A posteriori L^2-error estimates for the nonconforming P_1/P_0-finite element discretization of the Stokes equations

Volker John

Otto-von-Guericke-Universität Magdeburg, Institut für Analysis und Numerik, Postfach 4120,
D-39016 Magdeburg, Germany

Received 3 December 1997; received in revised form 30 April 1998

Abstract

This paper focusses on a residual-based a posteriori error estimator for the L^2-error of the velocity for the nonconforming P_1/P_0-finite element discretization of the Stokes equations. We derive an a posteriori error estimator which yields a local lower as well as a global upper bound on the error. Numerical tests demonstrate the efficiency of the global error estimator and give a comparison with respect to the adaptive grid refinement to an a posteriori error estimator in the discrete energy norm proposed by Dari et al. (1995). © 1998 Elsevier Science B.V. All rights reserved.

AMS classification: 65N15, 65N30, 65N50

Keywords: Stokes equations; Nonconforming finite element methods; Residual-based a posteriori error estimators; Adaptive grid refinement

1. Introduction

The use of a posteriori error estimators for estimating the global error as well as for obtaining information for adaptive techniques is nowadays a standard component of numerical codes for solving partial differential equations.

Rigorous analysis of a posteriori error estimators started at the end of the 1970s by the pioneering paper of Babuška and Rheinboldt [2]. During the 1980s and at the beginning of the 1990s, fundamental and general approaches for analyzing a posteriori error estimators for conforming finite element solutions of many classes of partial differential equations have been developed, e.g. in [1, 10, 16]. In these papers, the conformity of the finite element space, or more generally the orthogonality of the Galerkin approach for conforming finite element methods plays an essential rôle. However,

* E-mail: volker.john@mathematik.uni-magdeburg.de.

0377-0427/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved

PII S0377-0427(98)00095-8
discretizations which are violating this Galerkin orthogonality are of substantial importance in applications, such as the use of numerical integration, upwind stabilization techniques for convection dominated problems or nonconforming finite element discretizations in computational fluid dynamics (CFD). Nonconforming finite element discretizations in CFD easily fulfill the Babuška–Brezzi stability condition [6, 13] and have advantages on parallel computers [9, 14].

A posteriori error estimators for nonconforming discretizations have been investigated only in a couple of papers. Residual-based a posteriori error estimators for the nonconforming P_1-discretization of the Laplace equation and the error in the element-wise computed H^1-norm have been developed in [8, 19]. In comparison to related error estimators for conforming finite element discretizations, an additional term which measures the nonconformity of the discrete solution occurs. The approach in [8] has been extended to the Stokes equations and the error in the discrete energy norm in [7].

The plan of the paper is the following. In Section 2, the equations and notations are introduced and mathematical preliminaries are given. The construction of the special cutoff function B_E in Section 3 enables us to prove a local lower estimate for the L^2-error of the velocity and a mesh-dependent weighted L^2-error of the pressure. The global estimate for the L^2-error of the velocity is given in Section 4 and the efficiency of the global error estimator in numerical examples is demonstrated in Section 5. Section 5 additionally presents a comparison of the local a posteriori error estimator form Section 3 and the estimator in the discrete energy norm from [7] with respect to the adaptive mesh refinement.

2. The problem and mathematical preliminaries

We consider the steady state Stokes equations

\[-\Delta \mathbf{u} + \nabla p = \mathbf{f} \quad \text{in } \Omega, \]
\[\nabla \cdot \mathbf{u} = 0 \quad \text{in } \Omega, \]
\[\mathbf{u} = 0 \quad \text{on } \partial \Omega \]

in a two-dimensional domain Ω with polygonal boundary $\partial \Omega$. A weak formulation of (1) is to find $(\mathbf{u}, p) \in (H_0^1(\Omega))^2 \times L_0^2(\Omega)$ satisfying for all $(\mathbf{v}, q) \in (H_0^1(\Omega))^2 \times L_0^2(\Omega)$

\[(\nabla \mathbf{u}, \nabla \mathbf{v}) - (p, \nabla \cdot \mathbf{v}) + (q, \nabla \cdot \mathbf{u}) = (\mathbf{f}, \mathbf{v}), \]

where (\cdot, \cdot) stands for the inner product in $(L^2(\Omega))^d$, $d = 1, 2$. We assume throughout this paper the regularity

\[\mathbf{u} \in (H^2(\Omega))^2 \cap (H_0^1(\Omega))^2, \quad p \in H^1(\Omega) \cap L_0^2(\Omega) \]

of the solution (\mathbf{u}, p) of (1). This is given, e.g., if Ω is convex and $\mathbf{f} \in (L^2(\Omega))^2$.

