
Chapter 9

Other Krylov Subspace Methods for
Non-Symmetric Systems

Remark 9.1. Motivation. The Krylov subspace methods GMRES and FOM
for solving general linear systems of equations have the disadvantage that
their costs (in memory and flops) increases with the number of iterations,
since there is no short recurrence. A remedy is to use restarted versions,
compare Remark 5.9. However, the restart might lead to a considerably slower
rate of convergence. This section presents alternative approaches that are
based on short recurrences but which fulfill the properties of minimizing the
residual (like GMRES) or of the residual being orthogonal to the Krylov
subspace (like FOM), respectively, not longer. ✷

Remark 9.2. Biorthogonal bases. The starting point of the alternative algo-
rithms is the construction of a pair of biorthogonal bases

�
v(1), . . . , v(k)

�
of Kk

�
r(0), A

�
= span

�
r(0), Ar(0), . . . , Ak−1r(0)

�
,

�
w(1), . . . , w(k)

�
of Kk

�
r(0), AT

�
= span

�
r(0), AT r(0), . . . ,

�
AT

�k−1

r(0)
�

such that �
w(j), v(i)

�
= δij .

These bases can be constructed with the Lanczos biorthogonalization proce-
dure. ✷

Algorithm 9.3. Lanczos biorthogonalization procedure. Given a ma-

trix A ∈ Rn×n and r(0) ∈ Rn.

1. v(1) = r(0)/
���r(0)

���
2

2. w(1) = v(1)

3. β0 = 0, γ0 = 0

4. v(0) := 0, w(0) = 0
5. for j = 1 : k

69



70 9 Other Krylov Subspace Methods for Non-Symmetric Systems

6. s = Av(j)

7. z = ATw(j)

8. αj = (w(j), s)

9. ṽ(j+1) = s− αjv
(j) − βj−1v

(j−1)

10. w̃(j+1) = z − αjw
(j) − γj−1w

(j−1)

11. γj =
���ṽ(j+1)

���
2

12. v(j+1) = ṽ(j+1)/γj

13. βj =
�
w̃(j+1), v(j+1)

�

14. w(j+1) = w̃(j+1)/βj

15. endfor

✷

Remark 9.4. On the Lanczos biorthogonalization procedure.

• There is a short recurrence in Algorithm 9.3.

• Note that the basis of Kk

�
r(0), A

�
will be in general not orthogonal

as well as the basis of Kk

�
r(0), AT

�
. For non-symmetric matrices, the

computation of an orthogonal basis is not possible with a short recurrence.
• In the case A = AT , Algorithm 9.3 is exactly the Lanczos Algorithm 5.12.
• Algorithm 9.3 requires two matrix-vector products, lines 6 and 7.
• A critical point of Algorithm 9.3 is the product of the transposed of A
with a vector, line 7. In some applications, A is not given explicitly. Then,
AT is usually not available. But much more important, the application of
a number of preconditioners, see Chapter 8, becomes complicated if AT

appears in the algorithm.

✷

Theorem 9.5. Computation of a pair of biorthogonal bases. Assume

that
�
w̃(j), v(j)

�
�= 0 for all j = 1, · · · , k. Then, the Lanczos biorthogonaliza-

tion procedure computes a pair of biorthogonal bases.

Proof. The theorem is proved by induction. The statement is true if k = 1 since w
(1)

=

v
(1)

, line 2 and
���v(1)

���
2
= 1, line 1. For k = 2, it can be proved directly from the algorithm,

in a similar way as for the general case.

Assume, the statement is proved for i = 1, . . . , k − 1 with k − 1 ≥ 2, and suppose�
w̃

(j)
, v

(i)
�
=

�
w

(j)
, v

(i)
�
= 0 for i �= j, 1 ≤ i, j ≤ k−1 and

�
w

(i)
, v

(i)
�
= 1, 1 ≤ i ≤ k−1.

