, the constant α can be chosen in such a
way that

Lv ≤ 0 in B̃ := {x ∈ B ; |x− y| > R/2} .
Then, for ε > 0 small enough, one has u− u(x0) + ε v ≤ 0 on ∂B̃. Assuming
that σ = 0 in Ω, or σ ≥ 0 in Ω and M ≥ 0, one has L (u − u(x0) +
ε v) ≤ −σ u(x0) ≤ 0 in B̃ and hence u − u(x0) + ε v ≤ 0 in B̃ according to
Corollary 1.5. Thus, setting ν := (x0 − y)/|x0 − y|, one obtains

∂u

∂ν
(x0) ≥ −ε

∂v

∂ν
(x0) = 2α ε |x0 − y| e−α |x0−y|2 > 0 ,

which contradicts the assumption that u attains a maximum at x0. Therefore,
the implications (1.21) and (1.22) hold.

Finally, if there is x̃ ∈ Ω such that u(x̃) = 0 and u(x̃) = maxΩ u, then
M = 0 and hence (L−σ−)u = Lu−σ− u ≤ 0 in Ω. Then, using the operator
L− σ− instead of L, the assumptions for the validity of (1.22) are satisfied,
which proves (1.23). �

1.3 Variational Form of the Boundary Value Problem

Corollary 1.7 states that if a solution of the classical Dirichlet problem exists,
this solution is unique. There are also results concerning the existence of such
a solution, e.g., (Gilbarg & Trudinger, 2001, Thm. 6.14). Roughly speaking,
if the domain has a sufficiently smooth boundary, if the coefficients of the
differential operator, the right-hand side of the equation, and the Dirichlet
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conditions are sufficiently smooth, and if σ ≥ 0 in Ω, then there exists a
solution of the classical Dirichlet problem. However, in many situations from
practice, the required smoothness of the data is not given, e.g., if the domain
is a hexahedral box, but the physical process nevertheless happens, such
that there is a solution. To study such solutions, a different notion than the
classical (or strong) solution is necessary – the so-called variational or weak
solution. This concept, which will be discussed in this section, is based on a
corresponding form of the boundary value problem. In addition, this form is
the basis of finite element methods for computing numerical approximations
of the weak solution.

For the domain Ω ⊂ Rd, d ∈ {1, 2, 3}, it will be assumed that it is con-
nected and it has a Lipschitz boundary ∂Ω. With this property on ∂Ω, the
unit outer normal vector exists almost everywhere on ∂Ω, see (Nečas, 2012,
Ch. 2, Lem. 4.2), and the divergence theorem (Gauss theorem, Green’s the-
orems) can be applied, see (Nečas, 2012, Ch. 3, Thm. 1.1). Furthermore, the
Lipschitz boundary guarantees that several imbedding theorems can be ap-
plied for functions defined onΩ, e.g., see (Adams, 1975, Thm. 5.4) or (Demen-
gel & Demengel, 2012, Thm. 2.72). In addition, it is ∂Ω = ∂ΩD∪∂ΩN∪∂ΩR

with the Dirichlet boundary ∂ΩD, the Neumann boundary ∂ΩN, and the
Robin boundary ∂ΩR. The different parts of the boundary are mutually dis-
joint and it is assumed that measd−1(∂ΩD) > 0.

Denote by VD = D
�
Ω ∪ ∂Ω \ ∂ΩD

�
∩ C(Ω), i.e., the functions of VD are

infinitly often differentiable in Ω, they vanish in a neighborhood of ∂ΩD and
they can be extended continuously to the other parts of the boundary. Mul-
tiplying the strong form of the equation (1.7) with a so-called test function
v ∈ VD, integrating on Ω, applying integration by parts to the diffusion term,
and taking into account that the test function vanishes on ∂ΩD yields

�

Ω

(−εΔu+ b ·∇u+ cu) (x)v(x) dx

=

�

Ω

(ε∇u ·∇v + (b ·∇u+ cu) v) (x) dx−
�

∂Ω

ε(∇u · n)(s)v(s) ds

=

�

Ω

(ε∇u ·∇v + (b ·∇u+ cu) v) (x) dx (1.24)

−
�

∂ΩN∪∂ΩR

ε(∇u · n)(s)v(s) ds ∀ v ∈ VD.

In this way, derivatives have been transferred from u to the test function,
which leads to a reduction of the smoothness requirements for u.