We focus on the nonconforming P_1/P_0-finite element discretization of (2) which has been introduced by Crouzeix and Raviart [6]. Let \mathcal{T}_h be a decomposition of Ω into triangles. For a given triangulation, we denote by $\{T_i\}_{i=1}^M$ the set of triangles, with $\{E_i\}_{i=1}^{N + N_D}$ the set of the edges of the triangles which do not belong to $\partial \Omega$, with $\{E_i\}_{i=1}^{N + N_D}$ the set of edges which belong to $\partial \Omega$, and with B_i the midpoint of edge E_i, $i = 1, \ldots, N + N_D$. $P_i(T)$ is the space of all polynomials defined on T
with degree not greater than \(k \). The space of the vector valued nonconforming \(P_1 \)-finite elements is defined as
\[
V_h := \left\{ \mathbf{v}_h \in (L^2(\Omega))^2 \mid \mathbf{v}_h|_T \in (P_1(T))^2 \quad \forall T \in \mathcal{T}_h, \; \mathbf{v}_h \text{ is continuous} \right. \\
\left. \quad \text{in } B_i, \; i = 1, \ldots, N, \; \text{and } \mathbf{v}_h(B_i) = 0, \; i = N + 1, \ldots, N + N_D. \right\}
\]
The functions of \(V_h \) are linear on each triangle, in general discontinuous across the edges, but continuous in the midpoints of the edges \(\{B_i\}_{i=1}^N \). The space of piecewise constant functions in \(L^2_0(\Omega) \) is denoted by \(Q_h \):
\[
Q_h := \{ q_h \in L^2_0(\Omega) \mid q_h|_T \in P_0(T), \; \forall T \in \mathcal{T}_h \}.
\]
The discrete problem is to find \((u_h, p_h) \in V_h \times Q_h\) satisfying for all \((v_h, q_h) \in V_h \times Q_h\)
\[
\sum_{T \in \mathcal{T}_h} \int_T (\nabla \mathbf{v}_h \cdot \nabla u_h - p_h \nabla \cdot v_h + q_h \nabla \cdot u_h) \, dx = (f, v_h).
\]
(4)
The norm in \((L^2(\Omega))^d, d = 1, 2\), is denoted by \(\| \cdot \|_0 \) and the seminorm in \((H^k(\Omega))^d, d = 1, 2\), by \(| \cdot |_k \). Norms in subdomains \(\omega \subset \Omega \) are indicated by an index, e.g., \(| \cdot |_{0, \omega} \). Because we consider a nonconforming discretization, we have to introduce element-wise defined norms and seminorms for \(v_h \in V_h \):
\[
\| v_h \|_h := \left(\sum_{T \in \mathcal{T}_h} | v_h |_{1, T}^2 \right)^{1/2}, \quad \| v_h \|_{k, h} := (\| v_h \|_h^2 + \| v_h \|_{0}^2)^{1/2}.
\]
The jump \([v_h]_E \) of a function \(v_h \) across an edge \(E \) is defined by
\[
[v_h]_E := \begin{cases}
\lim_{t \to -0} \{ v_h(x + tn_E) - v_h(x - tn_E) \}, & E \notin \partial \Omega \\
\lim_{t \to +0} \{ -v_h(x - tn_E) \}, & E \subset \partial \Omega
\end{cases}
\]
where \(n_E \) is a normal unit vector on \(E \) and \(x \in E \). If \(E \subset \partial \Omega \), we choose the outer normal otherwise \(n_E \) has an arbitrary but fixed orientation. With that, every edge \(E \) which separates two neighboring triangles \(T_1 \) and \(T_2 \) is associated with a uniquely oriented normal \(n_E = (n_{1E}, n_{2E}) \) (for definiteness from \(T_1 \) to \(T_2 \)) and the jump of a function \(v_h \in V_h \) across an edge \(E \) is
\[
[v_h]_E = v_h|_{T_2} - v_h|_{T_1}.
\]
We denote by \(t_E = (-n_{2E}, n_{1E}) \) the tangential vector on \(E \). The functions belonging to \(V_h \) have the property
\[
\int_E q [v_h]_E \, ds = 0 \quad \forall q \in P_0(E), \; v_h \in V_h.
\]
(5)
The symbol \(h_T \) stands for the diameter of the triangle \(T \) (longest edge), \(h_E \) for the length of the edge \(E \), and \(\rho_T \) for the diameter of the largest inscribed ball of \(T \). Positive constants which are independent of \(h_T \) and \(h_E \) are denoted by \(C \). We shall consider uniform as well as locally refined families of triangulations \(\{ \mathcal{T}_h \} \) which are admissible and shape regular. Thus, we assume the existence of a constant \(C \) such that
\[
\frac{h_T}{\rho_T} \leq C \quad \text{or} \quad \frac{h_T}{h_E} \leq C \quad \forall T \in \mathcal{T}_h, \forall E \subset \partial T.
\]
Analogous to [16], we denote by \(\omega_E \) the union of triangles which have the common edge \(E \) and by \(\omega_T \) the union of all triangles which have a common edge with the triangle \(T \).

We will derive in the global estimate benefit from the fact that \(V_h \) has the subspace \(X_h \subset (H^1_0(\Omega))^2 \) of vector valued conforming piecewise linear functions which vanish on \(\partial \Omega \). We will need the standard interpolation operator \(R_{X_h} : (H^2(\Omega))^2 \rightarrow X_h \) satisfying

\[
\| v - R_{X_h} v \|_{0,T} \leq C_1 h_T^2 \| v \|_{2,T} \quad \forall v \in (H^2(T))^2, \tag{6}
\]

\[
\| v - R_{X_h} v \|_{0,E} \leq C_2 h_E^{3/2} \| v \|_{2,T} \quad \forall v \in (H^2(T))^2, \quad E \subset \partial T \tag{7}
\]

and an interpolation operator \(R_{Q_k} : H^1(\Omega) \rightarrow Q_h \) with the property

\[
\| q - R_{Q_k} q \|_{0,T} \leq C_3 h_T \| q \|_{1,\partial T} \quad \forall q \in H^1(\partial \Omega), \tag{8}
\]

where \(\partial T \) is the set of all triangles having a common point with the triangle \(T \). The interpolation operator of [5] fulfills (8). The constants \(C_1, C_2 \) and \(C_3 \) depend only on the smallest angle of the triangles. We set \(C_1 = \max \{ C_1, C_2, C_3 \} \).

