
Chapter 8

Preconditioning

8.1 The General Approach

Remark 8.1. Motivation and idea. It was seen in Chapter 7 that the number
of iterations might depend on the condition number of the matrix. In order
to reduce the number of iterations, one wants to replace the original linear
system of equations (1.1) by an equivalent system whose system matrix has
a smaller condition number. This strategy is called preconditioning.

The main idea of preconditioning consists in applying the iterative method
to the equivalent system

M−1Ax = M−1b (preconditioning from left)

or
AM−1y = b, x = M−1y (preconditioning from right).

The non-singular matrix M is called preconditioner. This matrix should sat-
isfy two requirements:

• The convergence of the iterative method for the system with the matrix
M−1A or AM−1, respectively, should be faster than for the original sys-
tem with the matrix A. That means,M−1 should be a good approximation
to A−1.

• Linear systems with the matrix M should be solvable with low costs.

In general, one has to find a compromise between these two requirements.
Usually, left and right preconditioning lead to different methods which

might behave sometimes quite differently. ✷

Remark 8.2. Some preconditioners. An easy way to construct preconditioners
consists in starting with the decomposition A = D + L+ U , see Section 3.2,
and using parts of this decomposition which are easily invertible:

• M = D, diagonal preconditioner, Jacobi preconditioner,
• M = D + L, forward Gauss–Seidel preconditioner,
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58 8 Preconditioning

• M = D + U , backward Gauss–Seidel preconditioner,
• M = (D + L)D−1 (D + U), symmetric Gauss–Seidel preconditioner.

Damped versions of the classical iterative schemes can be also used. A more
advanced preconditioner will be presented in Section 8.3.

Note that M or M−1 do not need to be known explicitly. They can also
stand for some numerical (iterative) method for solving linear systems of
equations. Then, M−1 means that this method should be applied to a vector.

✷

Remark 8.3. Change in algorithms for general matrices if the preconditioner
is applied. In algorithms for general matrices A, preconditioning from left

consists in replacing A by M−1A and r(k) by M−1r(k) in the algorithms.
Then, e.g., GMRES computes the iterate

x(k) ∈ x(0) +Kk

�
M−1r(0),M−1A

�

such that
���M−1r(k)

���
2
becomes minimal. ✷

8.2 Symmetric Matrices

Remark 8.4. A difficulty and its solution. A problem occurs if the matrix A is
symmetric and the iterative method wants to exploit this property, e.g., using
short recurrences, since in general neither M−1A nor AM−1 are symmetric.
This problem can be solved by constructing the orthonormal basis of the
Krylov subspace with respect to an appropriate inner product.

Let H be a Hilbert1 space with the inner product (·, ·)H and L : H → H
be a linear map. This map is called self-adjoint with respect to (·, ·)H if

(Lv, w)H = (v,Lw)H ∀ v, w ∈ H.

In the case H = Rn equipped with the standard Cartesian basis and the
Euclidean inner product (·, ·), a linear map, which is represented by a matrix
A, is self-adjoint if

(Ax, y) = (x,Ay) ∀ x, y ∈ Rn.

This condition is equivalent to A being symmetric.
If the preconditioner M is symmetric and positive definite, then

(x, y)M = (x,My), ∀ x, y ∈ Rn

1
David Hilbert (1862 – 1943)
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defines an inner product in Rn. The induced norm is given by �x�M =

(x, x)
1/2
M .

Consider for the remainder of this section preconditioning from left. The
matrix M−1A is self-adjoint with respect to this inner product since

(M−1Ax, y)M = (M−1Ax,My) = (Ax, y) = (x,Ay) = (x,M−1Ay)M

for all x, y ∈ Rn.
Now, one can generate an orthonormal basis with respect to the inner

product (·, ·)M of Kk

�
M−1r(0),M−1A

�
by an appropriate modification of

the Lanczos algorithm. ✷

Algorithm 8.5. Preconditioned Lanczos algorithm for symmetric
matrices. Given a symmetric matrix A ∈ Rn×n, a symmetric positive defi-

nite matrix M ∈ Rn×n, and r(0) ∈ Rn.

