
Chapter 2

Numerical Methods for Stiff Ordinary
Differential Equations

2.1 Stiff Ordinary Differential Equations

Remark 2.1. Stiffness. It was observed in Curtiss & Hirschfelder (1952) that
explicit methods failed for the numerical solution of initial value problems for
ordinary differential equations that model certain chemical reactions. They
introduced the notation stiffness for such chemical reactions where the fast
reacting components arrive in a very short time in their equilibrium and
the slowly changing components are more or less fixed, i.e., stiff. In 1963,
Dahlquist found out that the reason for the failure of explicit Runge–Kutta
methods is their bad stability, see Section 2.3. It should be emphasized that
the stability properties of the equations themselves are good, it is in fact a
problem of the explicit methods.

There is no unique definition of stiffness in the literature. However, essen-
tial properties of stiff systems are as follows:

• There exist, for certain initial conditions, solutions that change slowly.
• Solutions in a neighborhood of these smooth solutions converge quickly
to them.

A definition of stiffness can be found in (Strehmel & Weiner, 1995, p. 202),
(Strehmel et al., 2012, p. 208). This definition involves a certain norm that
depends on the equation and it might be complicated to evaluate this norm.
If the solution of (1.1) is sought in the interval [x0, xe] and if the right-hand
side of (1.1) is Lipschitz continuous in the second argument with Lipschitz
constant L, then an approximation of this definition is as follows. A system
of ordinary differential equations is called stiff if

L (xe − x0) � 1. (2.1)

The term on the left-hand side corresponds to the term in the exponential of
the error bound (1.7) for the global error. Thus, the first factor in the error
bound is very large.

Another definition of stiffness will be given in Definition 2.28. ✷
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Fig. 2.1 Solutions of Example 2.2, left: first component, right: second component.

Example 2.2. Stiff system of ordinary differential equations. Consider the sys-
tem

y�1 = −80.6y1 + 119.4y2,

y�2 = 79.6y1 − 120.4y2,

in (0, 1). This system is a linear system of ordinary differential equations that
can be written in the form

y� =

�
−80.6 119.4
79.6 −120.4

�
y.

Taking as Lipschitz constant, e.g., the l1 norm of the system matrix (column
sums), one gets L = 239.8 and condition (2.1) is satisfied. The general solution
of this system is, compare Appendix A.2.3,

y(x) = c1

�
3
2

�
e−x + c2

�
−1
1

�
e−200x.

The first component is the slowly changing one and the second component the
quickly (close to x = 0) changing one. The constants are determined by the
initial condition. If the initial condition is such that c2 = 0, then the solution
is smooth for all x > 0. Otherwise, if c2 �= 0, then the solutions changes
rapidly for small x while approaching the smooth solution, see Figure 2.1 ✷

2.2 Implicit Runge–Kutta Schemes

Remark 2.3. Motivation. If the upper triangular part of the matrix of a
Runge–Kutta method, see Definition 1.22, is not identical to zero, the Runge–
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Kutta method is called implicit. That means, there are increments that de-
pend not only on previously computed increments but also on not yet com-
puted increments. Thus, one has to solve a nonlinear problem for computing
these increments. Consequently, the implementation of implicit Runge–Kutta
methods is much more involved compared with the implementation of ex-
plicit Runge–Kutta methods. Generally, performing one step of an implicit
method is much more time-consuming than for an explicit method. However,
the great advantage of implicit methods is that they can be used for the
numerical simulation of stiff systems, see the stability theory in Section 2.3.

✷

Remark 2.4. Derivation of implicit Runge–Kutta methods. Implicit Runge–
Kutta schemes can be derived from the integral representation (1.8) of the
initial value problem. One can show that for each implicit Runge–Kutta
scheme with the weights bj and the nodes xk + cjh there is a corresponding
quadrature rule with the same weights and the same nodes, see the section
on Gaussian quadrature in Numerical Mathematics I. ✷

Example 2.5. Gauss–Legendre quadrature. Consider the interval [xk, xk+h] =
[xk, xk+1]. Let c1, . . . , cs be the roots of the Legendre polynomial Ps(t) of
degree s with the arguments

t =
2

h
(x− xk)− 1 =⇒ t ∈ [−1, 1].

There are s mutually distinct real roots in (−1, 1). After having computed
c1, . . . , cs, one can determine the coefficients aij , bj such that one obtains a
method of order 2s, see Example 2.8. ✷

Remark 2.6. Simplifying order conditions. The order conditions for an im-
plicit Runge–Kutta scheme with s stages are the same as given in Theo-
rems 1.26, 1.27, and Remark 1.28. These conditions lead to a nonlinear system
of equations for computing the parameters of the scheme. These computa-
tions are generally quite complicated.

A useful tool for solving this problem are the so-called simplifying order
conditions, introduced in Butcher (1964):

B(p) :

s�

i=1

bic
k−1
i =

1

k
, k = 1, . . . , p,

C(l) :

s�

j=1

aijc
k−1
j =

1

k
cki , i = 1, . . . , s, k = 1, . . . , l, (2.2)

D(m) :

s�

i=1

bic
k−1
i aij =

1

k
bj

�
1− ckj

�
, j = 1, . . . , s, k = 1, . . . ,m,

with 00 = 1.
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One can show that for sufficiently large values l and m, the conditions
C(l) and D(m) can be reduced to B(p) with appropriate p. ✷

Remark 2.7. Interpretation of B(p) and C(l). Consider the initial value prob-
lem

y�(x) = f(x), y(x0) = 0.