The choice of γk−1 implies
���v(k)

���
2
= 1 and line 14 and the choice of βk−1 give

�
w

(k)
, v

(k)
�
=


 w̃

(k)

�
w̃

(k)
, v

(k)
� , v

(k)


 =

�
w̃

(k)
, v

(k)
�

�
w̃

(k)
, v

(k)
� = 1.

Using lines 12 and 9, the assumption of the induction, and the definition of αk−1 leads to



9 Other Krylov Subspace Methods for Non-Symmetric Systems 71

�
w

(k−1)
, v

(k)
�
=

�
w

(k−1)
,
ṽ
(k)

γk−1

�

=
1

γk−1



�
w

(k−1)
, Av

(k−1)
�
− αk−1

�
w

(k−1)
, v

(k−1)
�

� �� �
=1

−βk−2

�
w

(k−1)
, v

(k−2)
�

� �� �
=0


 = 0.

One obtains analogously
�
w

(k)
, v

(k−1)
�
= 0. Moreover, using the lines 12, 9, the assump-

tion of the induction, line 10 (with z = A
T
w

(k−2)
), and the definition of βk−2 gives

�
w

(k−2)
, v

(k)
�

=
1

γk−1



�
w

(k−2)
, Av

(k−1)
�
− αk−1

�
w

(k−2)
, v

(k−1)
�

� �� �
=0

−βk−2

�
w

(k−2)
, v

(k−2)
�

� �� �
=1




=
1

γk−1

��
w

(k−2)
, Av

(k−1)
�
− βk−2

�

=
1

γk−1

��
A

T
w

(k−2)
, v

(k−1)
�
− βk−2

�

=
1

γk−1

��
w̃

(k−1)
, v

(k−1)
�
+ αk−2

�
w̃

(k−2)
, v

(k−1)
�

� �� �
=0

+γk−3

�
w̃

(k−3)
, v

(k−1)
�

� �� �
=0

−βk−2

�

= 0.

Analogously, one checks that
�
w

(k)
, v

(k−2)
�

= 0 and in a similar way, one obtains
�
w

(k)
, v

(j)
�
= 0 and

�
w

(j)
, v

(k)
�
= 0 for j < k − 2. �

Remark 9.6. Matrix representation of the Lanczos biorthogonalization proce-
dure. For the matrix representation of the Lanczos biorthogonalization pro-
cedure, the matrices

Vk =
�
v(1) . . . v(k)

�
, Wk =

�
w(1) . . . w(k)

�
∈ Rn×k

are introduced. From Algorithm 9.3, it follows that

AVk = Vk+1Tk+1,k, ATWk = Wk+1T̂k+1,k (9.1)

with

Tk+1,k =




α1 β1

γ1 α2

. . .
. . .

. . .

βk−1

αk

γk




, T̂k+1,k =




α1 γ1
β1 α2

. . .
. . .

. . .

γk−1

αk

βk




,



72 9 Other Krylov Subspace Methods for Non-Symmetric Systems

Tk+1,k, T̂k+1,k ∈ R(k+1)×k. The biorthogonality property implies

V T
k Wk = I. (9.2)

✷

9.1 The Bi-CG Method

Remark 9.7. Idea, costs. The Bi-CG method constructs the iterate

x(k) = x(0) + Vkyk, y
k
∈ Rk,

so that r(k) = r(0) −AVkyk is orthogonal to Kk

�
r(0), AT

�
, i.e.,

0 = WT
k r(k) = WT

k r(0) −WT
k AVkyk. (9.3)

Using (9.1) and (9.2), one has

WT
k AVk = WT

k Vk+1Tk+1,k = WT
k

�
Vkv

(k+1)
�
Tk+1,k = [Ik 0]Tk+1,k =: Tk

with

Tk =




α1 β1

γ1 α2

. . .
. . .

. . .

αk−1 βk−1

γk−1 αk




∈ Rk×k

and
WT

k r(0) =
���r(0)

���
2
e1, e1 ∈ Rk,

since v(1) = r(0)/
���r(0)

���
2
by line 1 of Algorithm 9.3 and w(j) ⊥ v(1) for j > 1.