By \(\mathcal{M}_k^E : H^1(T) \rightarrow P_k(E) \) the \(L^2(E) \)-projection onto the space of the restriction to \(E \) of all polynomials of degree \(k \) is denoted. Using the Bramble–Hilbert lemma and a scaling argument, the inequality

\[
\left| \int_E u(v - \mathcal{M}_k^T v) \, ds \right| \leq C h_T^{m+1/2} \| u \|_{m,E} \| v \|_{m+1,T} \tag{9}
\]

with \(0 \leq m \leq k \), for all elements \(T \subset \omega_E \), \(u \in L^2(E) \), and \(v \in H^{m+1}(T) \) can be proven [12].

In the following, we need local inverse estimates of seminorms of polynomials in Sobolev spaces

\[
|v|_{m,p,T} \leq C h_T^{-1} |v|_{m-1,p,T} \quad \forall v : v|_T \in P_k(T),
\]

\[
\sum_{T \subset \omega_E} |v|_{m,p,T} \leq C h_T^{-1} \sum_{T \subset \omega_E} |v|_{m-1,p,T} \quad \forall v : v|_T \in P_k(T), \quad \forall T \subset \omega_E, \tag{10}
\]

for \(m \geq 1, \ p \in [1, \infty] \). The proof follows the lines of [4, Theorem 17.2], using the shape regularity of the triangulation in the second estimate.

3. A local lower error bound

We define the residual-based local a posteriori error estimator \(\forall v_h \in V_h \)

\[
\eta_T := h_T^2 \| f_h \|_{0,T} + h_T^2 \| \nabla \cdot v_h \|_{0,T}^2 + \sum_{E \subset \partial T} h_E^2 \| \nabla v_h \cdot n_E - q_h In_E \|_{0,E}^2 + \sum_{E \subset \partial T} h_E \| [v_h]_E \|_{0,E}^2 \tag{11}
\]

where \(f_h \) is a polynomial approximation of \(f \) of fixed degree. The \(2 \times 2 \) identity matrix is denoted by \(I \). The first and second term of \(\eta_T \) are norms of element residuals of the strong formulation of the equation of momentum and mass, respectively. These terms can be found in a posteriori error estimators for conforming finite element discretizations as well as the third term which often is called
edge residual. Finally, the last term gives information on the nonconformity of \(v_h\). The jump of the tangential derivatives across the edges may replace the jumps of the nonconforming function in \(\eta_T\) because of

\[
\|v_h\|_{0,E}^2 = \frac{h_E^2}{12} \left\| \left[\frac{\partial v_h}{\partial t} \right] \right\|_{0,E}^2 \quad \forall v_h \in V_h.
\]

In this section, we investigate if \(\eta_T\) can be used as local error estimator for adaptive grid refinement. Therefore, it will be shown that \(\eta_T\) gives a local lower bound on the error in the \(L^2\)-norm of the velocity and the weighted mesh-dependent \(L^2\)-norm of the pressure. However, the estimate of the jump terms of the nonconforming function leads to an additional term in the error estimate. The local lower bound holds for each pair of discrete functions since the solution of the discrete problem (4) does not play any rôle in the proof of Theorem 1.

Theorem 1. Let \((u, p)\) be the solution of (1) with the regularity given by (3). Given a shape regular family of triangulations and a fixed polynomial degree of the approximation \(f_h\) of \(f\), then for all pairs of functions \((v_h, q_h) \in V_h \times Q_h\) satisfying

\[
\|f - f_h\|_{0,\text{ort}} = O\left((\|u - v_h\|_{0,\text{ort}}^2 + h_T^2 \|p - q_h\|_{0,\text{ort}}^2)^{1/2}\right)
\]

there is a constant \(C\) such that

\[
\eta_T \leq C\left(\|u - v_h\|_{0,\text{ort}}^2 + h_T^2 \|p - q_h\|_{0,\text{ort}}^2\right)^{1/2} + Ch_T^2 |u|_{2,\text{ort}}
\]

\[
+ O\left(h_T^2(\|u - v_h\|_{0,\text{ort}}^2 + h_T^2 \|p - q_h\|_{0,\text{ort}}^2)^{1/2}\right)
\]

for all triangles \(T\).

The remainder of this section is devoted to the proof of Theorem 1. Each term of \(\eta_T\) will be estimated separately from above by the local error.

A standard tool for proving local a posteriori error estimates are cutoff functions, see, e.g., [15, 16]. Often, the use of appropriate cutoff functions is the key to obtain local error bounds, e.g., for robust error estimators in convection dominated problems [17, 18]. The special cutoff function \(B_E\), defined below, will play an essential rôle for the nonconforming discretization.