With the fundamental theorem of differential calculus, one sees that this
problem has the solution

y(x0 + h) =

� x0+h

x0

f(ξ) dξ = h

� 1

0

f (x0 + hθ) dθ.

A Runge–Kutta method with s stages gives

y1 = h

s�

i=1

bif (x0 + cih) .

Consider in particular the case that f(x) is a polynomial f(x) = (x−x0)
k−1,

k ∈ N \ {0}. Then, the analytical solution has the form

y(x0 + h) = h

� 1

0

(hθ)
k−1

dθ =
(hθ)k

k

�����

θ=1

θ=0

=
hk

k
. (2.3)

The Runge–Kutta scheme yields

y1 = h

s�

i=1

bi(cih)
k−1 = hk

s�

i=1

bic
k−1
i . (2.4)

Comparing (2.3) and (2.4), one can observe that condition B(p) means that
the quadrature rule that is the basis of the Runge–Kutta method is exact for
polynomials of degree (p− 1).

Condition C(1) is (1.14) with the upper limit s

ci =

s�

j=1

aij , i = 1, . . . , s. (2.5)

✷

Example 2.8. Classes of implicit Runge–Kutta schemes.

• Gauss–Legendre schemes. The nodes of the Gauss–Legendre quadrature
are used. A method with s stages possesses the maximal possible order
2s, where all nodes are in the interior of the intervals. To get the optimal
order, one has to show that B(2s), C(s), D(s) are satisfied, see (Strehmel
et al., 2012, Section 8.1.2), i.e.,
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s�

i=1

bic
k−1
i =

1

k
, k = 1, . . . , 2s,

s�

j=1

aijc
k−1
j =

1

k
cki , i = 1, . . . , s, k = 1, . . . , s, (2.6)

s�

i=1

bic
k−1
i aij =

1

k
bj

�
1− ckj

�
, j = 1, . . . , s, k = 1, . . . , s.

An example is the implicit mid point rule, whose coefficients can be de-
rived by setting s = 1 in (2.6). One obtains the following conditions

b1 = 1, b1c1 =
1

2
, a11 = c1, b1a11 = b1 (1− c1) .

Consequently, the implicit mid point rule is given by

1/2 1/2

1
.

• Gauss–Radau1 methods. These methods are characterized by the feature
that one of the end points of the interval [xk, xk+1] belongs to the nodes.
A method of this class with s stages has at most order 2s− 1.
Examples (s = 1):

◦ 0 1

1
s = 1, p = 1,

◦ 1 1

1
s = 1, p = 1, implicit Euler scheme.

The first scheme does not satisfy condition (2.5).
• Gauss–Lobatto2 methods. In these methods, both end points of the interval
[xk, xk+1] are nodes. A method of this kind with s stages cannot be of
higher order than (2s− 2).
Examples:

◦ trapezoidal rule, Crank3–Nicolson4 scheme

0 0 0
1 1/2 1/2

1/2 1/2
s = p = 2.

1
Rodolphe Radau (1835 – 1911)

2
Rehuel Lobatto (1797 – 1866)

3
John Crank (1916 – 2006)

4
Phyllis Nicolson (1917 – 1968)
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◦ other scheme
0 1/2 0
1 1/2 0

1/2 1/2
s = 2, p = 2.

The second scheme does not satisfy condition (2.5).

✷

Remark 2.9. Diagonally implicit Runge–Kutta methods (DIRK methods). For
an implicit Runge–Kutta method with s stages and a full matrix A, one has
to solve a coupled nonlinear system for the increments K1(x, y), . . . ,Ks(x, y).
This step is expensive for a large number of stages s. A compromise is the
use of so-called diagonally implicit Runge–Kutta (DIRK) methods

c1 a11 0 0 · · · 0
c2 a21 a22 0 · · · 0
c3 a31 a32 a33 · · · 0
...

...
...

. . .

cs as1 as2 · · · ass
b1 b2 · · · bs−1 bs

.

In DIRK methods, one has to solve s independent nonlinear equations for the
increments. In the equation forKi(x, y), only the stagesK1(x, y), . . . ,Ki(x, y)
appear, where K1(x, y), . . . ,Ki−1(x, y) were already computed. ✷

2.3 Linear Stability Theory

Remark 2.10. On the stability theory. The stability theory studies numerical
methods for solving the linear initial value problem

y�(x) = λy(x), y(0) = 1, λ ∈ C. (2.7)

It will turn out the even at the simple initial value problem (2.7) the most
important stability properties of numerical methods can be explored. The
solution of (2.7) is

y(x) = eλx.

If the initial condition will be slightly perturbed to be 1+δ0, then the solution
of the perturbed initial value problem is

ỹ(x) = (1 + δ0)e
λx = eλx + δ0e

λx.

If λ = a+ ib with a = Re(λ) > 0, then the difference
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|y(x)− ỹ(x)| =
���δ0eλx

��� = |δ0| |eax|
���eibx

��� = |δ0| |eax|

becomes for each δ0 �= 0 arbitrarily large if x is sufficiently large. That means,
the initial value problem (2.7) is not stable in this case. In this situation, one
cannot expect that any numerical method is stable. Hence, this situation is
not of interest for numerical simulations.