Thus, the computation of y
k
from (9.3) requires the solution of the tridi-

agonal system

Tkyk =
���r(0)

���
2
e1.

The necessity of solving a system with a tridiagonal matrix arose already in
the CG method. The iterate of the CG method is given in (6.2), where H̃k is
a tridiagonal matrix since A is a symmetric matrix, see Remark 5.11. Now,
an algorithm for implementing the Bi-CG method can be derived similarly
to the derivation of the algorithm for the CG method, see Remark 6.7. ✷



9.1 The Bi-CG Method 73

Algorithm 9.8. Biconjugate Gradient (Bi-CG). Given a non-singular

matrix A ∈ Rn×n, a right-hand side b ∈ Rn, an initial iterate x(0) ∈ Rn and
a tolerance ε > 0.

1. r(0) = b−Ax(0)
, choose r̃(0) such that

�
r̃(0)

�T

r(0) �= 0

2. p
1
= r(0), p̃

1
= r̃(0)

3. k = 0
4. while

���r(k)
���
2
> ε

5. k = k + 1
6. s = Ap

k

7. z = AT p̃
k

8. νk =

�
r̃(k−1)

�T

r(k−1)

p̃T
k
s

9. x(k) = x(k−1) + νkpk
10. r(k) = r(k−1) − νks

11. r̃(k) = r̃(k−1) − νkz

12. µk+1 =

�
r̃(k)

�T

r(k)

�
r̃(k−1)

�T

r(k−1)

13. p
k+1

= r(k) + µk+1pk
14. p̃

k+1
= r̃(k) + µk+1p̃k

15. endwhile

✷

Remark 9.9. On the Bi-CG method. If A is symmetric and positive definit and

r(0) = r̃(0), the Bi-CG method reduces to the CG method, as can be easily
seen by comparing Algorithm 6.8 and Algorithm 9.8. As can be seen in Al-
gorithm 9.8, the Bi-CG method can be implemented with a short recurrence

(not only the Lanczos part but also the projection part into Kk(r
(0), AT )).

If not only Ax = b should be solved but also AT x̃ = b̃ for given b̃ ∈ Rn,

then one should choose r̃(0) = b̃−AT x̃(0) for some initial iterate x̃(0) and an
appropriate update for the solution of the system with the transposed matrix

has to be inserted in the algorithm, see Saad (2003). Otherwise, r̃(0) = r(0)

is a common choice.
Altogether, Bi-CG is not that often used. One reason might be the ap-

pearance of AT in the algorithm. ✷



74 9 Other Krylov Subspace Methods for Non-Symmetric Systems

9.2 The QMR Method

Remark 9.10. Idea. The goal of the QMR method (quasi minimal residual) is
the construction of

x(k) = x(0) + Vkyk, y
k
∈ Rk,

such that the second factor of the residual

r(k) = r(0) −AVkyk = r(0) − Vk+1Tk+1,kyk = Vk+1

����r(0)
���
2
e1 − Tk+1,kyk

�

(9.4)
becomes minimal. In this derivation, (9.1) and Line 1 of Algorithm 9.3 were
used. Since the columns of Vk+1 are in general not mutually orthogonal,

the left-hand side r(k) does not become minimal in the Euclidean norm.
Analogously to the GMRES method, the solution of the least squares problem

min
y∈Rk

���
���r(0)

���
2
e1 − Tk+1,ky

���
2

is defined to be y
k
. This problem possesses always a unique solution as long as

the Lanczos biorthogonalization procedure does not terminate. The solution
can be performed with a short recurrence since Tk+1,k is tridiagonal, compare
the discussion for MINRES in Remark 5.15. ✷

Lemma 9.11. Upper bound for the residual of the QMR method.