Let \(T \in T_h\) be an arbitrary triangle and \(E \subset \partial T\). We denote by \(\lambda_E\) the linear function which is zero on \(E\) and 1 in the corner of \(T\) opposite to \(E\). In contrast to the derivation of a posteriori error estimates in the discrete energy norm, we need in the following cutoff functions which belong to \(C^1(\bar{T})\). We define for each triangle \(T\) the element bubble function

\[
B_T = \begin{cases} (27\lambda_E, \lambda_E, \lambda_E) & \text{in } T, \\ 0 & \text{otherwise}, \end{cases}
\]

where \(E_1, E_2, E_3\) are the edges of \(T\). Next, we construct an edge bubble function \(B_E\) with \(\supp B_E = \omega_E\), see Fig. 1. Let \(E\) be the common edge of the triangles \(T_1\) and \(T_2\). The other edges of \(T_1\) are \(E_1\) and \(E_2\). The triangle \(T_1\) is reflected on \(E\) with the images \(E_1^*\) and \(E_2^*\) of \(E_1\) and \(E_2\), respectively.
In the same way, we obtain \(E_3^* \) and \(E_4^* \) by reflecting \(T_2 \) on \(E \). We define

\[
B_E = \begin{cases}
256\lambda_{E_1}^2 \lambda_{E_2}^2 \lambda_{E_3}^2 \lambda_{E_4}^2 & \text{on } T_1, \\
256\lambda_{E_3}^2 \lambda_{E_4}^2 \lambda_{E_2}^2 \lambda_{E_1}^2 & \text{on } T_2, \\
0 & \text{otherwise.}
\end{cases}
\tag{13}
\]

Some properties of the cutoff functions \(B_T \) and \(B_E \) are summarized in

Lemma 2. The cutoff functions given in (12) and (13) have the following properties:

\[
B_T, B_E \in C^1(\tilde{\Omega}), \quad B_T|_T \in P_6(T), \quad B_E|_T \in P_6(T) \quad \forall T \subseteq \omega_E, \quad 0 \leq B_T, \quad B_E \leq 1, \tag{14a}
\]

\[
B_T = 0 \quad \text{on } \partial T, \quad \nabla B_T = 0 \quad \text{on } \partial T, \\
B_E = 0 \quad \text{on } \partial \omega_E, \quad \nabla B_E = 0 \quad \text{on } \partial \omega_E. \tag{14b}
\]

\(B_E \) is continuous on \(E \) and

\[
\nabla B_E \cdot n_E = 0 \quad \text{on } E. \tag{15}
\]

Proof. The first and second property, (14a) and (14b), follow directly from the definition of the cutoff functions. Property (15) follows from

\[
\lambda_{E_i}|_E = \lambda_{E_i}^*|_E = \lambda_{E_i}^*|_E \quad \text{and} \quad \lambda_{E_i}|_E = \lambda_{E_i}^*|_E = \lambda_{E_i}^*|_E.
\]

With that, we find \(B_E|_E = 256\lambda_{E_1}^2 \lambda_{E_2}^2 \lambda_{E_3}^2 \lambda_{E_4}^2 \). Finally, (15) can be proven considering an arbitrary line \(g \) across \(E \) and perpendicular to \(E \). The definition of \(B_E \) on \(T_1 \) is continued to the mirror image of \(T_1 \). In this way, a function on \(g \) is defined which is continuously differentiable and symmetric with respect to \(E \). Thus, we have \(\nabla B_E \cdot n_E = 0 \) in the cross point of \(g \) and \(E \). \(\Box \)

In the following, we need uniform norm equivalences of weighted \(L^2 \)-norms in finite dimensional spaces. The proofs follow the lines of Lemma 3.3 in [16] using the equivalence of norms in finite dimensional spaces, the boundedness of the cutoff functions and scaling arguments.
Lemma 3. The cutoff functions defined in (12) and (13) satisfy the following inequalities:

\[\|v\|_{0,T}^2 \leq C \int_T v^2 B_T \, dx \quad \forall v \in P_k(T), \]
\[\|v\|_{0,E}^2 \leq C \int_E v^2 B_E \, dx \quad \forall v \in P_k(E), \]
\[\|v B_T\|_{0,T} \leq \|v\|_{0,T} \quad \forall v \in P_k(T), \]
\[\|v B_E\|_{0,\omega_E} \leq \|v\|_{0,\omega_E} \quad \forall v \text{ with } v|_{T_i} \in P_k(T_i), \forall T_i \subset \omega_E, \]

where \(C \) is a constant independent of \(T \) and \(h_T \). In (16) and (17), \(C \) depends on \(k \).

The residual of the equation of mass will be estimated in the following lemma.

Lemma 4. Let \((u, p) \) be the solution of (1) and \(v_h \in V_h \) an arbitrary function. Then, there is a constant \(C \) such that for each element \(T \) of the shape regular family of triangulations \(\{\mathcal{T}_h\} \), the estimate

\[h_T \|\nabla \cdot v_h\|_{0,T} \leq C \|u - v_h\|_{0,T} \]

is valid.

Proof. Using (16), \(\nabla \cdot u = 0 \), integration by parts and (14), we obtain

\[\|\nabla \cdot v_h\|_{0,T}^2 \leq C \int_T \nabla \cdot (v_h - u)(\nabla \cdot v_h B_T) \, dx \]

\[= C \int_T (u - v_h) \cdot \nabla (\nabla \cdot v_h B_T) \, dx. \]

Applying the Cauchy–Schwarz inequality, the inverse estimate (10) and (18), we get

\[\|\nabla \cdot v_h\|_{0,T}^2 \leq C h_T^{-1} \|u - v_h\|_{0,T} \|\nabla \cdot v_h\|_{0,T}. \]

We will estimate the norm of the residual of the equation describing the conservation of momentum in the following lemma.