In contrast, if Re(λ) < 0, then the difference |y(x)− ỹ(x)| becomes arbi-
trarily small and the initial value problem is stable, i.e., small changes of the
data result only in small changes of the solution. For Re(λ) = 0, the difference
|y(x)− ỹ(x)| is at least bounded. These cases, in particular the first one, are
of interest for the stability theory of methods for solving ordinary differential
equations.

This section considers one-step methods with equidistant meshes with step
size h. The solution of (2.7) in the node xk+1 = (k + 1)h is

y(xk+1) = eλxk+1 = eλ(xk+h) = eλheλxk = eλhy(xk) =: ezy(xk),

with z := λh ∈ C, Re(z) ≤ 0. Now, it will be studied how the step from xk

to xk+1 looks like for different one-step methods. In particular, large steps
are of interest, i.e., |z| → ∞. ✷

Example 2.11. Behavior of different one-step methods for one step of the
model problem (2.7).

1. Explicit Euler method. The general form of this method is

yk+1 = yk + hf (xk, yk) .

In particular, one obtains for (2.7)

yk+1 = yk + hλyk = (1 + z) yk =: R(z)yk.

It holds, independently of Re(z), that lim|z|→∞ |R(z)| = ∞.
2. Implicit Euler method. This method has the form

yk+1 = yk + hf (xk+1, yk+1) .

For applying it to (2.7), one can rewrite it as follows

yk+1 = yk + hλyk+1 ⇐⇒
(1− z)yk+1 = yk ⇐⇒

yk+1 =
1

1− z
yk =

�
1 +

z

1− z

�
yk =: R(z)yk.

For this method, one has, independently of Re(z), that lim|z|→∞ |R(z)| =
0.

3. Trapezoidal rule. The general form of this method is
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yk+1 = yk +
h

2
(f(xk, yk) + f(xk+1, yk+1)) ,

which can be derived from the Butcher tableau given in Example 2.8. For
the linear differential equation (2.7), one gets

yk+1 = yk +
h

2
(λyk + λyk+1) ⇐⇒

�
1− z

2

�
yk+1 =

�
1 +

z

2

�
yk ⇐⇒

yk+1 =
1 + z/2

1− z/2
yk =

�
1 +

z

1− z/2

�
yk =: R(z)yk.

Let z = 2r (cos(φ) + i sin(φ)). Inserting this expression gives

lim
|z|→∞

����
1 + z/2

1− z/2

���� = lim
r→∞

����
1 + r (cos(φ) + i sin(φ))

1− r (cos(φ) + i sin(φ))

����

= lim
r→∞

����
1/r + (cos(φ) + i sin(φ))

1/r − (cos(φ) + i sin(φ))

����

=
|(cos(φ) + i sin(φ))|
|− (cos(φ) + i sin(φ))| =

1

1
= 1.

Hence, one has that lim|z|→∞ |R(z)| = 1 for the trapezoidal rule, inde-
pendently of φ, and with that independently of Re(z).

The function R(z) describes for each method the step from xk to xk+1. Thus,
this function is an approximation of ez, which has for different methods dif-
ferent properties, e.g., the limit for |z| → ∞. ✷

Definition 2.12. Stability function. Let 1 = (1, . . . , 1)T ∈ Rs, Ĉ = C ∪
∞, where ∞ has to be understood as in function theory (Riemann sphere),
and consider a Runge–Kutta method with s stages and with the parameters
(A, b, c). Then, the function

R : Ĉ → Ĉ, z �→ 1 + zbT (I − zA)−11 (2.8)

is called stability function of the Runge–Kutta method. ✷

Remark 2.13. Stability functions from Example 2.11. All stability functions
from Example 2.11 can be written in the form (2.8). One obtains, e.g., for
the trapezoidal rule

b =

�
1/2
1/2

�
, I − zA =

�
1 0
− z

2 1− z
2

�
, (I − zA)

−1
=

1

1− z
2

�
1− z

2 0
z
2 1

�
,

from what follows that
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1 + zbT (I − zA)−11 = 1 +
z

1− z/2

�
1

2
− z

4
+

z

4
+

1

2

�
= 1 +

z

1− z/2
.

✷

Theorem 2.14. Form of the stability function of Runge–Kutta meth-
ods. Given a Runge–Kutta scheme with s stages and with the parameters
(A, b, c), then the stability function R(z) is a rational function defined on Ĉ,
whose polynomial order in the numerator and in the denominator is at most
s. The poles of this functions might be only at values that correspond to the
inverse of an eigenvalue of A. For an explicit Runge–Kutta scheme, R(z) is
a polynomial.

Proof. Consider first an explicit Runge–Kutta scheme. In this case, the matrix A is a

strictly lower triangular matrix. Hence, I − zA is a triangular matrix with the values one

at its main diagonal. This matrix is invertible and it is

(I − zA)
−1

= I + zA+ . . .+ z
s−1

A
s−1

, (2.9)

which can be checked easily by multiplication with (I − zA) and using that A
s
= 0 since

A is strictly lower triangular. It follows from (2.8) and (2.9) that R(z) is a polynomial in

z of degree at most s.
Now, the general case will be considered. The expression (I−zA)

−1
1 can be interpreted

as the solution of the linear system of equations (I − zA)ζ = 1. Using the Cramer rule,

one finds that the i-th component of the solution has the form

ζi =
detAi

det(I − zA)
,

where Ai is the matrix that is obtained by replacing the i-th column of (I − zA) by the
right-hand side, i.e., by 1. The numerator of ζi is a polynomial in z of order at most (s−1)

since there is one column where z does not appear. The denominator is a polynomial of

degree at most s. Multiplying with zb
T
from the left-hand side gives just a rational function

with polynomials of at most degree s both in the numerator and in the denominator.

There is only one case where this approach does not work, namely if

det(I − zA) = det(z(I/z −A)) = z
s
det(I/z −A) = 0,

i.e., if 1/z is an eigenvalue of A. �

Theorem 2.15. Solution of the initial value problem (2.7) obtained
with a Runge–Kutta scheme. Consider a Runge–Kutta method with s
stages and with the parameters (A, b, c). If z−1 = (λh)−1 is not an eigen-
value of A, then the Runge–Kutta scheme is well-defined for the initial value
problem (2.7). In this case, it is

yk = (R(hλ))k, k = 0, 1, 2, . . . .

Proof. The statement of the theorem follows directly if one writes the Runge–Kutta
scheme for (2.7) and applies induction. exercise �

Definition 2.16. Stability domain. The stability domain of a one-step
method is the set
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S := {z ∈ Ĉ : |R(z)| ≤ 1}.
✷

Remark 2.17. Desirable property for the stability domain. The stability do-
main of the initial value problem (2.7) is, see Remark 2.10,

Sanal = C−
0 := {z ∈ C : Re(z) ≤ 0},

since R(z) = ez. In this domain, the solution decreases (for Re(z) < 0) or its
absolute value is constant (for Re(z) = 0). A desirable property of a numerical
method is that it should be stable for all parameters where the initial value
problem is stable, i.e., C−

0 ⊆ S. ✷

Definition 2.18. A-stable method. If for the stability domain S of a one-
step method, it holds that C−

0 ⊆ S, then this one-step method is called
A-stable. ✷

Lemma 2.19. Property of an A-stable method. Consider an A-stable
one-step method, then it is |R(∞)| ≤ 1.

Proof. By the assumption C−
0 ⊆ S, the absolute value of the stability function is bounded

from above by 1 for all |z| → ∞ with Re(z) ≤ 0. From Theorem 2.14, it follows that
the stability function has to be a rational function where the polynomial degree of the

numerator is not larger than the polynomial degree of the denominator, since otherwise

the function is unbounded for |z| → ∞. It is known from function theory that such rational
functions are continuous in ∞. Hence, it is |R(∞)| ≤ 1. �

Remark 2.20. On A-stable methods. The behavior of the stability function
for |z| → ∞, z ∈ C−

0 , is of utmost interest, since it describes the length of
the steps that is admissible for given λ such that the method is still stable.
However, from the property |R(∞)| ≤ 1, it does not follow that the step
length can be chosen arbitrarily large without loosing the stability of the
method. ✷

Definition 2.21. Strongly A-stable method, L-stable method. An A-
stable one-step method is called strongly A-stable, if it satisfies in addition
|R(∞)| < 1. It is called L-stable (left stable), if even it holds that |R(∞)| = 0.

✷

Example 2.22. Stability of some one-step methods. The types of stability de-
fined in Definitions 2.18 and 2.21 are of utmost importance for the quality of
a numerical method.

1. Explicit Euler method. It is R(z) = 1 + z, i.e., the stability domain is the
closed circle with radius 1 and center (−1, 0), see Figure 2.2. This method
is not A-stable. For |λ| large, one has to use very small steps in order to
get stable simulations.
The smallness of the step lengths for stable simulations of stiff problems
is the basic problem of all explicit methods.
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x
−1

y

1

y

1

x
1

Fig. 2.2 Stability domain of the explicit Euler method (left) and the implicit Euler method
(right).

2. Implicit Euler method. One has for this method R(z) = 1/(1 − z). The
stability domain is the complete complex plane without the open circle
with radius 1 and center (1, 0), see Figure 2.2. Hence, the method is A-
stable. From Example 2.11, it is already known that |R(∞)| = 0 such
that the implicit Euler method is even L-stable. A smallness condition
on the step lengths does not arise for this method, at least for the model
problem (2.7).
In general, one can apply with the implicit Euler method much larger steps
than, e.g., with the explicit Euler method. Step size restrictions arise, e.g.,
from the physics of the problem and from the required accuracy of the
simulations. However, one has to solve in general in each node a nonlinear
equation, like for each implicit scheme. Thus, the numerical costs and the
computing time per step are usually much larger than for explicit schemes.

3. Trapezoidal rule. For the trapezoidal rule, one gets with z = a+ ib, a, b ∈
R,

|R(z)|2 =

����
1 + z/2

1− z/2

����
2

=

����
1 + a/2 + ib/2

1− a/2− ib/2

����
2

=
(2 + a)2 + b2

(2− a)2 + b2
.

Thus, |R(z)| ≤ 1 if |2 + a| ≤ |2− a|, compare Figure 2.3, i.e.,

R(z)





< 1 for a < 0 ⇐⇒ Re(z) < 0,
= 1 for a = 0 ⇐⇒ Re(z) = 0,
= 1 for z = ∞,

see also Example 2.11. Hence, one obtains S = C−
0 . This method is A-

stable but not L-stable. However, in contrast to the implicit Euler method,
which is a first order method, the trapezoidal rule is a second order
method.

Summary: Already for the very simple model problem (2.7) it turns out that
explicit methods need in more complicated situations, i.e., if |z| is large,
very (extremly) small steps for performing stable simulations. One cannot
hope that this situation improves for more complex (stiff) problems. For
such problems, usually implicit methods, which allow to use a reasonable
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Fig. 2.3 Illustration to the trapezoidal rule, Example 2.22.

step length, are often the much more efficient approach, despite the necessity
to solve a nonlinear problem in each step. ✷

Remark 2.23. Linear systems of ordinary differential equations. The goal of
the reminder of this section consists in introducing at least one definition of
stiffness. To this end, consider an initial value problem with a linear system
of ordinary differential equations with constant coefficients

y�(x) = Ay(x), y(0) = y0, A ∈ Rn×n, y0 ∈ Rn. (2.10)

The solution of (2.10) has the form

y(x) = eAxy0,

where Ax is defined component-wise, as a multiplication of a scalar with a
matrix. The first factor on the right-hand side is the matrix exponential. ✷

Definition 2.24. Matrix exponential. Let A ∈ Rn×n and

A0 := I, A1 := A, A2 := AA, . . . , Ak := Ak−1A.

The matrix exponential is defined by

eA := exp(A) : Rn×n → Rn×n, A �→
∞�

k=0

Ak

k!
.

✷

Lemma 2.25. Properties of the matrix exponential. The matrix expo-
nential has the following properties:
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i) The series
∞�

k=0

Ak

k!

converges absolutely for all A ∈ Rn×n, like in the real case n = 1.
ii) If the matrices A,B ∈ Rn×n are commuting, i.e., if AB = BA holds, then

it follows that
eAeB = eA+B .

iii) The matrix
�
eA

�−1

∈ Rn×n exists for all A ∈ Rn×n and it holds

�
eA

�−1

= e−A.

This property corresponds to ex �= 0 for the scalar case.

iv) It holds rank
�
eA

�
= n, det

�
eA

�
�= 0.

v) The matrix-valued function R → Rn×n, x �→ eAx, where Ax is defined
component-wise, is continuously differentiable with respect to x with

d

dx
eAx = AeAx.

The derivative of the exponential is the first factor in this matrix product.
The formula looks the same as in the scalar case.

Proof. i) with comparison test with a majorizing series, using that the corresponding

series with real argument converges for all real numbers, see literature,

ii) follows from i), exercise,

iii) follows from ii), exercise,

iv) follows from iii),

v) direct calculation with difference quotient, exercise.

�

Example 2.26. Matrix exponential. There are only few classes of matrices that
allow an easy computation of the matrix exponential: diagonal matrices and
nilpotent matrices.

1. Consider

A =




1 0 0
0 2 0
0 0 3


 =⇒ Ak =




1k 0 0

0 2k 0

0 0 3k


 .

It follows that

eAx =

∞�

k=0

(Ax)k

k!
=

∞�

k=0

1

k!




xk 0 0

0 (2x)k 0

0 0 (3x)k
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=




�∞
k=0

x
k

k! 0 0

0
�∞

k=0
(2x)

k

k! 0

0 0
�∞

k=0
(3x)

k

k!


 =




ex 0 0

0 e2x 0

0 0 e3x


 .

2. This example illustrates property ii) of Lemma 2.25. For the matrices

A =

�
2 0
0 3

�
, B =

�
0 1
0 0

�
,

it is possible to calculate the corresponding series easily, since B is a
nilpotent matrix (B2 = 0). One obtains

eA =

�
e2 0

0 e3

�
, eB = I +B =

�
1 1
0 1

�
.

It holds AB �= BA and

eAeB =

�
e2 e2

0 e3

�
�=

�
e2 e3

0 e3

�
= eBeA.

Assume that eAeB = eA+B . Since eA+B = eB+A, it follows that then
also eBeA = eB+A = eA+B = eAeB , which is a contradiction to the
calculations from above.

✷

Remark 2.27. Extension of the stability theory to linear systems. Consider
system (2.10). Let the n eigenvalues of A be λ1, . . . ,λn ∈ C.

It will be assumed that this matrix can be diagonalized, i.e., there exists
a matrix Q ∈ Rn×n such that

Λ = Q−1AQ, with Λ = diag(λ1, . . . ,λn).

This property is given, e.g., if all eigenvalues are mutually different. The
columns qi of Q are the eigenvectors of A. With the substitution

y(x) = Qz(x) =⇒ y�(x) = Qz�(x),

one obtains the differential equation

Qz�(x) = AQz(x) ⇐⇒ z�(x) = Q−1AQz(x) = Λz(x).

The equations of this system are decoupled. Its general solution is given by

z(x) = eΛxc =
�
cie

λix
�
i=1,...,n

.

It follows that the general solution of (2.10) has the form
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y(x) = Qz(x) =

n�

i=1

cie
λixqi.

Inserting this expression in the initial condition yields

y(0) =

n�

i=1

ciqi = Qc = y0 =⇒ c = Q−1y0.

Hence, one obtains the following solution of the initial value problem

y(x) =

n�

i=1

�
Q−1y0

�
i
eλixqi, (2.11)

where
�
Q−1y0

�
i
is the i-th component of Q−1y0. Now, one can easily see

that the solution is stable (small changes of the initial data lead to small
changes of the solution) only if all eigenvalues have a negative real part.

The study of numerical methods makes sense only in the case that the
problem is well posed, i.e., all eigenvalues have a negative real part. Then,
the most important term in (2.11) with respect to stability is the term with
the eigenvalue of A with the largest absolute value of its real part, since
for the stability, the absolute values of the product of the real parts of the
eigenvalues and the step length are important. ✷

Definition 2.28. Stiff system of ordinary differential equations. The
linear system of ordinary differential equations

y�(x) = Ay(x), A ∈ Rn×n,

is called stiff, if all eigenvalues λi of A possess a negative real part and if

q :=
max{|Re(λi)| , i = 1, . . . , n}
min{|Re(λi)| , i = 1, . . . , n} � 1.

Sometimes, the system is called weakly stiff if q ≈ 10 and stiff if q > 10. ✷

Remark 2.29. On Definition 2.28. Definition 2.28 has a disadvantage. The
ratio becomes large also in the case that the eigenvalue with the smallest
absolute value of the real part is close to zero. However, this eigenvalue is not
important for the stability of numerical methods, only the eigenvalue with
the largest absolute value of the real part. ✷

Remark 2.30. Local stiffness for general ordinary differential equations. The
concept of stiffness can be extended in some sense from linear differential
equations to general differential equations. The differential equation

y�(x) = f(x,y(x))



42 2 Numerical Methods for Stiff Ordinary Differential Equations

can be transformed, by introducing the functions

y(x) := x and ỹ(x) :=

�
y(x)
y(x)

�
,

to the autonomous form

ỹ�(x) = f̃ (ỹ(x)) =

�
f(x,y(x))

1

�
.

By linearizing at the initial value ỹ0, one obtains a differential equation of the
form ỹ�(x) = Aỹ(x). Applying some definition of stiffness to the linearized
equation, it is possible to define a local stiffness for the general equation.

However, if one considers nonlinear problems, one has to be careful in the
interpretation of the results. In general, the results are valid only locally, i.e.,
in a neighborhood of the point of linearization, and they do not describe
the stability of a numerical method in the whole domain of definition of the
nonlinear problem. ✷

2.4 Rosenbrock Methods

Remark 2.31. Goal. From the stability theory, it became obvious that one
has to use implicit methods for stiff problems. However, implicit methods are
computationally expensive, one has to solve in general nonlinear problems in
each step. The goal consists in constructing implicit methods that have on
the one hand a reduced computational complexity but on the other hand,
they should be still accurate and stable. ✷

Remark 2.32. Linearly implicit Runge–Kutta methods. Consider, without loss
of generality, the autonomous initial value problem in Rn

y�(x) = f(y), y(0) = y0,

compare Remark 1.30. DIRK methods, see Remark 2.9, have a Butcher
tableau of the form

c1 a11 0 0 · · · 0
c2 a21 a22 0 · · · 0
c3 a31 a32 a33 · · · 0
...

...
...

. . .

cs as1 as2 · · · ass
b1 b2 · · · bs−1 bs

.

One has to solve s decoupled nonlinear equations
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Kj = f

�
yk + h

j−1�

l=1

ajlKl + hajjKj

�
, j = 1, . . . , s. (2.12)

This fixed-point equation can be solved with a fixed-point iteration. As a
special fixed-point iteration, the quasi Newton method for solving the j-th
equation leads to an iterative scheme of the form

K
(m+1)
j = K

(m)
j (2.13)

−
�
I − ajjhJ

�−1

�
K

(m)
j − f

�
yk + h

j−1�

l=1

ajlKl + hajjK
(m)
j

��

� �� �
residual

,

m = 0, 1, . . .. The derivative with respect to Kj of the corresponding nonlin-
ear problem to (2.12) with right-hand side 0 is

I − ajjh����
∂y

∂Kj

∂yf

�
yk + h

j−1�

l=1

ajlKl + hajjKj

�
∈ Rn×n.

In (2.13), one uses usually the approximation of the derivative J = ∂yf(yk)
instead of the derivative at the current iterate, hence it is a quasi Newton
method. If the step length h is sufficiently small, then the matrix

�
I − ajjhJ

�

is non-singular, since then it is sufficiently close to the identity, and the linear
systems of equations possess a unique solution.

Often, it turns out to be sufficient for reaching the required accuracy to
perform just one step of the iteration. This statement holds in particular if
the step length is sufficiently small and if a sufficiently accurate start value

K
(0)
j is available. One utilizes the ansatz (linear combination of the already

computed increments)

K
(0)
j :=

j−1�

l=1

djl
ajj

Kl,

where the coefficients djl, l = 1, . . . , j−1, still need to be determined. Apply-
ing just one step in (2.13) with this ansatz, one obtains an implicit method
with linear systems of equations of the form

�
I − ajjhJ

�
Kj = f

�
yk + h

j−1�

l=1

�
ajl + djl

�
Kl

�
− hJ

j−1�

l=1

djlKl,

j = 1, . . . , s,

yk+1 = yk + h

s�

j=1

bjKj . (2.14)
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This class of methods is called linearly implicit Runge–Kutta methods.
Linearly implicit Runge–Kutta methods are still implicit methods. One has

to solve in each step only s linear systems of equations. That means, these
methods are considerably less computationally complex than the original
implicit methods and the first goal stated in Remark 2.31 is achieved. Now,
one has to study which properties of the original methods are transferred to
linearly implicit methods. In particular, stability is of importance. If stability
will be lost, then linearly implicit methods are not suited for solving stiff
differential equations. ✷

Theorem 2.33. Stability of linearly implicit Runge–Kutta meth-
ods. Consider a Runge–Kutta method with the parameters (A, b, c), where
A ∈ Rs×s is a non-singular lower triangular matrix (which was used for the
derivation of (2.14)). Then, the corresponding linearly implicit Runge–Kutta
method (2.14) with J = ∂yf(yk) has the same stability function R(z) as the
original method, independently of the choice of {djl}.

Proof. The linearly implicit method will be applied to the one-dimensional (to simplify

notations) test problem

y
�
(x) = λy(x), y(0) = 1,

with Re(λ) < 0. Since f(y) = λy, one obtains J = λ. The j-th equation of (2.14) has the

form

�
1− ajjhλ

�
Kj = λ

�
yk + h

j−1�

l=1

�
ajl + djl

�
Kl

�
− hλ

j−1�

l=1

djlKl

= λyk + hλ

j−1�

l=1

ajlKl, j = 1, . . . , s.

Multiplication with h gives with z = λh

Kjh− z

j�

l=1

ajlKlh = zyk, j = 1, . . . , s.

This equation is equivalent, using matrix-vector notation, to

(I − zA)Kh = zyk1, K = (K1, . . . ,Ks)
T
.

Let h be chosen in such a way that z
−1

is not an eigenvalue of A. Then, one obtains by

inserting this equation in the second equation of (2.14)

yk+1 = yk + hb
T
K = yk + hb

T
(I − zA)

−1
1
z

h
yk =

�
1 + zb

T
(I − zA)

−1
1
�
yk = R(z)yk.

Now one can see that in the parentheses there is the stability function R(z) of the original
Runge–Kutta method, see (2.8). �

Remark 2.34. On the stability and consistency. Since the most important sta-
bility properties of a numerical method for solving initial value problems with
ordinary differential equations depend only on the stability function, these
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properties transfer from the original implicit Runge–Kutta method to the
corresponding linearly implicit method if J = ∂yf(yk).

The choice of the coefficients {djl} will influence the order of the linearly
implicit method. For an inappropriate choice of these coefficients, the order
of the linearly implicit method might be lower than the order of the original
method. ✷

Example 2.35. Linearly implicit Euler method. The implicit Euler method has
the Butcher tableau

1 1

1
.

With (2.14), it follows that the linearly implicit Euler method has the form

�
I − h∂yf(yk)

�
K1 = f (yk) , yk+1 = yk + hK1.

The linearly implicit Euler method is L-stable, like the implicit Euler method,
and one has to solve in each step only one linear system of equations. There
are no coefficients {djl} to be chosen in this method. ✷

Remark 2.36. Rosenbrock5 methods. Another possibility for simplifying the
use of linearly implicit methods and decreasing the numerical costs consists
in using for all increments the same coefficient ajj = a. In this case, all linear
systems of equations in (2.14) possess the same system matrix (I − ahJ).
Then, one needs only one LU decomposition of this matrix and can solve all
systems in (2.14) with this decomposition. This approach is called Rosenbrock
methods or Rosenbrock–Wanner6 methods (ROW methods)

(I − ahJ)Kj = f

�
yk + h

j−1�

l=1

�
ajl + djl

�
Kl

�
− hJ

j−1�

l=1

djlKl, j = 1, . . . , s,

yk+1 = yk + h
s�

j=1

bjKj . (2.15)

In practice, it is often even possible to use the same approximation J of the
Jacobian for some subsequent steps. This is true in particular, if the solution
changes only slowly. In this way, one can save additional computational costs.

✷

Example 2.37. The method ode23s. In MATLAB, one can find for solving stiff
initial value problems with ordinary differential equations the Rosenbrock
method ode23s, see Shampine & Reichelt (1997). This method has the form

5
Howard H. Rosenbrock (1920 – 2010)

6
Gerhard Wanner, born 1942
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(I − ahJ)K1 = f(yk), a =
1

2 +
√
2
≈ 0.2928932,

(I − ahJ)K2 = f

�
yk +

1

2
hK1

�
− ahJK1, (2.16)

yk+1 = yk + hK2.

From the equation for the second increment, it follows that d21 = a. Then,
one obtains with (2.15) a21 = 1/2 − d21 = 1/2 − a. Using the condition
that the nodes are the sums of the rows of the matrix, it follows that the
corresponding Butcher tableau looks like

a a
1/2 1/2− a a

0 1
.

✷

Theorem 2.38. Consistency order of ode23s. The Rosenbrock method
ode23s is of second order consistent if h ∈ (0, 1/(2a �J�2)).
Proof. Let h ∈ (0, 1/(2a �J�2)), where �·�2 denotes the spectral norm of J , which is

induced by the Euclidean vector norm �·�2. It can be shown, see class Computer Mathe-

matics, that the matrix (I − ahJ) is invertible if �ahJ�2 < 1. This condition is satisfied
for the choice of h from above.

Let K be the solution of

(I − ahJ)K = f . (2.17)

Then, one obtains with the triangle inequality, with the compatibility of the Euclidean

vector norm and the spectral matrix norm, and with the choice of h that

�(I − ahJ)K�2 ≥ �K�2 − ah �JK�2 ≥ �K�2 − ah �J�2 �K�2

≥ �K�2 − a �J�2
2a �J�2

�K�2 =
1

2
�K�2 .

It follows with (2.17) that

1

2
�K�2 ≤ �(I − ahJ)K�2 = �f�2 =⇒ �K�2 ≤ 2 �f�2 . (2.18)

Thus, the solution of the linear system of equations is bounded by the right-hand side,
independently of h. This result will be applied to (2.16). For K1, the right-hand side does

not depend on h. Also the right-hand side of K2 does not depend on negative powers of h,

e.g., using the step length restriction, one obtains also for K2 a bound that is independent
of negative powers of h

����f
�
yk +

1

2
hK1

�
− ahJK1

����
2

≤
����f

�
yk +

1

2
hK1

�����
2

+ ah �J�2 �K1�2

≤
����f

�
yk +

1

2
hK1

�����
2

+
1

2
�K1�2 ,

and the first term on the right-hand side can be further estimated as in (2.20) below.

One obtains for the first increment of ode23s by recursive insertion, using (2.16),
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K1 = f(yk) + ahJK1 = f(yk) + ahJ (f(yk) + ahJK1)

= f(yk) + ahJf(yk) + h
2
a
2
J
2
K1

= f(yk) + ahJf(yk) +O
�
h
2
�
. (2.19)

The last step is allowed since K1 is bounded by the data of the problem (the right-hand
side f(yk)) independently of h, see (2.18) where the constant in the estimate is 2. Using

a Taylor series expansion and considering only first order terms explicitly, one obtains in
a similar way for the second increment of ode23s

K2 = f

�
yk +

1

2
hK1

�
− ahJK1 + ahJK2

= f (yk) +
1

2
h∂yf (yk)K1 − ahJK1 + ahJK2 +O

�
h
2
�

(2.20)

(2.19)
= f (yk) +

1

2
h∂yf (yk)f (yk)− ahJf(yk) + ahJK2 +O

�
h
2
�

(2.20)
= f (yk) +

1

2
h∂yf (yk)f (yk)− ahJf(yk) + ahJf(yk) +O

�
h
2
�

= f (yk) +
1

2
h∂yf (yk)f (yk) +O

�
h
2
�
.

Inserting these results in (2.16) gives for one step of ode23s

yk+1 = yk + hf (yk) +
1

2
h
2
∂yf (yk)f (yk) +O

�
h
3
�
. (2.21)

The Taylor series expansion of the solution y(x) of the system of differential equations in

xk has the form, using the differential equation and the chain rule,

y(xk+1) = y(xk) + hy
�
(xk) +

h
2

2
y
��
(xk) +O

�
h
3
�

= y(xk) + hf (yk) +
h
2

2

∂f (y)

∂x
(xk) +O

�
h
3
�

= y(xk) + hf (yk) +
h
2

2
∂yf (yk)y

�
(xk) +O

�
h
3
�

= y(xk) + hf (yk) +
h
2

2
∂yf (yk)f (yk) +O

�
h
3
�
.

Starting with the exact value at xk, then the first three terms of (2.21) correspond to
the Taylor series expansion of the solution y(x) of the system of differential equations in

xk. Thus, it follows that the local error is of order O
�
h
3
�
, from what follows that the

consistency order of ode23s is two, see Definition 1.14. �

Remark 2.39. To the proof of Theorem 2.38. Note that it is not needed in the
proof of Theorem 2.38 that J is the exact derivative ∂yf (yk). The method
ode23s remains a second order method if J is only an approximation of
∂yf (yk) and even if J is an arbitrary matrix. However, the transfer of the
stability properties from the original method to ode23s is only guaranteed
for the choice J = ∂yf (yk), see Theorem 2.33. ✷

Theorem 2.40. Stability function of ode23s. Assume that J = ∂yf(yk),
then the stability function of the Rosenbrock method ode23s has the form
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R(z) =
1 + (1− 2a)z

(1− az)2
. (2.22)

Proof. The statement of the theorem follows from applying the method to the usual test

equation, exercise. �

Corollary 2.41. Stability of ode23s. If J = ∂yf(yk), then the Rosenbrock
method ode23s is L-stable.

Proof. The statement is obtained by applying the definition of L-stability to the stability
function (2.22). �

Remark 2.42. On the order of ode23s. It remains the question whether an
appropriate choice of J might even increase the order of the method. However,
for the model problem of the linear stability analysis, a series expansion of the
stability function shows that the exponential function is reproduced exactly
only up to the quadratic term. From this observation, it follows that one does
not obtain a third order method even with exact Jacobian. In practice, there
is no important reason from the point of view of accuracy to compute a new
Jacobian in each step. Often, it is sufficient to update J every now and then.

✷


