Lösungen zu den 20. Präsenzaufgaben für MfI 2

1. Aufgabe: indirekter Beweis

Annahme, es gibt ein $x_0 \in [a,b]$ mit $f(x_0) = y_0 > 0$. Da f stetig ist, gibt es eine δ -Umgebung um x_0 , die ganz in [a,b] enthalten ist und in der $f(x) \ge \frac{y_0}{2}$ gilt. Damit folgt

$$\int_{a}^{b} f(x) dx = \int_{a}^{x_{0} - \delta} f(x) dx + \int_{x_{0} - \delta}^{x_{0} + \delta} f(x) dx + \int_{x_{0} + \delta}^{b} f(x) dx$$

$$\geq 0 + 2\delta \frac{y_{0}}{2} + 0$$

$$= \delta y_{0} > 0$$

Das ist ein Widerspruch, also gibt es kein derartiges x_0 .

2. Aufgabe:

(a) Hinweis:

Man beachte, dass $F(x) = x \ln(x) - x$ eine Stammfunktion des Logarithmus ist.

Das uneigentliche Integral wird bestimmt, indem zunächst die Integration von einem beliebigen a>0 bis zu 1 ausgeführt wird und dann der rechtsseitige Grenzwert

$$\lim_{a \to 0^+} \int_a^1 \ln(x) \mathrm{d}x$$

bestimmt wird. Dabei ist a>0 und der rechtsseitige Grenzwert zu nehmen, weil man aus dem Inneren des Integrationsintervalls [0,1] kommen muss. Man berechnet daher zunächst unter Benutzung der angegebenen Stammfunktion

$$\int_{a}^{1} \ln(x) dx = \left[x \ln(x) - x \right]_{a}^{1} = (\ln(1) - 1) - (a \ln(a) - a) = -1 - a \ln(a) + a$$

Nun betrachtet man den rechtsseitigen Grenzwert in 0 und erhält so den gesuchten Wert des uneigentlichen Integrals,

$$\int_0^1 \ln(x) dx = \lim_{a \to 0^+} \int_a^1 \ln(x) dx = \lim_{a \to 0^+} (-1 - a \ln(a) + a) = -1$$

Dabei wurde benutzt, dass $\lim_{a\to 0^+} a \ln(a)=0$, was mit der Regel von l'Hospital berechnet werden kann:

$$\lim_{a \to 0^+} a \ln(a) = \lim_{a \to 0^+} \frac{\ln(a)}{\frac{1}{a}} = \lim_{a \to 0^+} \frac{\frac{1}{a}}{-\frac{1}{a^2}} = \lim_{a \to 0^+} (-a) = 0$$

1

(b) Man berechnet zunächst die Integration von 0 bis zu einem beliebigen A > 0 und dann den Grenzwert

$$\lim_{A \to \infty} \int_0^A x^3 e^{-x^2} \mathrm{d}x$$

Man berechnet daher zuerst

$$\int_0^A x^3 e^{-x^2} \mathrm{d}x.$$

Die Substitution $t = x^2$ mit dt = 2xdx ergibt $t dt = 2x^3 dx$ und daher

$$\int_0^A x^3 e^{-x^2} dx = \frac{1}{2} \int_0^{A^2} t e^{-t} dt.$$

Für das verbleibende Integral ist partielle Integration geeignet:

$$\int_0^{A^2} t e^{-t} dt = \left[-t e^{-t} \right]_0^{A^2} - \int_0^{A^2} \left(-e^{-t} \right) dt$$
$$= -A^2 e^{-A^2} + 0 - \left[e^{-t} \right]_0^{A^2}$$
$$= -A^2 e^{-A^2} - e^{-A^2} + 1$$

Also gilt:

$$\int_0^A x^3 e^{-x^2} dx = \frac{1}{2} \left(-A^2 e^{-A^2} - e^{-A^2} + 1 \right)$$

Man betrachtet nun den Grenzwert für $A\to\infty$ und erhält den gesuchten Wert des uneigentlichen Integrals,

$$\int_0^\infty x^3 e^{-x^2} dx = \lim_{A \to \infty} \int_0^A x^3 e^{-x^2} dx$$

$$= \lim_{A \to \infty} \frac{1}{2} \left(-A^2 e^{-A^2} - e^{-A^2} + 1 \right)$$

$$= \frac{1}{2} (0 + 0 + 1)$$

$$= \frac{1}{2}$$