Lemma 5. Let \((u, p) \) be the solution of (1) and \((v_h, q_h) \in V_h \times Q_h \) an arbitrary pair of functions. Assuming the regularity of the solution given by (3), then there is a constant \(C \) such that

\[h_T^2 \|f_h\|_{0,T} \leq C [\|u - v_h\|_{0,T} + h_T \|p - q_h\|_{0,T} + h_T^2 \|f - f_h\|_{0,T}] \]

for each \(T \) of a shape regular family of triangulations.

Proof. Let \(T \) be an arbitrary triangle. Using (16), (1) and \(\Delta v_h|_T = 0, \nabla q_h|_T = 0, \forall (v_h, q_h) \in V_h \times Q_h \), we get

\[\|f_h\|_{0,T}^2 \leq C \int_T (-\Delta (u - v_h) + \nabla (p - q_h)) f_h B_T + (f_h - f) f_h B_T \, dx. \]
Now, integration by parts and (14) yield
\[\|f_h\|_{0,T}^2 \leq C \int_T - (u - v_h) \Delta (f_h \mathbf{b}_T) - (p - q_h) \nabla \cdot (f_h \mathbf{b}_T) + (f_h - f) f_h \mathbf{b}_T \, dx. \]

All terms can be estimated using the Cauchy–Schwarz inequality, the inverse estimate (10), and (18) which yields (20). \(\square \)

The edge residual is estimated in a similar way using the cutoff function \(B_E \). The smoothness of \(B_E \) plays an essential rôle for the following estimate. Integrating by parts in \(\omega_E \), we obtain a line integral on the edge \(E \) which vanishes because of \(\nabla B_E \cdot n_E = 0 \) on \(E \).

Lemma 6. With the assumptions of Lemma 5, there is a constant \(C \) such that
\[h_E^{-2} \| [\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{0,E} \leq C [\| u - v_h \|_{0,\omega_E} + h_E \| p - q_h \|_{0,\omega_E} + h_E^2 \| f - f_h \|_{0,\omega_E}] \]
for all edges \(E \) with \(E \subset \partial \Omega \).

Proof. Before starting the estimate, we note that \([\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} \) is a constant vector valued function on each edge \(E \). Let us denote with \(C [\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} \) the constant continuation of \([\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} \) to \(\omega_E \). Then, taking into consideration the regularity of the triangulation, we have the estimate
\[\| [\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{0,\omega_E} \leq C h_E^{-2} [\| \nabla v_h \cdot n_E - q_h l_{n_E} \|_{0,E}. \tag{21} \]

Now, using (17), element-wise integration by parts and (14), we obtain
\[[\| \nabla v_h \cdot n_E - q_h l_{n_E} \|_{0,E}] \leq C \sum_{T \subset \partial \Omega} \left[\int_T \nabla (u - v_h) : \nabla ([\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} \mathbf{b}_E) \, dx \
- \int_T (p - q_h) \nabla \cdot ([\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} \mathbf{b}_E) \, dx \
+ \int_T (\Delta (u - v_h) - \nabla (p - q_h)) \cdot ([\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} \mathbf{b}_E \, dx \right]. \]

Integrals on \(E \) containing jumps of \(\nabla u \) and \(p \) vanish since these functions are continuous almost everywhere. In the following, we estimate each term separately. The first term is integrated by parts once more. Using (14), we get
\[\sum_{T \subset \partial \Omega} \int_T \nabla (u - v_h) : \nabla ([\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} \mathbf{b}_E) \, dx \]
\[= - \int_{\omega_E} \mathbf{v}_h ([\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} \mathbf{b}_E) \, dx \]
\[+ \int_E [v_h]_E \cdot ([\nabla v_h \cdot n_E - q_h l_{n_E}] \|_{E} (\nabla B_E \cdot n_E) \, ds. \]
The integral on the edge \(E \) vanishes because of (15). With the inverse inequality \(\| \nabla_h | n - q_h | n | \|_E \leq \| \nabla_h | n | E \|_E \)
and (21), we obtain

\[
\sum_{T \in \mathcal{O}_h} \int_T \nabla(u - v_h) \cdot [\nabla v_h \cdot n_E - q_h ln_E]_E \cdot B_E \, dx \\
\leq Ch_{E}^{-1/2} \| u - v_h \|_{0, \text{rel}} \| \nabla v_h \cdot n_E - q_h ln_E \|_{0, E}.
\]

The second term is estimated in the same way. We can write the third term, using \(\Delta(u - v_h) - \nabla(p - q_h) = -f \) on \(T \), in the form

\[
- \sum_{T \subset \partial E} \int_T f_h \cdot [\nabla v_h \cdot n_E - q_h ln_E]_E \cdot B_E \, dx \\
- \sum_{T \subset \partial E} \int_T (f - f_h) \cdot [\nabla v_h \cdot n_E - q_h ln_E]_E \cdot B_E \, dx.
\]

These terms can be estimated using the Cauchy–Schwarz inequality, (19), (21) and the estimate (20) for \(\| f_h \|_{0, \gamma} \). The combination of all estimates proves the lemma.

