
Chapter 3

Multi-Step Methods

3.1 Definition

Remark 3.1. Multi-step methods. The characteristic feature of one-step meth-
ods is that they need for computing yk+1 only the value from the previous
approximation yk of the solution. A straightforward extension consists in con-
structing methods that use for computing yk+1 more than one of the previous
approximations yk, yk−1, . . .. Such methods are called multi-step methods. ✷

Definition 3.2. q-step method, linear q-step method. A q-step method
with q ≥ 1 is a numerical method for approximately solving

y�(x) = f (x, y(x)) , y(x0) = y0, (3.1)

where yk+1 depends on yk+1−q but not on yi with i < k + 1− q.
A q-step method is called linear, if it has the form

yk+1 =

q−1�

j=0

ajyk−j + h

q−1�

j=0

bjf
�
xk−j , yk−j

�
+ hb−1f (xk+1, yk+1) , (3.2)

k = q − 1, q, . . . , with q ≥ 1, a0, . . . , aq−1, b−1, . . . , bq−1 ∈ R, aq−1 �= 0 or
bq−1 �= 0. For q = 1, the method is called a one-step method. If b−1 �= 0, then
the linear q-step method is an implicit method, otherwise it is an explicit
method. ✷

Remark 3.3. Initial values for a q-step method. A q-step method needs q ini-
tial values. However, the initial value problem (3.1) provides only the initial
value y0. The second initial value y1 can be computed with a one-step method,
the next initial value y2 with a one-step method or with a two-step method
and so on. It follows that all initial values yi, i > 0, are already numerical
approximations. This aspect has to be taken into account in the error analysis
of multi-step methods, see Remark 3.23. ✷
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Fig. 3.1 Parameters in the derivation of predictor-corrector schemes.

3.2 Predictor-Corrector Methods

Remark 3.4. Construction. Starting point of the construction of predictor-
corrector methods is the equivalent integral form of the initial value problem
(3.1)

y(x) = y0 +

� x

x0

f (t, y(t)) dt. (3.3)

Denote the solution at x̃ by y(x̃), then it holds that

y(x) = y(x̃) +

� x

x̃

f (t, y(t)) dt. (3.4)

The main idea of predictor-corrector methods consists in approximating
the integral on the right-hand side of (3.4) in an appropriate way. There are
two principal difficulties:

• The dependency of the term in the integral on t is generally not known
since the function y(t) is unknown.

• Even if the dependency of the function in the integral on t is known, gen-
erally it will be impossible to find an analytic expression of the solution.

Consider an equidistant grid with nodes

xi = x0 + ih, i = 0, 1, . . . .

For the derivation of the methods, assume that the term in the integral is
known. Then, the derivation is similar to the derivation of the Newton1–
Cotes2 formulas for numerical quadrature. In this approach, the term in the
integral of (3.4) is replaced by a polynomial interpolant. Let the boundaries
of the integral be the nodes

x̃ = xp−j , starting point with parameter j,

x = xp+m end point with parameter m, (3.5)

with parameters j,m ∈ N0 that need yet to be determined. It will be required
that the interpolation polynomial pr(x) satisfies the following properties:

• the degree of pr(x) is lower than or equal to r,
• pr(xi) = f(xi, y(xi)) for i = p, p− 1, . . . , p− r.

1
Isaac Newton (1642 – 1727)

2
Roger Cotes (1682 – 1716)
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Thus, xp is the most right-hand side node for computing the interpolation
polynomial. The value r is a third parameter, compare Figure 3.1. Note that
two sets of nodes are involved in the construction, namely the nodes that
determine the boundaries of the integral and the nodes that are used to define
the interpolation polynomial. The solution of this interpolation problem is
given by the Lagrange3 interpolation polynomial

pr(x) =

r�

i=0

f
�
xp−i, y(xp−i)

�
Li(x)

with

Li(x) =

r�

l=0,l �=i

x− xp−l

xp−i − xp−l

, i = 0, 1, . . . , r. (3.6)

It follows by using (3.4), (3.5), (3.6), and by replacing the unknown values
y(xp−i) by their computed approximations yp−i that

yp+m ≈ yp−j +

r�

i=0

f
�
xp−i, yp−i

� � xp+m

xp−j

Li(t) dt

= yp−j + h

r�

i=0

βif
�
xp−i, yp−i

�
(3.7)

with

βi =
1

h

� xp+m

xp−j

Li(t) dt =
1

h

� xp+m

xp−j




r�

l=0,l �=i

t− xp−l

xp−i − xp−l


 dt.

The constructed method is in particular linear. Note that so far the assump-
tion of having an equidistant grid was not used.

Finally, the formula for βi should be simplified. To this end, note that all
fixed values from the interval are nodes of the equidistant grid, such that,
e.g., xp = x0 + ph. Replacing these values and using the substitution

t = xp + sh =⇒ dt = hds,

yields

βi =
1

h

� m

−j




r�

l=0,l �=i

xp + sh− xp−l

xp−i − xp−l


h ds

3
Joseph Louis Lagrange (1736 – 1813)
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=

� m

−j




r�

l=0,l �=i

x0 + ph+ sh− x0 − ph+ lh

x0 + ph− ih− x0 − ph+ lh


 ds

=

� m

−j




r�

l=0,l �=i

s+ l

−i+ l


 ds. (3.8)

Now, different methods can be obtained depending on the choice of m, j, and
r. There are four important classes of methods. ✷