1. z = M−1r(0)

2. q
1
=

z

(r(0), z)1/2

3. β0 = 0
4. q

0
= 0

5. for j = 1 : k
6. s = Aq

j

7. z = M−1s

8. αj =
�
s, q

j

�

9. z = z − αjqj − βj−1qj−1

10. βj = (s, z)1/2

11. q
j+1

= z/βj

12. endfor

✷

Remark 8.6. On the preconditioned Lanczos algorithm for symmetric matri-
ces.

• The vector z is computed by solving Mz = s.
• The matrix form of the preconditioned Lanczos algorithm is

M−1AQk = Qk+1Hk with Hk =




α1 β1 0 · · · 0 0
β1 α2 β2 · · · 0 0
...

. . .
. . .

. . .
...

...

0 0 0 · · · αk−1 βk−1

0 0 0 · · · βk−1 αk

0 0 0 · · · 0 βk




∈ R(k+1)×k.

(8.1)
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The columns of Qk+1 are orthogonal with respect to (·, ·)M

QT
k+1MQk+1 = I ∈ R(k+1)×(k+1). (8.2)

✷

Remark 8.7. On the orthogonality condition for the preconditioned conjugate
gradient method. The preconditioned conjugate gradient method (PCG) is
one of the most important algorithms for solving linear systems of equa-
tions with symmetric and positive definite matrix. Besides the preconditioned
Lanczos algorithm, one needs to implement the orthogonality condition of the
residual with respect to (·, ·)M with a short recurrence. Concretely, one has
to construct

x(k) ∈ x(0) +Kk

�
M−1r(0),M−1A

�
(8.3)

such thatM−1r(k) = M−1
�
b−Ax(k)

�
is orthogonal toKk

�
M−1r(0),M−1A

�

with respect to (·, ·)M

M−1r(k) ⊥M Kk

�
M−1r(0),M−1A

�
⇐⇒ M−1r(k) ⊥M Qk. (8.4)

Using the definition of q
1
, see Algorithm 8.5, lines 1 and 2, it is by (8.2)

�
q
k
, r(0)

�
=

�
q
k
,MM−1r(0)

�
=

���M−1r(0)
���
M

�
q
k
,Mq

1

�

=
���M−1r(0)

���
M

δ1k, (8.5)

where δij is the Kronecker symbol. Since by construction x(k) = x(0) +Qkyk
for some y

k
∈ Rk, one obtains, for the desired orthogonality condition (8.4),

with β =
���M−1r(0)

���
M
, (8.5), (8.1), and (8.2) the condition

0 =
�
Qk,M

−1r(k)
�
M

=
�
Qk,MM−1r(k)

�

=
�
Qk, r

(k)
�
=

�
Qk, r

(0) −AQkyk

�

= βe1 −QT
kAQkyk = βe1 −QT

kMQk+1Hkyk

= βe1 −QT
kM

�
Qkqk+1

�
Hkyk = βe1 − [I0]Hkyk

= βe1 − H̃kyk,

where H̃k ∈ Rk×k is the matrix consisting of the first k rows of Hk. Hence, y
k

can be computed from H̃k, which is known from the preconditioned Lanczos
algorithm, from what follows, with analogous calculations as in Section 6.2,
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that x(k) can be computed with a short recurrence. Finally, one obtains PCG.
✷

Algorithm 8.8. Preconditioned conjugate gradient (PCG). Given a
symmetric positive definite matrix A ∈ Rn×n, a right-hand side b ∈ Rn, an

initial iterate x(0) ∈ Rn, a tolerance ε > 0, and a symmetric positive definite
preconditioner M ∈ Rn×n.

1. r(0) = b−Ax(0)

2. solve Mz0 = r(0)

3. p
1
= z0

4. k = 0
5. while (zk, r

(k))1/2 > ε
6. k = k + 1
7. s = Ap

k

8. νk =
(zk−1, r

(k−1))

(p
k
, s)

9. x(k) = x(k−1) + νkpk
10. r(k) = r(k−1) − νks

11. solve Mzk = r(k)

12. µk+1 =
(zk, r

(k))

(zk−1, r
(k−1))

13. p
k+1

= zk + µk+1pk
14. endwhile

✷

Remark 8.9. On PCG. There exists also other ways to implement PCG. Com-
pared with CG, one has to solve the linear system with the matrix M (to
apply the preconditioner), line 11, and one has to store one additional vector
(five vectors altogether). ✷

Remark 8.10. Preconditioners for PCG. If PCG should be applied for solv-
ing Ax = b with A being symmetric and positive definite, also M has to
be symmetric and positive definite. Among the preconditioners given in Re-
mark 8.2, the Jacobi and the symmetric Gauss–Seidel preconditioner possess
this property.