Denote by r
(k)
QMR the residual of QMR, then

���r(k)QMR

���
2
≤

√
k + 1

���
���r(0)

���
2
e1 − Tk+1,kyk

���
2
.

Proof. By the definition of the residual (9.4) it follows that

���r(k)QMR

���
2
≤

��Vk+1

��
2

���
���r(0)

���
2
e1 − Tk+1,kyk

���
2
.

One obtains for the first factor by using the definition of the spectral norm, the triangle
inequality, the Cauchy

1
–Schwarz

2
inequality, and line 12 of Algorithm 9.3

��Vk+1

��
2
= sup

z∈Rk+1
,�z�2=1

��Vk+1z
��
2
= sup

z∈Rk+1
,�z�2=1

������

k+1�

j=1

zjv
(j)

������
2

≤ sup
z∈Rk+1

,�z�2=1

k+1�

j=1

��zj
��
���v(j)

���
2

1
Augustin Louis Cauchy (1789 – 1857)

2
Hermann Amandus Schwarz (1843 – 1921)



9.2 The QMR Method 75

≤ sup
z∈Rk+1

,�z�2=1




k+1�

j=1

��zj
��2



1/2

� �� �
=1




k+1�

j=1

���v(j)
���
2

2� �� �
=1




1/2

= (k + 1)
1/2

.

�

Theorem 9.12. Relation between the residual of the QMR method

and the minimal residual. Denote by r
(k)
QMR the residual of QMR in the

k-th iteration and by r
(k)
min the residual that is obtained by minimizing the

whole residual, then it holds

���r(k)QMR

���
2
≤

λmax

�
V T
k+1Vk+1

�

λmin

�
V T
k+1Vk+1

�
���r(k)min

���
2
.

Proof. Using (2.4), after having multiplied the expression appropriately, and (9.4), one

has for all y ∈ Rk

���r(k)
���
2

2
=

����r(0)
���
2
e1 − Tk+1,ky

�T
V

T
k+1Vk+1� �� �
s.p.d.

����r(0)
���
2
e1 − Tk+1,ky

�

≥ λmin

�
V

T
k+1Vk+1

����
���r(0)

���
2
e1 − Tk+1,ky

���
2

2

≥ λmin

�
V

T
k+1Vk+1

����
���r(0)

���
2
e1 − Tk+1,kyk

���
2

2
,

since y
k

minimizes the second factor. Because this estimate holds for all y ∈ Rk
, one

obtains in particular for the vector which leads to the minimal residual that

���r(k)min

���
2

2
≥ λmin

�
V

T
k+1Vk+1

����
���r(0)

���
2
e1 − Tk+1,kyk

���
2

2
. (9.5)

On the other hand, it is, using the definition of the spectral norm,

���r(k)QMR

���
2

2
≤

��Vk+1

��2

2

���
���r(0)

���
2
e1 − Tk+1,kyk

���
2

2

= λmax

�
V

T
k+1Vk+1

����
���r(0)

���
2
e1 − Tk+1,kyk

���
2

2

so that

���
���r(0)

���
2
e1 − Tk+1,kyk

���
2

2
≥

���r(k)QMR

���
2

2

λmax

�
V

T
k+1Vk+1

� .

Inserting this estimate in (9.5) finishes the proof. �

Remark 9.13. On the QMR method. The implementation of the QMR method
is analogous to the implementation of MINRES. If A is symmetric, QMR
reduces to MINRES. ✷



76 9 Other Krylov Subspace Methods for Non-Symmetric Systems

9.3 Transposed-Free Methods

Remark 9.14. Motivation. As already explained in Remark 9.4, the trans-
posed matrix AT is in a number of situations not available. Then, algorithms
that require the multiplication with AT cannot be used. ✷