Example 3.5. Adams4–Bashforth5 methods. The class of q-step Adams–Bash-
forth methods is given bym = 1, j = 0, and r = q−1. It follows that the q-step
Adams–Bashforth method uses the nodes xk+1−q, . . . , xk for computing the
Lagrangian interpolation polynomial. These are q nodes and pq(x) is at most
of degree q − 1. Adams–Bashforth methods are explicit methods. They have
the general form

yk+1 = yk + h

q−1�

i=0

βif (xk−i, yk−i) , (3.9)

see (3.7), with

βi =

� 1

0




q−1�

l=0,l �=i

s+ l

−i+ l


 ds, (3.10)

compare (3.8).
In the case q = 1, the term in the integral in (3.4) is replaced by a constant

interpolation polynomial with the node (xk, f(xk, yk)). Using the convention
that the product is 1 if there is formally no factor in (3.10), this approach
yields

yk+1 = yk + h

�� 1

0

ds

�
f (xk, yk) = yk + hf (xk, yk) ,

i.e., one obtains the explicit Euler method.
If q = 2, then the term in the integral is approximated by a linear interpo-

lation polynomial with the nodes (xk−1, f(xk−1, yk−1)) and (xk, f(xk, yk)).
Using (3.9) and (3.10), one obtains

yk+1 = yk + h

��� 1

0

s+ 1

1
ds

�
f (xk, yk) +

�� 1

0

s

−1
ds

�
f (xk−1, yk−1))

�

= yk + h

�
3

2
f (xk, yk)−

1

2
f (xk−1, yk−1)

�

4
John Couch Adams (1819 – 1892)

5
Francis Bashforth (1819 – 1912)
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= yk +
h

2

�
3f (xk, yk)− f (xk−1, yk−1)

�
.

q ≥ 3, exercise ✷

Example 3.6. Adams–Moulton6 methods. Adams–Moulton methods are de-
fined by m = 0, j = 1, and r = q. Hence, it follows that

βi =

� 0

−1




q�

l=0,l �=i

s+ l

−i+ l


 ds

and from (3.7) that

yk = yk−1 + h

q�

i=0

βif (xk−i, yk−i)

or, by transforming the index,

yk+1 = yk + h

q�

i=0

βif (xk+1−i, yk+1−i) .

The q + 1 nodes of these methods are given by xk+1−q, . . . , xk, xk+1. That
means, Adams–Moulton methods are implicit methods.

This class contains two one-step methods that are obtained for q = 0
(which can be used in contrast to the requirement in Definition 3.2) and
q = 1. Note that the parameter q in (3.2) determines both the previous ap-
proximations to be used and the previous arguments of the function f . But
in the construction of the methods, three independent parameters were intro-
duced to determine these values. This construction introduces some freedom
which allows here to set q = 0.

Considering the case q = 0, then the term in the integral is replaced by
a constant interpolation polynomial with the node at (xk+1, f(xk+1, yk+1)).
This approach results in the method

yk+1 = yk + h

�� 0

−1

ds

�
f (xk+1, yk+1) = yk + hf (xk+1, yk+1) ,

which is the implicit Euler method.
For q = 1, one uses a linear interpolation polynomial with the points

(xk, f(xk, yk)) and (xk+1, f(xk+1, yk+1)). One gets

yk+1 = yk + h

��� 0

−1

s+ 1

1
ds

�
f (xk+1, yk+1) +

�� 0

−1

s

−1
ds

�
f (xk, yk)

�

6
Forest Ray Moulton (1872 – 1952)
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= yk + h

�
1

2
f (xk+1, yk+1) +

1

2
f (xk, yk)

�

= yk +
h

2
[f (xk+1, yk+1) + f (xk, yk)] .

This method is the trapezoidal rule. ✷

Example 3.7. Nyström7 methods. The class of Nyström methods is obtained
by using m = 1, j = 1, and r = q − 1. They have the form

yk+1 = yk−1 + h

q−1�

i=0

βif (xk−i, yk−i)

with

βi =

� 1

−1




q−1�

l=0,l �=i

s+ l

−i+ l


 ds.

These methods are explicit and one uses the q nodes xk+1−q, . . . , xk.
One gets, e.g., for q = 1, the method

yk+1 = yk−1 + h

�� 1

−1

ds

�
f (xk, yk) = yk−1 + 2hf (xk, yk) .

✷

Example 3.8. Milne8 method. Milne methods are defined by m = 0, j = 2,
and r = q. Using a transform of the index, one finds that they have the form

yk+1 = yk−1 + h

q�

i=0

βif (xk+1−i, yk+1−i)

with

βi =

� 0

−2




q�

l=0,l �=i

s+ l

−i+ l


 ds.

Thus, these are implicit methods. ✷

Remark 3.9. On the coefficients of multi-step methods. One can find tables
with the coefficients for multi-step methods in the literature. ✷

Remark 3.10. Using implicit methods in practice, predictor-corrector meth-
ods. If implicit methods are used, then one has to solve in each node xk+1 an

7
Evert J. Nyström (1895 – 1960)

8
William Edwin Milne (1890 – 1971)
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equation that is generally nonlinear. This step can be performed with some
kind of fixed point iteration, e.g., with a method of Newton-type. To achieve
a good efficiency of the method, a good initial iterate is of importance. To
obtain a good initial iterate, one can use an explicit (multi-step) method. For
this reason, explicit multi-step methods are called predictor methods and
implicit multi-step methods are called corrector methods. The combination
of a predictor method with a corrector method is called predictor-corrector
method.

Often, it is sufficient for computing the next iterate to perform the pre-
dictor step and one or two corrector steps. ✷

Remark 3.11. Nordsieck9 form. It is possible to transform multi-step methods
in a one-step form, the so-called Nordsieck form. This form uses instead of

yk, . . . , yk−q+1, f (xk, yk) , . . . , f
�
xk−q+1, yk−q+1

�
,

the values
yk, y

�(xk), y
��(xk), . . . , y

(q)(xk),

see, e.g., (Strehmel et al., 2012, Section 4.4.3). The advantage of the Nordsieck
form consists in the possibility of applying a step length control as it is known
from one-step methods, Section 1.3. Otherwise, a step length control for form
(3.2) of multi-step methods becomes rather complicated. On the other hand,
using the Nordsieck form requires that the solution of the initial value problem
is q times continuously differentiable. ✷

3.3 Convergence of Multi-Step Methods

Remark 3.12. Generalities. In this section, linear multi-step methods of the
form (3.2) will be considered. Similarly to one-step methods, notations like
local error, consistency, or order of convergence will be introduced. The ex-
tension of these notations to nonlinear multi-step methods is straightforward.

✷

Definition 3.13. Local error. Let yk+1 be the results of (3.2), k ≥ q, where
the initial values are exactly the values of the solution

yk+1−q = y(xk+1−q), . . . , yk = y(xk).

Then, the local error is defined by

9
Arnold Nordsieck (1911 – 1971)
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le(xk+1) = lek+1 = y(xk+1)−



q−1�

j=0

ajy
�
xk−j

�
+ h

q−1�

j=−1

bjf
�
xk−j , y(xk−j)

�

 .

(3.11)
✷

Definition 3.14. Consistent method, consistency order. Let y(x) be
the solution of the initial value problem (3.1), S = {(x, y) : x ∈ I =
[x0, xe], y ∈ R}, and IN an equidistant mesh on I with N intervals. The
multi-step method (3.2) is called consistent if for all f ∈ C(S), which satisfy
in S a Lipschitz condition with respect to y, it holds

lim
h→0

�
max
xk∈IN

le(xk + h)

h

�
= 0, with h =

xe − x0

N
. (3.12)

If the expression on the left-hand side converges like hp for p ≥ 1, then the
multi-step scheme has the consistency order p. ✷

Example 3.15. Consistency order for a Nyström method. The consistency or-
der of a multi-step method can be computed in the same way as for a one-step
method by expanding the local error in a Taylor series with respect to h. Af-
ter having then divided by h, the order of the first non-vanishing term gives
the consistency order.

Consider the Nyström method for q = 3

yk+1 = yk−1 + h

��� 1

−1

2�

l=1

s+ l

l
ds

�
f (xk, yk)

+



� 1

−1

2�

l=0,l �=1

s+ l

−1 + l
ds


 f (xk−1, yk−1)

+

�� 1

−1

1�

l=0

s+ l

−2 + l
ds

�
f (xk−2, yk−2)

�

= yk−1 + h

�
7

3
f (xk, yk)−

2

3
f (xk−1, yk−1) +

1

3
f (xk−2, yk−2)

�
.

It follows with (3.11) and (3.1) that

le(xk+1)

= y(xk+1)− y(xk−1)

−h

�
7

3
f (xk, y(xk))−

2

3
f (xk−1, y(xk−1)) +

1

3
f (xk−2, y(xk−2))

�

= y(xk+1)− y(xk−1)− h

�
7

3
y�(xk)−

2

3
y�(xk−1) +

1

3
y�(xk−2)

�
. (3.13)
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Now, the the individual terms will be expanded

y(xk+1) = y(xk + h) = y(xk) + hy�(xk) +
h2

2
y��(xk) +

h3

6
y���(xk)

+
h4

24
y(4)(xk) +O(h5),

y(xk−1) = y(xk − h) = y(xk)− hy�(xk) +
h2

2
y��(xk)−

h3

6
y���(xk)

+
h4

24
y(4)(xk) +O(h5),

y�(xk−1) = y�(xk − h) = y�(xk)− hy��(xk) +
h2

2
y���(xk)

−h3

6
y(4)(xk) +O(h4),

y�(xk−2) = y�(xk − 2h) = y�(xk)− 2hy��(xk) + 2h2y���(xk)

−4h3

3
y(4)(xk) +O(h4).

Inserting these expressions in formula (3.13) for the local error gives

le(xk+1) = y(xk) + hy�(xk) +
h2

2
y��(xk) +

h3

6
y���(xk) +

h4

24
y(4)(xk)

−y(xk) + hy�(xk)−
h2

2
y��(xk) +

h3

6
y���(xk)−

h4

24
y(4)(xk)

−7h

3
y�(xk) +

2

3

�
hy�(xk)− h2y��(xk) +

h3

2
y���(xk)−

h4

6
y(4)(xk)

�

−1

3

�
hy�(xk)− 2h2y��(xk) + 2h3y���(xk)−

4h4

3
y(4)(xk)

�
+O(h5)

=
h4

3
y(4)(xk) +O(h5).

With (3.12), one obtains that this method has consistency order 3. ✷

Remark 3.16. Linear multi-step methods with a high order of convergence.
The goal in constructing multi-step methods consists of course in obtaining
convergent methods of high order. A high order of convergence can be ex-
pected only if the consistency order is high, i.e., if the local error is small.
Using the Taylor series expansion of the terms in the local error and requiring
that as many leading terms as possible vanish, one gets a linear system of
equations for determining the coefficients aj , bj , j = 0, . . . , q − 1 and b−1 in
(3.11). In this way, one obtains a method of the form
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yk+1 −
q−1�

j=0

ajyk−j = h

q−1�

j=−1

bjf
�
xk−j , yk−j

�
. (3.14)

Constructing one-step methods in this way, one always obtains a conver-
gent one-step method, e.g., compare Example 1.29. However, the situation
might be different for multi-step methods. ✷

Example 3.17. Non-convergent multi-step method. Consider the idea from Re-
mark 3.16 for the construction of an explicit linear multi-step method with
q = 2 and with maximal order of consistency. That means, the ansatz for the
method is as follows, compare (3.14),

yk+1 − a0yk − a1yk−1 = h [b0f (xk, yk) + b1f (xk−1, yk−1)] .

The local error has the form

le(xk+1) = y (xk+1)− a0y (xk)− a1y (xk−1)− hb0f (xk, y(xk))

−hb1f (xk−1, y(xk−1))

= y (xk+1)− a0y (xk)− a1y (xk−1)− hb0y
�(xk)− hb1y

�(xk−1).