To obtain now a variational formulation of the boundary value problem,
one has to incorporate that the solution should satisfy the prescribed bound-
ary condition uD. This information will be included as a constraint in an
appropriate definition of the ansatz or trial space, see below. Boundary con-
ditions that lead to such constraints are called essential boundary condi-
tions. Note that also the space D

�
Ω ∪ ∂Ω \ ∂ΩD

�
contains conditions on the
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Dirichlet boundary. In contrast, Neumann and Robin conditions appear in
the variational form of the equation. Boundary conditions with this property
are called natural conditions. For deriving the variational form, one has to
insert the data on the Neumann and Robin boundary in (1.24).

In order to define a well-posed weak problem, functions spaces for the data
of the problem, the solution, and the test function have to be specified such
that all terms in (1.24) are well defined. An appropriate setup is as follows.
Let

V = H1
0,∂ΩD

(Ω) = D
�
Ω ∪ ∂Ω \ ∂ΩD

�H1(Ω)
⊂ H1(Ω)

be the subspace of H1(Ω) that contains the functions whose trace vanishes
on ∂ΩD, let the data of the equation satisfy

b ∈ (L∞(Ω))
d
, σ ∈ L∞(Ω), f ∈ V ∗, (1.25)

and let for the data of the boundary conditions hold

uD ∈ H1/2 (∂ΩD) , uN ∈
�
H

1/2
00 (∂ΩN)

�∗
,

uR ∈
�
H

1/2
00 (∂ΩR)

�∗
, κ ∈ L∞ (∂ΩR) , κ ≥ 0. (1.26)

Further, it will be assumed that the Dirichlet boundary ∂ΩD is a relatively
open subset of ∂Ω and that the boundary of ∂ΩD is Lipschitz. Then, there
exists a linear and continuous extension operator E∂ΩD

: H1/2(∂ΩD) →
H1(Ω), e.g., see (Wilbrandt, 2019, Thm. 4.2.4). Consequently, there is an
extension uD,ext = E∂ΩDuD ∈ H1(Ω).

A variational or weak formulation of the convection-diffusion-reaction
problem (1.7) reads as follows: Find u ∈ H1(Ω) such that u−uD,ext ∈ V and

a(u, v) = f(v) ∀ v ∈ V (1.27)

with the bilinear form a(·, ·) : H1(Ω)× V → R,

a(u, v) = (ε∇u,∇v) + (b ·∇u+ σu, v) + (κu, v)∂ΩR
(1.28)

and the linear form f(·) : V → R,

f(v) = �f, v�V ∗,V + �uN, v��H1/2
00 (∂ΩN)

�∗
,H

1/2
00 (∂ΩN)

+�uR, v��H1/2
00 (∂ΩR)

�∗
,H

1/2
00 (∂ΩR)

. (1.29)

A function u that satisfies (1.27) is called variational or weak solution of the
convection-diffusion-reaction boundary value problem.

If the data of the problem are more regular, i.e., f ∈ L2(Ω), uN ∈ L2(∂ΩN),
or uR ∈ L2(∂ΩR), then the dual pairings in (1.29) can be replaced by inner
products in the respective Lebesgue spaces
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(f, v) , (uN, v)∂ΩN
, (uR, v)∂ΩR

.

Theorem 1.11 (Existence and uniqueness of a variational solution).
Let the assumptions on the domain and its boundary stated above and let the
regularity assumptions (1.25) and (1.26) on the data of the boundary value

problem be satisfied. Assume in addition that b ∈
�
W 1,∞(Ω)

�d
, that

�
−1

2
∇ · b+ σ

�
(x) ≥ 0 in Ω, (1.30)

and that for the inlet boundary defined in (1.8), it holds that ∂Ωin ⊂ ∂ΩD.
Then, the variational problem (1.27) possesses a unique solution.

Proof. The proof will be utilize the Theorem of Lax–Milgram. To this end,
one has first to reformulate (1.27) in an equivalent form such that the left-
hand side of the new problem is a bilinear form defined on V ×V . Let E∂ΩDuD

be an arbitrary but fixed extension of the Dirichlet data as introduced above,
then the equivalent problem consists in finding ũ = u − E∂ΩD

uD ∈ V such
that

a (ũ, v) = f(v)− a (E∂ΩD
uD, v) ∀ v ∈ V. (1.31)

Now, one has to show that the restriction of the bilinear form (1.28) to
V ×V is coercive, that it is bounded (or continuous), and that the linear form
on the right-hand side of (1.31) is bounded (or continuous). Note that, since
measd−1(∂ΩD) > 0, �∇v�L2(Ω) is a norm in V that is equivalent to �v�H1(Ω)

and a Poincaré inequality holds.
Coercivity of the bilinear form (1.28) restricted to V ×V . It is for all v ∈ V

a(v, v) = ε �∇v�2L2(Ω) + (b ·∇v, v) + (σv, v) + (κv, v)∂ΩR
.