Remark 9.15. Idea of the Conjugate Gradient Squared (CGS) method. The
CGS method can be derived from the Bi-CG method, see Algorithm 9.8.
Sucessive insertion shows that the residual vector can be expressed as

r(k) = φk(A)r(0), k ≥ 0, (9.6)

where φk(A) is a polynomial of degree k with φk(0) = 1, compare (7.1).
Similarly, it is

p
k
= ψk−1(A)r(0), k ≥ 1, (9.7)

where ψk−1(A) is a polynomial of degree (k − 1) with ψk−1(0) = 1. From

Algorithm 9.8, it can be observed that the vectors r̃(k) and p̃
k
are defined in

the same way with the same polynomials where A is replaced by AT

r̃(k) = φk

�
AT

�
r̃(0), p̃

k
= ψk−1

�
AT

�
r̃(0). (9.8)

Inserting (9.6) – (9.8) in the definition of νk in line 8 of Algorithm 9.8 gives

νk =

�
φk−1

�
AT

�
r̃(0)

�T

φk−1(A)r(0)

�
ψk−1

�
AT

�
r̃(0)

�T

Aψk−1(A)r(0)
=

�
r̃(0)

�T

φ2
k−1(A)r(0)

�
r̃(0)

�T

Aψ2
k−1(A)r(0)

. (9.9)

Similarly, one obtains for the parameter in line 12

µk+1 =

�
φk

�
AT

�
r̃(0)

�T

φk(A)r(0)

�
φk−1

�
AT

�
r̃(0)

�T

φk−1(A)r(0)
=

�
r̃(0)

�T

φ2
k(A)r(0)

�
r̃(0)

�T

φ2
k−1(A)r(0)

. (9.10)

Thus, if it would be possible to derive recursions for the vectors φ2
k(A)r(0)

and ψ2
k−1(A)r(0), then the computation of νk and µk+1 would be possible

without using the transposed of A.
The goal of CGS consists now, besides the formulation of the recursions,

to compute iterates whose residual satisfy

r(k) = φ2
k(A)r(0), (9.11)

instead of (9.6).
To derive these recursions, one starts with a recursion for the polynomials.

Inserting (9.6) and (9.7) in line 10 of Algorithm 9.8, one obtains



9.3 Transposed-Free Methods 77

φk(A)r(0) = φk−1(A)r(0) − νkAψk−1(A)r(0),

hence the recursion for the polynomial is

φk(t) = φk−1(t)− νktψk−1(t). (9.12)

Similarly, one obtains from line 13

ψk(t) = φk(t) + µk+1ψk−1(t). (9.13)

Taking the square of the polynomials gives

φ2
k(t) = φ2

k−1(t)− 2νktφk−1(t)ψk−1(t) + ν2kt
2ψ2

k−1(t),

ψ2
k(t) = φ2

k(t) + 2µk+1φk(t)ψk−1(t) + µ2
k+1ψ

2
k−1(t).

The difficulty for deriving a recursion comes from the cross terms. The idea
to overcome this difficulty consists in constructing a recursion for one of the
cross terms, too. It is with (9.13)

φk−1(t)ψk−1(t) = φk−1(t) (φk−1(t) + µkψk−2(t))

= φ2
k−1(t) + µkφk−1(t)ψk−2(t).

Collecting all equations, (9.12), and (9.13), one obtains the following relations
(where for clarity of presentation the dependency on t will be neglected)

φ2
k = φ2

k−1 − νkt
�
2φ2

k−1 + 2µkφk−1ψk−2 − νktψ
2
k−1

�
, (9.14)

φkψk−1 = (φk−1 − νktψk−1)ψk−1 = φk−1ψk−1 − νktψ
2
k−1

= φ2
k−1 + µkφk−1ψk−2 − νktψ

2
k−1, (9.15)

ψ2
k = φ2

k + 2µk+1φkψk−1 + µ2
k+1ψ

2
k−1. (9.16)

Notice that in (9.14) one can use the known quantities φ2
k−1 and ψ2

k−1 for

computing νk, see (9.9), and φ2
k−1 and φ2

k−2 for computing µk, see (9.10).
Thus, the recursion (9.14) and (9.15) are well defined. After having computed
φ2
k, one can compute µk+1, which is needed in (9.16). Altogether, (9.14) –

(9.16) is a recursion for the quantities φ2
k, ψ

2
k, and φkψk−1.