Now, the individual terms are expanded in powers of h:

y (xk+1) = y (xk + h) = y (xk) + hy� (xk) +
h2

2
y�� (xk) +

h3

6
y��� (xk) +O(h4),

y (xk−1) = y (xk − h) = y (xk)− hy� (xk) +
h2

2
y�� (xk)−

h3

6
y��� (xk) +O(h4),

y�(xk−1) = y� (xk − h) = y� (xk)− hy�� (xk) +
h2

2
y��� (xk) +O(h3).

Inserting the expansions gives

le(xk+1) = y (xk) + hy� (xk) +
h2

2
y�� (xk) +

h3

6
y��� (xk)− a0y (xk)

−a1

�
y (xk)− hy� (xk) +

h2

2
y�� (xk)−

h3

6
y��� (xk)

�
− hb0y

�(xk)

−hb1

�
y� (xk)− hy�� (xk) +

h2

2
y��� (xk)

�
+O(h4)

= [1− a1 − a0] y (xk) + [1 + a1 − b1 − b0]hy
� (xk)

+

�
1

2
− a1

2
+ b1

�
h2y�� (xk) +

�
1

6
+

a1
6

− b1
2

�
h3y��� (xk) +O(h4).

Requiring that the first four terms should vanish leads to the following linear
system of equations
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


1 1 0 0
−1 0 1 1
1/2 0 −1 0
−1/6 0 1/2 0







a1
a0
b1
b0


 =




1
1
1/2
1/6


 .

The unique solution of this system is a1 = 5, a0 = −4, b1 = 2, b0 = 4.
Consequently, one obtains the method

yk+1 = −4yk + 5yk−1 + h [4f (xk, yk) + 2f (xk−1, yk−1)] (3.15)

with third order of consistency.
Next, the convergence of the method will be studied at the model initial

value problem
y�(x) = −y(x), y(0) = 1,

with the solution y(x) = exp(−x). As second initial condition, one takes the
value of the solution in the mesh point x1 = h, i.e., y1 = exp(−h). Inserting
the special form of the right-hand side of the model problem, f(xk, yk) = −yk,
in (3.15), one can represent the computed solution explicitly. This solution
satisfies the homogeneous linear difference equation

yk+1 + (4 + 4h)yk + (−5 + 2h)yk−1 = 0.

The solution of this difference equation can be obtained with the ansatz
yk = ξk. Inserting this ansatz in the difference equation leads to

ξk+1 + (4 + 4h)ξk + (−5 + 2h)ξk−1 = 0.

This equation is satisfied for ξ = 0, which however does not satisfy the initial
conditions. Other solutions can be obtained after division by ξk−1 from

ξ2 + (4 + 4h)ξ + (−5 + 2h) = 0. (3.16)

One gets the solutions

ξ1(h) = −2− 2h+ 3

�
1 +

2

3
h+

4

9
h2, ξ2(h) = −2− 2h− 3

�
1 +

2

3
h+

4

9
h2.

For simplicity, the dependency on h will be neglected in the notation. The
general solution of the difference equations can be represented as a linear
combination of the special solutions (superposition principle)

yk = C1ξ
k
1 + C2ξ

k
2 .

Now, the constants can be determined from the initial conditions. It holds

y0 = C1 + C2 = 1, y1 = e−h = C1ξ1 + C2ξ2,
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from what follows that

C1(h) =
e−h − ξ2
ξ1 − ξ2

, C2(h) = −e−h − ξ1
ξ1 − ξ2

.

Expanding ξ1(h), ξ2(h), C1(h) and C2(h) in powers of h and inserting these
expansions in the solution (exercise), gives for fixed x > 0 and hN := x/N

yN =
�
1 +O

� x

N

�� �
1− x

N
+O

�� x

N

�2��N

− 1

216

� x

N

�4 �
1 +O

� x

N

�� �
−5− 3

x

N
+O

�� x

N

�2��N
.

Considering now the convergence of the method, i.e., hN → 0 ⇐⇒ N →
∞. Then, one obtains for the first term, using well known properties of the
exponential, that

lim
N→∞

�
1 +O

� x

N

�� �
1− x

N
+O

�� x

N

�2��N
= e−x.

This part approximates the solution of the model problem. For the second
term, it holds that

− 1

216

� x

N

�4 �
1 +O

� x

N

�� �
−5− 3

x

N
+O

�� x

N

�2��N

= − (−5)N

216

� x

N

�4 �
1 +O

� x

N

�� �
1 +

3

5

x

N
+O

�� x

N

�2��N
.

Since

lim
N→∞

�
1 +

3

5

x

N
+O

�� x

N

�2��N
= e3x/5,

one finds that the second term behaves for large N as follows

− (−5)N

216

� x

N

�4
e3x/5. (3.17)

This expression oscillates with increasing N and the modulus is increasing
for finer grids (‘exponential (−5)N is stronger than polynomial (x/N)4’),
compare the values for x = 1 in the following table
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N value of (3.17)

1 0.0421787
2 - 0.1054467
3 0.3514890
4 - 1.3180836
5 5.2723345
6 - 21.96806
7 94.14883
8 - 411.90113
9 1830.6717
10 - 8238.0226

It follows that the method does not converge.
Such an oscillatory behavior can be observed also if the method is applied

for solving other initial value problems. For the considered example, the rea-
son for this behavior is that the general solution of the difference equation
contains a term that becomes arbitrarily large for large k and for small h (or
large N). For the considered method it is

lim
h→0

ξ2(h) = −5 =⇒ lim
k→∞

���ξk2 (h)
��� = ∞.

The solution of the difference equation was obtained from the roots of the
polynomial (3.16). It can be guessed that the roots of this polynomial will be
of importance for the convergence of multi-step methods. ✷

Definition 3.18. Null stable linear multi-step method. A linear q-step
method is called null stable if the first characteristic polynomial

Ψ(ξ) = ξq − a0ξ
q−1 − . . .− aq−1 (3.18)

possesses only roots ξq with
��ξq
�� ≤ 1 that are simple in the case that

��ξq
�� = 1.

For the notation ‘null stable’, compare Remark 3.37 below. ✷

Example 3.19. Null stability for predictor-corrector methods. The methods
from the four most important classes of predictor-corrector methods are null
stable.

• Adams–Bashforth methods, Adams–Moulton methods. The first character-
istic polynomial has the form

Ψ(ξ) = ξq − ξq−1 = (ξ − 1) ξq−1.

The only non-trivial root is ξq = 1 and this root is simple.
• Nyström methods, Milne methods. For these methods, the first character-
istic polynomial is

Ψ(ξ) = ξq − ξq−2 = (ξ + 1) (ξ − 1) ξq−2.
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Hence, the only non-trivial roots are ξq = 1 and ξq = −1. They are simple.

Null stability does not mean stable in the sense that the method can be
applied for the numerical solution of stiff problems, see Example 3.22. ✷

Theorem 3.20. First Dahlquist10 barrier. The maximal order of consis-
tency of a null stable linear q-step method is

p =





q + 1 for q odd,

q + 2 for q even,

q if b−1 ≤ 0, in particular, if the method is explicit.

Proof. Only a sketch of the proof is given here, for details see the literature, e.g., (Strehmel

et al., 2012, Section 4.2.3) or (Hairer et al., 1993, Section III.3).

First, one sets for ξ ∈ C, |ξ| < 1,

z =
ξ − 1

ξ + 1
.

Then, one defines the polynomials

R(z) =

�
1− z

2

�q

Ψ(ξ) =

q�

l=0

αlz
l
,

S(z) =

�
1− z

2

�q

σ(ξ) =

q�

l=0

βlz
l
,

with

σ(ξ) = b−1ξ
q
+ b0ξ

q−1
+ . . .+ bq−1. (3.19)

As next step, one can prove that a linear multi-step method has consistency order p if and
only if

R(z)

�
ln

1 + z

1− z

�−1

− S(z) = O
�
z
p�

for z → 0.

Using a Taylor series expansion of the term with the logarithm, one has on the left-hand
side of this statement a polynomial. Now, one studies which coefficients of this polynomial

might vanish such that the method is null stable in the individual cases given in the
theorem. �

Example 3.21. Consistency order of some predictor-corrector methods.

• Adams–Bashforth methods with q steps have the consistency order q and
Adams–Moulton methods with q steps possess the consistency order q+1.
Thus, Adams–Moulton methods where q is even have an order that is less
than the maximal possible order according to Theorem 3.20.

• The 2-step Milne method (also Milne–Simpson method)

yk+1 = yk−1 + h

�
1

3
f(xk+1, yk+1) +

4

3
f(xk, yk) +

1

3
f(xk−1, yk−1)

�

(3.20)

10
Germund Dahlquist (1925 – 2005)
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has the consistency order 4. This method achieves the maximal order of
consistency for a null stable 2-step method.

✷

Example 3.22. Convergence and stability of the 2-step Milne method. This
implicit method is null stable, see Example 3.19, and it possesses the maximal
possible order of consistency for a null stable method, see Example 3.21. Thus,
so far it shows favorable properties. But having a closer look on its stability
reveals that this method has a severe drawback.

Consider again the model initial value problem

y�(x) = λy(x), y(0) = 1,

with the solution y(x) = exp(λx). Applying the 2-step Milne method for the
solution of this problem, then the method (3.20) has the form

yk+1 = yk−1 + hλ

�
1

3
yk+1 +

4

3
yk +

1

3
yk−1

�
.

This equation can be rewritten as a linear difference equation

�
1− hλ

3

�
yk+1 −

4hλ

3
yk −

�
1 +

hλ

3

�
yk−1 = 0.

The general solution of this difference equation can be represented in the
form

yk = C1ξ
k
1 + C2ξ

k
2 , (3.21)

where ξ1(h) and ξ2(h) are the solutions of the quadratic equation

�
1− hλ

3

�
ξ2 − 4hλ

3
ξ −
�
1 +

hλ

3

�
= 0.

One obtains

ξ1(h) =
3

3− hλ


2hλ

3
+

�

1 +
(hλ)2

3


 ,

ξ2(h) =
3

3− hλ


2hλ

3
−

�

1 +
(hλ)2

3


 .

Now, the constants C1, C2 can be determined from the initial condition and
from the value of the first step. It is for x = 0

C1 + C2 = 1 (3.22)

and for x = h, taking the exact value,
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eλh = C1ξ1 + (1− C1)ξ2 = (1− C2) ξ1 + C2ξ2. (3.23)

Expanding ξ1(h) and ξ2(h) in powers of h at h = 0, one obtains as first order
approximation by computing the derivatives of ξ1(h) and ξ2(h), respectively,
and inserting zero

ξ1(h) = 1 + λh+O
�
h2
�
, ξ2(h) = −1 +

λ

3
h+O

�
h2
�
. (3.24)

In the interesting case, λ < 0, ξ1(h) approaches 1 from left, with values
smaller than 1, and ξ2(h) approaches −1 also from left, but here the modulus
of ξ2(h) is larger than 1. The last property leads to undesired effects.

For the approximate solution in the node xk = kh, k = 0, 1, . . ., one gets
with (3.21)

yk = C1

�
1 + λh+O

�
h2
��xk/h

+ C2

�
−1 +

λ

3
h+O

�
h2
��xk/h

. (3.25)

The first term converges to exp(λxk) for h → 0, since

lim
h→0

(1 + λh)
xk/h = lim

h→0

�
1 + λxk

h

xk

�xk/h

= exp(λxk).

It behaves like the solution of the model initial value problem. The second
term behaves for small h like

(−1)xk/h

�
1− λ

3
h

�xk/h

.

Here, the second factor converges to exp(−λxk/3), but the first factor os-
cillates for xk/h ∈ N. That means, for the stable initial value problem with
λ < 0, this term gives an oscillatory, bounded (for fixed xk), but exponentially
large perturbation.

The behavior of the solution depends on the constants C1 and C2. Inserting
the expansion (3.24) in condition (3.23) gives

eλh = (1− C2)
�
1 + λh+O

�
h2
��

+ C2

�
−1 +

λ

3
h+O

�
h2
��

= 1 + λh− 2C2 −
2λh

3
C2 +O

�
h2
�
.

An expansion of the exponential yields

1 + λh+O
�
h2
�
= 1 + λh− 2C2 −

2λh

3
C2 +O

�
h2
�

=⇒

O
�
h2
�
= −2C2 −

2λh

3
C2.
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Fig. 3.2 Example 3.22: application of the 2-step Milne method to the model problem with

λ = −5 and h ∈ {0.1, 0.01, 0.001} (left to right, top to bottom).

It follows that C2(h) = O
�
h2
�
and from (3.22), it follows that C1 = O (1).

In summary, it is for the second term of (3.25)

lim
h→0

C2(h)

�
−1 +

λ

3
h+O

�
h2
��xk/h

� �� �
bounded

= 0.

The method converges.
However, the term

C2(h)

�
−1 +

λ

3
h+O

�
h2
��xk/h

≈ ±h2 exp

�
−λxk

3

�

becomes small in the case λ � −1 and large xk only if the step size h is very
small, see Figure 3.2.

The behavior found for this method can be observed in practice for all q-
step methods of consistency order q+2 if these methods are applied to initial
value problems with exponentially decaying solution. This kind of instability
is a strong restriction of the usefulness of these methods. ✷
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Remark 3.23. Start of multi-step methods and convergence. Apart of the con-
sistency of multi-step methods, one is above all interested in their conver-
gence. For one-step methods, convergence follows from consistency under
rather general assumptions and the order of consistency and convergence are
the same, see Theorem 1.19. The situation becomes more complicated for
multi-step methods.

First of all, one needs for starting a q-step method besides the known
initial value y0 = y(x0) still (q − 1) further approximations y1, . . . , yq−1 for
y(x1), . . . , y(xq−1). These values can be computed, for instance by a one-
step method. The accuracy of these approximations has a strong impact on
the accuracy of the q-step method that uses these values. Assume that the
approximations behave as follows

y0 = y(x0) + ε0(h), y1 = y(x1) + ε1(h), . . . , yq−1 = y(xq−1) + εq−1(h).

Then, the values that are computed with the q-step method depend also on
the perturbations11 ε1(h), . . . , εq−1(h) and one should write for the computed
solution in the node xk more exactly yk(ε, h), where ε(x, h) is a function for
which εi(h) = ε(xi, h), i = 1, . . . , q − 1, holds. ✷

Definition 3.24. Global error. Let y(x) be the solution of the initial value
problem (3.1). Denote the approximations of y(x) that are computed with a
multi-step method with step length h by yk(ε, h), where the accuracy of the
initial approximations is given by the function ε(x, h). Then, the quantity

e(xk, ε, h) := yk(ε, h)− y(xk)

is called global error or global discretization error at the node xk with respect
to the step length h and the perturbations ε(x, h). ✷

Definition 3.25. Convergence of a multi-step method. Consider the
ordinary differential equation of the initial value problem (3.1) in [a, b] and
let x0 ∈ [a, b]. A multi-step method for solving initial value problems of form
(3.1) is called convergent if

lim
n→∞

e(x, ε, hn) = 0, with hn =
x− x0

n
,

for all x ∈ [a, b], for all f ∈ C1([a, b]× R), and for all functions ε(x, h) with

lim
n→∞

|ε(x, hn)| = 0, for x = x0 + ihn, i = 0, . . . , q − 1.

✷

11
This is meant in the sense that strictly speaking, it is not complete to say, e.g., ‘the

value at xk = 1 obtained with the Adams-Bashforth method is . . .’, but one should say

‘the value at xk = 1 obtained with the Adams-Bashforth method, where y1 was computed

in this and this way, is . . .’.
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Lemma 3.26. A convergent linear multi-step methods is null stable.
A convergent linear multi-step method (3.2) is null stable.

Proof. The proof is performed by contradiction. Assume that the linear multi-step method

is convergent but not null stable. Consider the initial value problem

y
�
(x) = 0, y(0) = 0,

whose solution is y(x) = 0. Applying a linear multi-step method of form (3.2) to this
problem yields the homogeneous linear difference equation

yk+1 −
q−1�

j=0

ajyk−j = 0. (3.26)

Since the method is assumed to be not null stable, the corresponding first characteristic

polynomial Ψ(ξ) has a root with |ξ1| > 1 or a root |ξ2| = 1 that is not simple. Without loss

of generality, let the multiplicity of ξ1 be one and of ξ2 be two. Similarly to Example 3.17,
one finds that the solution of (3.26) in the node xk = kh is given by

yk = C1ξ
k
1 + C2kξ

k
2 , C1, C2 ∈ R,

where one of these coefficients is not zero.