Finally, we consider the term of the error estimator which gives information about the nonconformity of the discrete function.

Lemma 7. Given a shape regular family of triangulations, there is a positive constant \(C \) such that for each edge \(E \), \(\forall v \in (H^2(\omega_E))^2 \), \(\forall v_h \in V_h \)

\[
h_{E}^{-1/2} \| v_h \|_{0, E} \leq C(\| v - v_h \|_{0, \text{rel}} + h_{E}^{1/2} \| v \|_{2, \text{rel}}).
\]

Proof. Let \(R_{\lambda} v \in X_h \) be the interpolant of \(v \) and \(\omega_E = T_1 \cup T_2 \). Using a standard estimate of the trace of a polynomial from \(P_1(T) \) and (6), we get

\[
\| v_h \|_{1, E}^2 = \int_E [(v_h - R_{\lambda} v)|_{T_1} - (v_h - R_{\lambda} v)|_{T_2}]^2 \, ds \\
\leq 2 \left\{ \int_E [(v_h - R_{\lambda} v)|_{T_1}]^2 + \int_E [(v_h - R_{\lambda} v)|_{T_2}]^2 \right\} \\
\leq C(h_{E}^{-1} \| v - v_h \|_{0, \text{rel}} + h_{E}^{1/2} \| v \|_{2, \text{rel}}).
\]

Remark 8. An estimate of the form \(h_{E}^{-1/2} \| v_h \|_{0, E} \leq C \| v - v_h \|_{0, \text{rel}} \) would be desirable. However, such an estimate is not in general true. We consider the union \(\omega_E \) of two triangles shown in Fig. 2. The variable perpendicular to \(E \) in the direction of \(n_E \) is denoted by \(x \). Given an arbitrary function \(v_h \in V_h \) with \(v_h(B_E) = 0 \), \(\| [v_h]_E \|_{0, E} = C > 0 \), the left-hand side of (22) is a fixed positive number.
Now, defining \(\mathbf{v}_\varepsilon = \mathbf{v}_h \phi_E \) with

\[
\phi_E(x) = \begin{cases}
1 & x \geq \varepsilon, \\
\left(1 - \left(\frac{x}{\varepsilon} - 1\right)^4\right)^4 & x \in [0, \varepsilon), \\
\left(-1 + \left(\frac{x}{\varepsilon} + 1\right)^4\right)^4 & x \in (-\varepsilon, 0), \\
1 & x \leq -\varepsilon,
\end{cases}
\]

see Fig. 2, we find \(\mathbf{v}_\varepsilon \in (H^2(\omega_E))^2 \) and \(\|\mathbf{v}_\varepsilon - \mathbf{v}_h\|_{0,\omega_E} \to 0 \) for \(\varepsilon \to 0 \).

4. Global a posteriori estimate for the \(L^2 \)-error of the velocity

We apply a technique developed by Johnson et al., see, e.g., [10]. It consists of four steps:
1. error representation with the solution of a continuous dual problem,
2. Galerkin orthogonality of the discretization,
3. interpolation estimates for the solution of the dual problem,
4. strong stability of the dual problem.

Let \((\mathbf{u}_h, p_h)\) be the solution of the discrete problem (4). The strong formulation of the continuous dual problem with the error \(\mathbf{u} - \mathbf{u}_h \) as right-hand side is

\[
\begin{align*}
-\Delta z - \nabla s &= \mathbf{u} - \mathbf{u}_h & \text{in } \Omega, \\
\nabla \cdot z &= 0 & \text{in } \Omega, \\
\n\mathbf{z} &= \mathbf{0} & \text{on } \partial \Omega.
\end{align*}
\]

For the solution \((z, s)\) of the corresponding weak problem, we require the regularity

\[
(z, s) \in (H^2(\Omega) \cap H^1_0(\Omega))^2 \times (H^1(\Omega) \cap L^2_0(\Omega))
\]

and the stability

\[
|z|_2 + |s|_1 \leq C_S \|\mathbf{u} - \mathbf{u}_h\|_0.
\]

The following theorem gives the estimate of the global \(L^2 \)-error of the velocity.
Theorem 9. Let \((u, p)\) be the solution of (1) with the regularity given by (3) and \((u_h, p_h)\) the solution of (4). For the solution \((z, s)\) of the dual problem (23), we assume the regularity given by (24) and the stability (25). Then, for a shape regular family of triangulations, there is a constant \(C = C(C_iC_S)\) such that the global error estimate

\[
\|u - u_h\|_0 \leq C \eta + C \left(\sum_{T \in \mathcal{T}_h} h_T^3 \|f - f_h\|_{0, T}^2 \right)^{1/2}
\]

holds with

\[
\eta = \left(\sum_{T \in \mathcal{T}_h} (h_T^2 \|f_h\|_{0, T}^2 + h_T^2 \|\nabla \cdot u_h\|_{0, T}^2) + \sum_{E \subseteq \mathcal{T}} h_E \|\{\nabla u_h \cdot n_E - p_h I_{n_E}\} E\|_{0, E}^2 + \sum_{E \subseteq \mathcal{T}} h_E \|\{u_h\} E\|_{0, E}^2 \right)^{1/2}.
\] (26)

Here, \(C_i\) is defined in (6)–(8), and \(f_h\) is a polynomial approximation on \(f\) of fixed degree.