For the Jacobi preconditioner, it follows from xTAx > 0 that xTDx > 0
for all x ∈ Rn \ {0}, see Remark 2.11.

For the symmetric Gauss–Seidel preconditioner, one has

xT (D + L)D−1 (D + U)x = xT (D + U)
T
D−1 (D + U)x� �� �

y �=0

= yTD−1y > 0,

since with dii > 0, it follows firstly that the matrix D + U is non-singular
such that (D + U)x �= 0 if x �= 0. Secondly, it follows that d−1

ii > 0
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In addition, multigrid methods and incomplete Cholesky factorizations,
see Remark 8.23, can be also used as preconditioners. ✷

Theorem 8.11. Estimate of the rate of convergence for s.p.d. ma-
trices, minimization of the error. Let A,M ∈ Rn×n be symmetric and
positive definite. Then, the k-th iterate of the PCG method satisfies

���x− x(k)
���
A���x− x(0)

���
A

≤ 2




�
κ2

�
M−1/2AM−1/2

�
− 1

�
κ2

�
M−1/2AM−1/2

�
+ 1




k

.

The iterate of PCG method minimizes the error in the norm �·�A within all
vectors of form (8.3).

Proof. The proof follows the lines of the proof of Theorems 7.6 and 6.12. �

Remark 8.12. On the spectral condition number for the preconditioned sys-

tem. The matrix M−1/2 is the inverse of M1/2, compare Remark 2.12 for the
definition of the square root of a symmetric positive definite matrix. The ma-

trices M−1/2AM−1/2 and M−1A are similar, i.e., there is a non-singular ma-

trix S such that M−1A = SM−1/2AM−1/2S−1. Obviously, it is S = M−1/2.

Since M−1/2AM−1/2 is symmetric and positive definite, cf. Remark 2.12, and
similar matrices have the same eigenvalues, it follows that

κ2

�
M−1/2AM−1/2

�
=

λmax(M
−1/2AM−1/2)

λmin(M
−1/2AM−1/2)

=
λmax(M

−1A)

λmin(M
−1A)

.

This formula means, if M is a good preconditioner, i.e., the ratio of the
largest and smallest eigenvalue of M−1A is small, then the worst case upper
bound for the number of iterations is reduced by using PCG instead of CG.
In practice, also the number of iterations with PCG becomes usually smaller
compared with the number for CG. ✷

8.3 Incomplete LU Factorization

Remark 8.13. Idea. One drawback of the application of direct solvers for lin-
ear systems of equations with a sparse matrix is the additional fill-in that
occurs if a decomposition of the matrix, like the LU decomposition, is com-
puted. A main part of popular direct solvers for sparse linear systems, like
UMFPACK, see Davis (2004), which is the package behind the backslash com-
mand in MATLAB, is a reordering of the unknowns such that the fill-in is
reduced. In the context of preconditioning, methods that are based on the
LU decomposition can be constructed that respect the sparsity pattern or
zero pattern of the matrix. ✷
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Algorithm 8.14. Incomplete LU factorization (ILU). Given a matrix
A ∈ Rn×n and a zero pattern P ⊂ {(i, j) : i �= j, 1 ≤ i, j ≤ n}.

1. for k = 1 : n− 1 % loop over the rows

2. for i = k + 1 : n % loop over rows below diagonal

3. if (i, k) �∈ P
4. aik = aik/akk
5. for j = k + 1 : n % columns right of diagonal

6. if (i, j) �∈ P
7. aij = aij − aikakj
8. endif

9. endfor

10. endif

11. endfor

12. endfor

✷

Remark 8.15. To Algorithm 8.14.

• For P = ∅, Algorithm 8.14 is just a standard LU factorization of the
matrix A without pivot strategy. Then, Algorithm 8.14 replaces A by the
factors L and U

uij , for 1 ≤ i ≤ j ≤ n, upper triangular matrix,

lij , for 1 ≤ j < i ≤ n, lower triangular matrix,

where the diagonal entries of L are all 1 and they are not stored. It holds
that A = LU .