An efficient implementation of the recursion leads to the CGS method.
This method was developed in Sonneveld (1989). One step of this method re-

quires two matrix-vector products with the matrix A but no product with AT .
CGS works well in many cases (Saad, 2003, Section 7.4.1), however rounding
errors might become important since the residual polynomial is squared. An
irregular convergence might occur that can even lead to an overflow. ✷

Remark 9.16. Idea of the Bi-Conjugate Gradient Stabilized (BiCGStab) meth-
od. The BiCGStab method is a generalization of the CGS method that was
developed in van der Vorst (1992) to stabilize the CGS method. Instead of



78 9 Other Krylov Subspace Methods for Non-Symmetric Systems

computing a residual vector of the form (9.11), the residual vector computed
with BiCGStab should fulfill

r(k) = πk(A)φk(A)r(0),

where φk(t) is the polynomial associated with the Bi-CG algorithm and πk(t)
is a new polynomial of degree k. The choice of πk(A) should contribute to
the stabilization of the algorithm.

In the BiCGStab method, the polynomial πk(t) is defined by the recurrence

πk+1(t) = (1− ωkt)πk(t), π0(t) = 1,

where ωk ∈ R has yet to be determined. The choice of this polynomial leads
in fact to a more stable algorithm than CGS. The parameter ωk is chosen
in such a way that the norm of a certain residual vector that occurs in the
algorithm is minimized, for more details see van der Vorst (1992) and (Saad,
2003, Section 7.4.2). ✷

Algorithm 9.17. Bi-Conjugate Gradient Stabilized (BiCGStab).
Given a non-singular matrix A ∈ Rn×n, a right-hand side b ∈ Rn, an initial

iterate x(0) ∈ Rn and a tolerance ε > 0.

1. r(0) = b−Ax(0)
, choose r̃(0) arbitrarily such that�

r̃(0)
�T

r(0) �= 0

2. p
1
= r(0)

3. k = 0
4. while

���r(k)
���
2
> ε

5. k = k + 1
6. s = Ap

k

7. νk =

�
r̃(0)

�T

r(k−1)

�
r̃(0)

�T

s

8. w = r(k−1) − νks
9. z = Aw

10. ωk =
zTw

zT z

11. x(k) = x(k−1) + νkpk + ωkw

12. r(k) = w − ωkz

13. µk+1 =

�
r̃(0)

�T

r(k)

�
r̃(0)

�T

r(k−1)

νk
ωk

14. p
k+1

= r(k) + µk+1

�
p
k
− ωks

�

15. endwhile



9.3 Transposed-Free Methods 79

✷

Remark 9.18. BiCGStab.

• Each iteration requires two matrix-vector products with A.

• In van der Vorst (1992), it is proposed to use r̃(0) = r(0).
• In exact arithmetics, BiCGStab terminates in at most n iterations.
• There is the possibility that BiCGStab terminates in finite precision with-

out having computed the solution, e.g., if
�
r̃(0)

�T

r(k−1) is (close to) zero.

Then, one can try to use a different vector r̃(0) or one can switch to
another method like GMRES.

• There are other variants of BiCGStab than given in Algorithm 9.17 that
are equivalent in exact arithmetics but not in finite precision computation,
see van der Vorst (1992). For instance, in MATLAB there is different
variant implemented. Different variants might behave differently.

• One should compute and store
�
r̃(0)

�T

r(k) before line 13 to be used in

the next iteration at line 7 and at line 13.
• BiCGStab is besides GMRES the most popular iterative scheme for solv-
ing large linear systems of equations with non-symmetric matrices.

✷

Remark 9.19. Transposed-free QMR. There is also a transposed-free version of
the QMR algorithm, see (Saad, 2003, Section 7.4.3). However, this algorithm
is not popular. ✷