Consider a fixed x with x = mh, m ∈ N. Choosing C1 = C2 =
√
h, where it will be

discussed below that this is an admissible choice, so that the perturbations of the initial

values satisfy the requirements of Definition 3.25, the solution in x is given by

√
hξ

x/h
1 +

x√
h
ξ
x/h
2 . (3.27)

For the initial value x = 0, the value of (3.27) is
√
h and for the initial value x = h, it

is
√
hξ1 +

√
hξ2. Thus, for the initial values, (3.27) converges to the analytic solution as

h → 0, so that the choices of C1 and C2 were admissible. However, for other values of x,

which is assumed to be fix, both terms in (3.27) diverge to plus infinity. This observation

contradicts the assumed convergence of the linear multi-step method. Hence, it is null
stable. �

Theorem 3.27. Connection of convergence and null stability. Let

yk+1 =

q−1�

j=0

ajyk−j + hΦ(xk+1, . . . , xk+1−q, yk+1, . . . , yk+1−q, h) (3.28)

be a consistent multi-step method for the solution of initial value problems of
form (3.1), which is more general than a linear multi-step method. Assume
that the incremental function satisfies the following conditions:

i) Φ(xk+1, . . . , xk+1−q, yk+1, . . . , yk+1−q, h) ≡ 0 for all x ∈ [a, b], all yk ∈ R,
and all h ∈ R if f(x, y) ≡ 0.

ii) Lipschitz continuity with respect to the y-components, i.e., there are con-
stants h0 > 0 and M such that

��Φ(xq, . . . , x0, vq, . . . , v0, h)− Φ(xq, . . . , x0, wq, . . . , w0, h)
��
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≤ M

q�

i=0

|vi − wi|

for all xq, . . . , x0 ∈ [a, b], all vi, wi ∈ R, i = 0, . . . , q, and all step sizes h
with h < h0.

Then, the multi-step method converges if and only if it is null stable.

Proof. For the proof, it is referred to the literature, e.g., (Strehmel et al., 2012, Section
4.2.5). �

Remark 3.28. To Theorem 3.27.

• The first assumption and the null stability guarantee that the multi-step
method solves the trivial initial value problem

y�(x) = 0, y(x0) = 0,

exactly if ε0 = ε1 = . . . = εq−1 = 0.
• A linear multi-step method is a special case of (3.28). For linear multi-step
methods, the first assumption is always satisfied, since the incremental
function is a linear combination of values of the right-hand side f(x, y) of
the ordinary differential equation. Due to the same reason, the incremental
function of these methods satisfies the second assumption if the right-hand
side f(x, y) is Lipschitz continuous with respect to the second argument.
Altogether, if the right-hand side of the initial value problem is sufficiently
smooth, then a consistent linear multi-step method is convergent if and
only if it is null stable.

✷

Theorem 3.29. Order of convergence. Consider a multi-step method
of the form (3.28) that satisfies the assumptions stated in Theorem 3.27
and which possesses the order of consistency p. Then, it holds for all f ∈
Cp([a, b]× R) and for all x ∈ [a, b] that

|e(x, ε, h)| = O (hp) ,

if for the accuracy of the initial values it holds

|εi(h)| = O (hp) for i = 0, . . . , q − 1.

Proof. See literature, e.g., (Strehmel et al., 2012, Section 4.2.5) or (Hairer et al., 1993,

Chapter III.4). �

Remark 3.30. Interpretation of Theorem 3.29. If a multi-step method with
consistency order p should also have convergence order p, then it is necessary
to compute the initial approximations sufficiently accurately, e.g., with a one-
step method of order p. Considering the complete method, which consists of
the starting method for computing the approximations y1, . . . , yq−1 and a
predictor-corrector method for computing the other values, then the order of
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the complete method is determined by the partial method with the lowest
order. ✷

3.4 Backward Difference Formula (BDF) Methods

Remark 3.31. Construction. The construction of Backward Difference For-
mula (BDF) methods is based on the original initial value problem (3.1) and
not on the integral form (3.3) as it is the case for predictor-corrector methods.

Given q + 1 nodes xk+1−q, . . . , xk+1 and q ≥ 1 known approximations
of the solution yk+1−q, . . . , yk. Then, the idea of BDF methods consists in
approximating the solution by an interpolation polynomial pq(x) of degree
q with the nodes

�
xk+1−q, yk+1−q

�
, . . . , (xk, yk). Now, another condition is

needed in order to define a polynomial of degree q and this condition shall
also allow to compute yk+1. For BDF methods, one uses the requirement that
this polynomial should satisfy the differential equation (3.1) in xk+1, i.e.,

p�q (xk+1) = f (xk+1, yk+1) , (3.29)

which leads to an interpolation of Hermite type. It follows from this require-
ment that BDF methods are implicit methods. ✷

Example 3.32. BDF methods. Consider an equidistant grid with grid size h.

• q = 1. The linear interpolation polynomial through the points (xk, yk)
and (xk+1, yk+1) is given by the Newton representation (using divided
differences)

p1(x) = yk+1 + (x− xk+1)
yk − yk+1

xk − xk+1

.

It is

p�1(x) =
yk − yk+1

xk − xk+1

such that requirement (3.29) and xk − xk+1 = −h leads to

yk − yk+1

−h
= f (xk+1, yk+1) ⇐⇒ yk+1 = yk + hf (xk+1, yk+1) .

Hence, BDF(1) is just the implicit Euler method.
• q = 2. The Newton representation of the quadratic interpolation polyno-
mial through (xk−1, yk−1) , (xk, yk) , (xk+1, yk+1) is given by

p2(x) = yk+1 + (x− xk+1)
yk − yk+1

xk − xk+1

+
(x− xk+1)(x− xk)

xk−1 − xk+1

�
yk−1 − yk
xk−1 − xk

− yk − yk+1

xk − xk+1

�
. (3.30)
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Computing the derivative of this polynomial and using that the grid is
equidistant yields

p�2(x) =
yk − yk+1

−h
+

(x− xk+1) + (x− xk)

−2h

�
yk−1 − yk

−h
− yk − yk+1

−h

�
,

such that requirement (3.29) leads to

p�2(xk+1) =
yk+1 − yk

h
+

h

2h

�
yk+1 − 2yk + yk−1

h

�
= f (xk+1, yk+1) .