• If P �= ∅, then it is

A = LU −N with 0 �= N ∈ Rn×n. (8.6)

In this case, one needs extra memory to store the factors L and U .
• Usually, one calls the algorithm ILU if the zero pattern P is chosen to be
the zero pattern of A. Sometimes, this algorithm is called also ILU(0).

• ILU is a popular preconditioner with M = LU , where the factors are
defined in (8.6). For using ILU as preconditioner, it is essential that the
diagonal entries do not belong to P since a linear system of equations
with matrix U has to be solved.

Now, some properties of ILU will be studied for an important class of matri-
ces. ✷

Definition 8.16. Non-negative matrix. A matrix B ∈ Rn×n is called non-
negative, if

bij ≥ 0, ∀ i, j = 1, . . . , n.
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The notation is B ≥ 0 (and B > 0 if bij > 0 for all i, j = 1, . . . , n). The
same notations will be used to indicate vectors with non-negative or positive
entries. ✷

Definition 8.17. M-matrix. A matrix A ∈ Rn×n is called M-matrix if it
satisfies the following conditions:

1. aij ≤ 0 for i, j = 1, . . . , n, i �= j,

2. A is non-singular and A−1 is non-negative.

✷

Remark 8.18. M-matrices and strongly diagonally dominant matrices. M-
matrices arise in some discretizations of partial differential equations. It is an
important class of matrices, which is closely connected to a certain class of
diagonally dominant matrices.

A proper Minkowski matrix is a matrix with the following properties

i) The main diagonal entries are non-negative

aii ≥ 0 i = 1, . . . , n.

ii) The off-diagonal entries are non-positive

aij ≤ 0, i, j = 1, . . . , n, i �= j.

iii) All row sums of A are positive.

It follows that a proper Minkowski matrix is a strongly diagonally dominant
matrix. Diagonal dominant matrices are matrices with favorable mathemat-
ical properties, e.g., compare Theorem 3.11.

It can be shown that each M-matrix A ∈ Rn×n can be obtained from a
proper Minkowski matrix Ã by scaling each column of Ã with an appropriate
positive number. In this way, M-matrices are in a somewhat hidden sense
strongly diagonally dominant and they possess also favorable mathematical
properties. ✷

Lemma 8.19. Alternative characterization of an M-matrix, majoriz-
ing element. Let A ∈ Rn×n with aij ≤ 0 for i �= j, then A is an M-matrix if
and only if there is a vector v ∈ Rn, with v > 0, such that Av > 0. A vector
v with this property is called majorizing element.

Proof. Let A be an M-matrix. Then, there is a diagonal matrix D with dii > 0 such that

A = ÃD, where Ã is a proper Minkowski matrix, see Remark 8.18. Choosing vi = d
−1
ii > 0,

i = 1, . . . , n, yields

Av = ÃDv = Ã1,

where 1 is the vector where all entries are 1. Since each row sum of a proper Minkowski
matrix is positive, it follows that Av > 0.

The proof of the other direction follows (Bohl, 1981, pp. 34). Let there be a vector v > 0

such that Av > 0, i.e., such that
�n

j=1 aijvj > 0 for i = 1, . . . , n. Since all terms with
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off-diagonal entries are non-positive, it follows that aii > 0, for i = 1, . . . , n. Consequently,

the matrix D = diag(aii) is non-singular. Define the matrix

B = D
−1

(D −A) = I −D
−1

A. (8.7)

It is B ≥ 0 since D
−1 ≥ 0 and (D −A) ≥ 0. From (8.7), it follows that

A = D (I −B) . (8.8)

Applying the assumptions and multiplying with D
−1

gives

Av = D (I −B) v > 0 ⇐⇒ (I −B) v > 0 ⇐⇒ v > Bv. (8.9)

Define with the vector v a norm in Rn
, namely a weighted maximum norm,

�w�v = max
i=1,...,n

�
|wi| v−1

i

�

and a corresponding induced matrix norm

�P�v = max
w∈Rn

,�w�v=1
�Pw�v .