Proof. We start by testing the dual problem (23) with \(u - u_h\) and integrating by parts. Using the error \(p - p_h\) as test function from \(Q\), we obtain

\[
\|u - u_h\|_0^2 = \sum_{T \in \mathcal{T}_h} \left[\int_T \nabla z \cdot \nabla (u - u_h) + s \nabla \cdot (u - u_h) - (p - p_h) \nabla \cdot z \, dx

ight.

+ \sum_{E \subseteq \mathcal{T}} \int_E (\nabla z \cdot n_E) \cdot u_h + s (u_h \cdot n_E) \, ds \right].
\] (27)

Since \(X_h \subset V_h\), we get with (2) the Galerkin orthogonality

\[
0 = \sum_{T \in \mathcal{T}_h} \left[\int_T \nabla(u - u_h) : \nabla v_h - (p - p_h) \nabla \cdot v_h + q_h \nabla \cdot (u - u_h) \, dx \right]
\]

for all \((v_h, q_h) \in X_h \times Q_h\). Choosing \(v_h = R_{X_h} z = z_h\) and \(q_h = R_{Q_h} s = s_h\), adding these to (27), and integrating by parts give

\[
\|u - u_h\|_0^2 = \sum_{T \in \mathcal{T}_h} \left[\int_T (-\Delta(u - u_h) + \nabla (p - p_h)) \cdot (z - z_h) + (s - s_h) \nabla \cdot (u - u_h) \, dx

ight.

+ \sum_{E \subseteq \mathcal{T}} \int_E (\nabla (u - u_h) \cdot n_E - (p - p_h) n_E) \cdot (z - z_h) + (\nabla z \cdot n_E) \cdot u_h + s (u_h \cdot n_E) \, ds \right].
\]
The estimate of the first terms is standard [10]. Using the interpolation estimates (6)–(8) and the stability of the dual problem (25) gives the first three terms of the error estimator.

The terms coming from the nonconformity of \(\mathbf{u}_h \) are estimated using (5), (9), and (25):

\[
\sum_{T \in \mathcal{T}_h} \int_E (\nabla z \cdot n_E) \cdot \mathbf{u}_h \, ds \leq \sum_{E \in \mathcal{E}} \left| \int_E (\nabla z \cdot n_E) \cdot [\mathbf{u}_h]_E \, ds \right| \\
= \sum_{E \in \mathcal{E}} \left| \int_E ((\nabla z - \mathcal{M}^0_E(\nabla z)) \cdot n_E) \cdot [\mathbf{u}_h]_E \, ds \right| \\
\leq C \sum_{E \in \mathcal{E}} h_{E}^{1/2} \|[\mathbf{u}_h]_E\|_{0,E} \|\nabla z \cdot n_E\|_{1,E_{\text{ov}}} \\
\leq C C_S \left(\sum_{E \in \mathcal{E}} h_{E} \|[\mathbf{u}_h]_E\|_{0,E}^2 \right)^{1/2} \|\mathbf{u} - \mathbf{u}_h\|_0, \tag{\textcircled{1}}
\]

\[
\sum_{T \in \mathcal{T}_h} \int_E s(\mathbf{u}_h \cdot n_E) \, ds \leq \sum_{E \in \mathcal{E}} \left| \int_E (s - \mathcal{M}^0_E(s)) [\mathbf{u}_h]_E \cdot n_E \, ds \right| \\
\leq C \sum_{E \in \mathcal{E}} h_{E}^{1/2} \|[\mathbf{u}_h]_E \cdot n_E\|_{0,E} |s|_{1,E_{\text{ov}}} \\
\leq C C_S \left(\sum_{E \in \mathcal{E}} h_{E} \|[\mathbf{u}_h]_E\|_{0,E}^2 \right)^{1/2} \|\mathbf{u} - \mathbf{u}_h\|_0. \tag{\textcircled{2}}
\]

Errors coming from numerical integration in assembling the right-hand side of the discrete system (4) and from the termination of the iterative solver at an approximation of the solution of the discrete system violate the Galerkin orthogonality and result in additional terms in the global error estimate. These terms will be considered as of higher order in the numerical practice. To justify this, it is necessary that in the computation of the error estimator \(\eta \) at least a good approximation of \(\mathbf{u}_h(p_h) \) is used.

In the proof of Theorem 9, we do not need a solution of a discrete problem belonging to the dual problem (23) but only an interpolant \(z_h \) of \(z \). We make use of the fact that \(V_h \) contains the conform subspace \(X_h \) so that we can choose \(z_h \in X_h \). Thus, line integrals for the reason of discontinuities of \(z_h \) do not occur in the following integration by parts. So to speak, the dual problem is treated in a conforming way.

The analysis of Sections 3 and 4 can be extended to inhomogeneous Dirichlet boundary conditions and Neumann boundary conditions, in a way analogous to [7, 8].

5. Numerical results

In this section, we present numerical results which demonstrate the efficiency of the global error estimator \(\eta \) and we give a comparison of the adaptive mesh refinement using the local error estimator \(\eta_L \) (11) and a local estimator of the error in the discrete energy norm

\[
(|\mathbf{u} - \mathbf{u}_h|_h^2 + \|p - p_h\|_0^2)^{1/2}
\]
proposed by Dari et al. [7]. The global error estimator η is said to be efficient if there are constants $0 < c_0 < c_1$ such that for all triangulations \mathcal{T}_h

$$c_0 \leq \frac{\eta}{\|u - u_h\|_0} \leq c_1.$$

Example 10. First, we consider an example with a smooth solution satisfying the regularity assumptions (3). The right-hand side is chosen such that

$$u = \text{curl } \Psi, \quad \Psi = x^2 y^2 (1 - x)^2 (1 - y)^2, \quad p = x^3 + y^3 - 0.5$$

is the solution of (1) in $\Omega = [0, 1] \times [0, 1]$.

We have performed computations using different coarse grids and uniform refinement. For some tests, the exact and the estimated error in the L^2-norm of the velocity are presented in Fig. 3 together with the corresponding coarse grids. In each test, the ratio of the exact and estimated error has been nearly constant on all levels which demonstrates the efficiency of the error estimator.

Example 11. The following example has been used in [3, 16] for testing a posteriori error estimators for the error in the energy norm and for conforming finite element discretizations.

Let Ω be the disc with the center $(0, 0)$ and the radius 1 which has a crack along the x-axis between the points $(0, 0)$ and $(1, 0)$, see Fig. 4. We consider the Stokes equations

$$-\Delta u + \nabla p = 0 \quad \text{in } \Omega,$$

$$\nabla \cdot u = 0 \quad \text{in } \Omega,$$

$$u = g \quad \text{on } \partial \Omega,$$

(28)

where the boundary condition is chosen such that

$$u = \frac{3}{2} \sqrt{r} \left(\cos \frac{\theta}{2} - \cos \frac{3\theta}{2}, 3 \sin \frac{\theta}{2} - \sin \frac{3\theta}{2} \right), \quad p = -\frac{6}{\sqrt{r}} \cos \frac{\theta}{2}$$

with $r^2 = x^2 + y^2$ and $0 \leq \theta \leq 2\pi$ is the exact solution of (28), see Fig. 5. The solution has a singularity in the origin, it is $u \notin (H^2(\Omega))^2$ and $p \notin H^1(\Omega)$. Thus, the theoretical assumptions of Sections 3 and 4 are not fulfilled. As criteria for the quality of the computed solution (u_h, p_h), we have chosen $\|u - u_h\|_0$ and the resolution of the singularity of the pressure. This resolution is measured with the minimal value $p_{h, \text{min}}$ and the maximal value $p_{h, \text{max}}$ of p_h. The coarsest grid is presented in Fig. 4.

Besides the local error estimator η_T, we have applied for the adaptive grid refinement the local error estimator in the discrete energy norm

$$\eta_{T, \text{eng}}^2 := h_T^2 \|\mathbf{f}_T\|_0,T^2 + \|\nabla \cdot u_h\|_0,T^2$$

$$+ \sum_{E \subseteq \mathcal{T}_T} h_E^{-1} \left(\|v \nabla u_h \cdot n_E - p_h n_E\|_{0,E}^2 + \sum_{E \subseteq \partial T} h_E^{-1} \|([u_h]_E)\|_{0,E}^2 \right.$$}

proposed by Dari et al. [7]. For the adaptive grid refinement criteria have to be set for choosing elements for refinement or coarsening, tolerances for these criteria, a minimal amount of refinement,
Fig. 3. Example 10, coarse grids (level 0), exact and estimated errors.
and a starting point for the adaptive refinement process. For details on these subjects see [11]. The sequence

assemble → solve → estimate the error → refine → interpolate

is called a step.

The results of the numerical tests are presented in Table 1. The use of both types of local error estimators leads to much better results than uniform refinement. Only 1.5% of the degrees of freedom are necessary to achieve similar results on the locally refined meshes of $\eta_{T,\text{eng}}$ (step 9) like with uniform refinement (step 7). The local a posteriori error estimator $\eta_{T,\text{eng}}$ refines above all at the singularity whereas the local refinement produced by η_T covers a larger domain, compare Fig. 6. It turns out that the solution computed on the meshes which are generated with the help of $\eta_{T,\text{eng}}$ is better.

The efficiency of the global error estimator η can be seen in Fig. 7. Thus, despite the missing of regularity of the solution, the local and global a posteriori error estimators could be applied successfully.

Remark 12. The solutions on the meshes generated by the local a posteriori error estimator $\eta_{T,\text{eng}}$ for the discrete energy norm have been better than on the meshes produced by η_T in Example 11.
Fig. 6. Example 11, locally refined grids with $\eta_{\tau,\text{org}}$ (above) and η_{τ} (below), step 9 and 14.

Fig. 7. Example 11, exact and estimated error, adaptive mesh refinement with η_{τ}.
We have observed the same for solutions of convection–diffusion equations with one singularity [11]. However, for convection–diffusion equations whose solutions have singularities of different kind we found the meshes of the error estimator in the weaker norm superior.

Remark 13. In a comprehensive study [11], we have applied residual-based a posteriori error estimators for conforming discretizations for the adaptive grid refinement in examples where we have used a nonconforming discretization. The difference of the conforming error estimators to η_T and $\eta_{R,\text{eng}}$ is the missing of the jumps of the discrete function. We have not found any example where the addition of these jump terms has led to clearly different meshes or improved discrete solutions.

Acknowledgements

The author wishes to acknowledge Prof. L. Tobiska for the discussions on the subject of this paper.

References