Collecting terms gives the BDF(2) method

3

2
yk+1 − 2yk +

1

2
yk−1 = hf (xk+1, yk+1) . (3.31)

BDF(2) is the most popular multi-step method for stiff problems.
• q ≥ 3. The derivation of higher order methods proceeds in the same way.
One obtains, e.g., as BDF(3) method

11

6
yk+1 −

18

6
yk +

9

6
yk−1 −

2

6
yk−2 = hf (xk+1, yk+1) . (3.32)

It should be emphasized that in BDF methods the right-hand side of the
initial value problem appears only in one term, namely f (xk+1, yk+1). This
situation is in contrast to the predictor-corrector methods from Section 3.2.
This property of BDF methods is of advantage if the computation of the
right-hand side is complicated or numerically expensive, like for special dis-
cretizations of partial differential equations. ✷

Lemma 3.33. Null stability of BDF(1), BDF(2), and BDF(3). The
methods BDF(1), BDF(2), and BDF(3) are null stable.

Proof. The statement of the lemma is obtained by computing the roots of the first char-
acteristic polynomial.

• q = 1. The characteristic polynomial is λ− 1 with the root λ1 = 1.

• q = 2. The characteristic polynomial of BDF(2) (3.31) is

λ
2 − 4

3
λ+

1

3
.

A straightforward calculation gives

λ1 =
2

3
+

1

3
= 1, λ2 =

2

3
− 1

3
=

1

3
.

• q = 3. For BDF(3), see (3.32), one obtains the characteristic polynomial

λ
3 − 18

11
λ
2
+

9

11
λ− 2

11
.

By inserting, one checks that λ1 = 1 is a root of this polynomial. Extracting the linear

factor with this root yields
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λ
3 − 18

11
λ
2
+ 9

11
λ− 2

11

λ− 1
= λ

2 − 7

11
λ+

2

11
.

The remaining roots are given by the roots of the quadratic polynomial, which are

λ2 =
7 + i

√
39

22
, λ3 =

7− i
√
39

22
,

such that |λ2| = |λ3| =
√
22/11 ≈ 0.4264.

�

Remark 3.34. Null stability of BDF(q) methods. It can be shown that BDF(q)
methods are null stable only for q ≤ 6, e.g., see Cryer (1972). Hence, BDF(q)
methods for q > 6 are not of interest. ✷

Lemma 3.35. Consistency of BDF(q) methods. BDF(q) methods with
q ≤ 6 are consistent of order q.

Proof. The proof is obtained by a Taylor series expansion (exercise). �

Theorem 3.36. Convergence of BDF(q) methods. Let f ∈ Cq([a, b]×R)
and Lipschitz continuous with respect to the second argument and let the
initial values be computed sufficiently accurately, then the BDF(q) methods
with q ≤ 6 are convergent of order q.

Proof. The incremental function of BDF(q) methods is

Φ(xk+1, . . . , xk+1−q , yk+1, . . . , yk+1−q , h) = f
�
xk+1, yk+1

�
,

so that the assumptions of Theorem 3.27 are satisfied. Because BDF(q) methods with q ≤ 6
are null stable and consistent of order q, the other assumptions of Theorem 3.29 are also

satisfied and the statement of the theorem follows now from Theorem 3.29. �

Remark 3.37. On the stability. Stability of multi-step methods is studied at
the same initial value problem (2.6) as it was used for one-step methods.
Assuming that all initial values are computed exactly, one obtains in the
same way as in Example 3.17 a homogeneous difference equation

yk+1 −
q−1�

j=0

ajyk−j = z

q−1�

j=−1

bjyk−j

with z = λh. With the ansatz yk = ξk and after division by ξk+1−q, one
obtains a characteristic equation

Ψ(ξ)− zσ(ξ) = 0, (3.33)

compare (3.16), where Ψ(ξ) is the first characteristic polynomial (3.18). The
polynomial σ has the coefficients bj , compare (3.19).

Note that for z = 0, only the roots of the first characteristic polynomial
are considered, which are important for the null stability of the method. This
relation might be the reason for the notion ‘null’ stable. ✷
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Table 3.1 Values of α (in degree) for the A(α)-stability of BDF(q) methods.

q 1 2 3 4 5 6

α 90 90 86.03 73.35 51.84 17.84

Definition 3.38. Stability domain. The set

S =
�
z ∈ C : for all roots ξl of (3.33) it holds |ξl| ≤ 1;

if ξl is a multiple root, then it holds |ξl| < 1
�

is called stability domain of a linear multi-step method. ✷

Definition 3.39. A-stability, A(α)-stability. A linear multi-step method
is called A-stable if C− ⊂ S. It is called A(α)-stable with α ∈ (0,π/2) if

�
z ∈ C− with |arg(z)− π| ≤ α

�
⊂ S,

with arg(z) ∈ [0, 2π). ✷

Theorem 3.40. Second Dahlquist barrier. An A-stable linear multi-step
method is at most of second order.

Proof. See literature, e.g., (Strehmel et al., 2012, Section 9.1). �

Remark 3.41. A(α)-stability of BDF(q) methods. BDF(q) methods are A(α)-
stable for q ≤ 6 and even A-stable for q ≤ 2. The values of α for BDF(q)
methods are given in Table 3.1. Because of the small value of α for q = 6,
the method BDF(6) is not used in practice. ✷

Remark 3.42. Variable step size for BDF(q) methods. BDF(q) methods can
be used on non-equidistant grids, e.g., a formula for BDF(2) with variable
step size can be derived on the basis of the quadratic interpolation polynomial
(3.30), exercise problem. For q > 1 there is some restriction on the admissible
change of the mesh size from one mesh cell to its neighbor, e.g., for BDF(2)
stability is guaranteed as long as hk+1/hk ≤ 2.41421, see (Strehmel et al.,
2012, p. 328) for more details. ✷