For the matrix norm, one obtains

�P�v = max
w∈Rn

,�w�v=1
max

i=1,...,n



������

n�

j=1

pijwj

������
v
−1
i




= max
i=1,...,n


 max

w∈Rn
,�w�v=1



������

n�

j=1

pijwj

������


 v

−1
i


 .

The sum for each row is maximized when each entry of w has the maximal absolute value,
so that �w�v = 1 holds, and the appropriate sign, i.e., if wj = sgn(pij)vj , j = 1, . . . , n. If

P ≥ 0, then the maximum is taken for w = v, i.e.,

�P�v = max
i=1,...,n






n�

j=1

pijvj


 v

−1
i


 = �Pv�v . (8.10)

Applying this result to the matrix B gives with (8.9)

�B�v = �Bv�v < �v�v = 1.

Since with (8.10) on has �I�v = �v�v = 1, it follows now that the matrix (I − B) is

non-singular. Its inverse is given by (I −B)
−1

=
�∞

k=0 B
k
, because

(I −B) (I −B)
−1

=

∞�

k=0

B
k −

∞�

k=1

B
k
= I +

� ∞�

k=1

B
k −

∞�

k=1

B
k

�
= I,

since the geometric series is absolutly convergent for �B�v < 1. From (8.8), one obtains

that A is also non-singular with

A
−1

= (I −B)
−1

D
−1

=

� ∞�

k=0

B
k

�
D

−1
.
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Since all terms in the sum are non-negative and D
−1

is non-negative, too, it follows that

A
−1 ≥ 0. Hence, A satisfies all criteria of Definition 8.17, such that A is an M-matrix. �

Lemma 8.20. M-matrices and Gaussian algorithm. Let A ∈ Rn×n be

an M-matrix and let A(1) ∈ Rn×n be the matrix that is obtained as result of
the first step of the Gaussian algorithm, which transforms A into an upper

triangular matrix. Then, A(1) is also an M-matrix.

Proof. The first step of the Gaussian algorithm can be written in the following form

A
(1)

= L
(1)

A =




1

−a21/a11 1

−a31/a11 0 1
...

...
. . .

−an1/a11 0 · · · · · · 1







a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann


 .

For the off-diagonal elements of A
(1)

, it is

a
(1)
1j = a1j ≤ 0, j > 1,

a
(1)
i1 = 0, i > 1 (by construction),

a
(1)
ij = aij����

≤0

− ai1
a11����
≤0

a1j����
≤0

≤ 0, i, j > 1, i �= j,

since in the last line the first term is not positive and the second term is non-negative.
Because A is an M-matrix, there is by Lemma 8.19 a vector v with v > 0, such that

Av > 0. Since L
(1) ≥ 0, and there is a non-zero entry in each row of L

(1)
, it follows

that A
(1)

v = L
(1)

Av > 0. Since the off-diagonals of A
(1)

are not positive, it follows by

Lemma 8.19 that A
(1)

is an M-matrix. �

Lemma 8.21. Comparison criterion. Let A ∈ Rn×n be an M-matrix and
let B ∈ Rn×n be a matrix with

aij ≤ bij ∀ i, j = 1, . . . , n,
bij ≤ 0 ∀ i, j = 1, . . . , n, i �= j.

Then, B is also an M-matrix.

Proof. Since A is an M-matrix, there exists a vector v > 0 such that Av > 0. By assump-

tion, it holds that B = A+N with N ≥ 0. It follows that

Bv = Av����
>0

+ Nv����
≥0

> 0,

hence v is a majorizing element for B. Because the off-diagonals of B are non-positive by

assumption, one concludes from Lemma 8.19 that B is an M-matrix. �

Theorem 8.22. Properties of an ILU decomposition of an M-matrix.
Let A ∈ Rn×n be an M-matrix and let P be a given zero pattern that does
not contain the diagonal entries. Then, there is a lower triangular matrix L
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with ones on the main diagonal and an upper triangular matrix U such that
A = LU −N with

lij = 0 for (i, j) ∈ P, uij = 0 for (i, j) ∈ P.

The matrices L−1 and N are non-negative.

Proof. The principal ILU decomposition is computed analogously to the Gaussian elimi-
nation

1. A
(0)

= A

2. for k = 1 : n− 1 % loop over the rows

3. Ã
(k)

= A
(k−1)

+N
(k)

4. A
(k)

= L
(k)

Ã
(k)

5. endfor

In the k-th step of line 3, zero entries are generated in Ã
(k)

in the zero pattern of the k-th
row and the k-th column, i.e., for (k, j) ∈ P and (i, k) ∈ P . In line 4, the elimination step

is applied to Ã
(k)

. The elimination matrix has the form

L
(k)

=




1

. . .

1

−ã
(k)
k+1,k/a

(k)
k,k 1

...
. . .

−ã
(k)
n,k/a

(k)
k,k . . . 1




. (8.11)

The matrix A
(0)

= A is an M-matrix. Hence, the off-diagonal entries of A
(0)

are non-

positive from what follows, see line 3, that N
(1)

is non-negative, since the respective entry

of N
(1)

is either zero or the negative of the same entry as that of A
(0)

. The matrices A
(0)

and Ã
(1)

satisfy the assumptions of the comparison lemma, Lemma 8.21. It follows that

Ã
(1)

is an M-matrix. All off-diagonal entries of Ã
(1)

are non-positive and ã11 > 0. Thus,

L
(1)

is non-negative, compare (8.11). Analogously as in the proof of Lemma 8.20, one can

show now that A
(1)

is an M-matrix.

It can be shown now by induction that A
(k)

and Ã
(k)

are M-matrices for k = 1, . . . , n−1,

and N
(k)

and L
(k)

are non-negative for k = 1, . . . , n− 1.

By the form of the elimination matrix (8.11), the first k rows of A
(k)

and Ã
(k)

are the

same, line 4. In particular, there are only non-zero entries in the first k rows of A
(k)

at
entries which do not belong to the zero pattern. It follows that in the next step in line 3,

the first k rows of N
(k+1)

are zero. From this form of the matrix N
(k+1)

and from the

form of the elimination matrices, one obtains for i < k + 1

L
(i)

N
(k+1)

= N
(k+1)

. (8.12)

With this relation, one gets

A
(n−1) line 4

= L
(n−1)

Ã
(n−1)

line 3
= L

(n−1)
�
A

(n−2)
+N

(n−1)
�

line 4
= L

(n−1)
�
L
(n−2)

Ã
(n−2)

+N
(n−1)

�
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line 3
= L

(n−1)
�
L
(n−2)

�
A

(n−3)
+N

(n−2)
�
+N

(n−1)
�

= L
(n−1)

L
(n−2)

A
(n−3)

+ L
(n−1)

L
(n−2)

N
(n−2)

+ L
(n−1)

N
(n−1)

line 4, 3
= · · ·

=




n−1�

j=1

L
(n−j)


A

(0)
+

n−1�

i=1




n−i�

j=1

L
(n−j)


N

(i)

line 1,(8.12)
=




n−1�

j=1

L
(n−j)


A+

n−1�

i=1




n−1�

j=1

L
(n−j)


N

(i)

=




n−1�

j=1

L
(n−j)




�
A+

n−1�

i=1

N
(i)

�

=: L
−1

(A+N) .

Denoting U = A
(n−1)

yields A = LU − N . The matrix N is a sum of non-negative

matrices such that it is non-negative. Similarly, the matrix L
−1

is a product of non-negative

matrices and hence it is non-negative, too. �

Remark 8.23. ILU.

• For a given zero pattern P , the ILU decomposition is uniquely determined.
• Before or in the first iteration, one has to compute the incomplete decom-
position.

• The application of ILU as preconditioner requires the solution of two
sparse linear systems of equations with triangular matrices:

1. solve the lower triangular system Lw = r,
2. solve the upper triangular system Uz = w.

• The main costs of unpreconditioned iterative methods are the multipli-
cations of the sparse matrix with a vector. If the zero pattern is appro-
priately given, then the costs for applying the ILU preconditioner are
proportional to the costs of the matrix-vector multiplication. Very often,
one takes the pattern of A, i.e., non-zero entries in L and U are allowed
only for pairs of indices for which A has a non-zero entry.

• If A is symmetric and positive definite, then one obtains (if the non-zero
pattern is chosen to be symmetric) an incomplete Cholesky decomposi-

tion. The precondition matrix M = LLT is also symmetric and positive
definite and it can be applied in the PCG algorithm.

✷