For the convective term, integration by parts and product rule yields

(b ·∇v, v) =

�

∂Ω

(b · n) v2 ds− (b ·∇v, v)− ((∇ · b)v, v) ,

such that

(b ·∇v, v) =
1

2

�

∂Ω

(b · n) v2 ds− 1

2
((∇ · b)v, v) .

Because v vanishes on ∂ΩD and from ∂Ωin ⊂ ∂ΩD, one can conclude that
b · n ≥ 0 on ∂ΩN ∪ ∂ΩR, it follows that

�

∂Ω

(b · n) v2 ds =

�

∂ΩN∪∂ΩR

(b · n) v2 ds ≥ 0.

Using (1.30) gives
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(b ·∇v, v) + (σv, v) ≥ −1

2
((∇ · b)v, v) + (σv, v) ≥ 0.

In addition, thanks to the non-negativity of κ, it is

(κv, v)∂ΩR
≥ inf

x∈∂ΩR

κ(x) �v�2L2(∂ΩR) ≥ 0.

Altogether, one obtains

a(v, v) ≥ ε �∇v�2L2(Ω) ≥ Cε �v�2H1(Ω) ,

where the constant C depends on the square of the inverse of the constant
from the Poincaré inequality.

Boundedness of the bilinear form (1.28) restricted to V × V . Utilizing the
Cauchy–Schwarz inequality, Hölder’s inequality, the assumptions on the reg-
ularity of the coefficients, and that the trace operator is a bounded operator
from H1(Ω) to L2(∂Ω) yields

a(v, w) ≤ ε �∇v�L2(Ω) �∇w�L2(Ω) + �b�L∞(Ω) �∇v�L2(Ω) �w�L2(Ω)

+ �σ�L∞(Ω) �v�L2(Ω) �w�L2(Ω) + �κ�L∞(∂ΩR) �vw�L1(∂ΩR)

≤ C �v�H1(Ω) �w�H1(Ω) + C �vw�L1(∂Ω)

≤ C �v�H1(Ω) �w�H1(Ω) + C �v�L2(∂Ω) �w�L2(∂Ω)

≤ C �v�H1(Ω) �w�H1(Ω) ∀ v, w ∈ V.

Note that, because Poincaré’s inequality is not used in this estimate, the same
bound holds for the bilinear form defined on H1(Ω)×H1(Ω).

Boundedness of the linear form on the right-hand side of (1.31). It is

known that there are well defined trace operators from V to H
1/2
00 (∂ΩN)

and H
1/2
00 (∂ΩR), respectively, which are linear and continuous, e.g., see

(Wilbrandt, 2019, Thm. 4.3.4). Using the estimates for the dual pairings,
the boundedness of the bilinear form defined on H1(Ω) × H1(Ω), the con-
tinuity of these trace operators, and the regularity assumptions on the data
gives

f(v)− a (E∂ΩDuD, v)

≤ �f�V ∗ �v�H1(Ω) + �uN��H1/2
00 (∂ΩN)

�∗ �v�
H

1/2
00 (∂ΩN)

+ �uR��H1/2
00 (∂ΩR)

�∗ �v�
H

1/2
00 (∂ΩR)

+ �E∂ΩD
uD�H1(Ω) �v�H1(Ω)

≤ C

�
�f�V ∗ + �uN��H1/2

00 (∂ΩN)
�∗ + �uR��H1/2

00 (∂ΩR)
�∗ + �E∂ΩDuD�H1(Ω)

�

× �v�H1(Ω)

= C �v�H1(Ω) ∀ v ∈ V.
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Summary. All assumptions of the Theorem of Lax–Milgram are satisfied. It
follows that (1.31) has a unique solution ũ. Consequently, also (1.27) possesses
a unique solution u ∈ H1(Ω) that is given by u = ũ+ E∂ΩD

uD. �


