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SUMMARY

This paper presents a numerical study of the 3D �ow around a cylinder which was de�ned as a
benchmark problem for the steady state Navier–Stokes equations within the DFG high-priority research
program �ow simulation with high-performance computers by Sch�afer and Turek (Vol. 52, Vieweg:
Braunschweig, 1996). The �rst part of the study is a comparison of several �nite element discretizations
with respect to the accuracy of the computed benchmark parameters. It turns out that boundary �tted
higher order �nite element methods are in general most accurate. Our numerical study improves the
hitherto existing reference values for the benchmark parameters considerably. The second part of the
study deals with e�cient and robust solvers for the discrete saddle point problems. All considered solvers
are based on coupled multigrid methods. The �exible GMRES method with a multiple discretization
multigrid method proves to be the best solver. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A systematic study of discretizations and solvers for the incompressible Navier–Stokes equa-
tions was started within the DFG high-priority research program �ow simulation with high-
performance computers. A number of benchmark problems describing �ows around obstacles
were de�ned by Sch�afer and Turek [1]. The benchmark parameters which should be computed,
e.g. drag and lift coe�cients at the obstacles, are of interest in applications.
A numerical study of the benchmark problem which de�nes a steady state two-dimensional

(2D) �ow around a cylinder can be found in Reference [2]. In this study, the most accu-
rate results could be computed with isoparametric higher order �nite element discretizations.
However, the solution of the arising discrete saddle point problems caused some di�culties.
The remedy was the use of a multigrid method which is based on di�erent discretizations
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on di�erent grid levels—the multiple discretization multigrid method. A comparison of this
method with other solvers was not presented in Reference [2].
The present paper can be considered as a continuation of paper [2]. We study a three-

dimensional (3D) steady-state �ow around a cylinder. The main aspects of our numerical
study are the accuracy of discretizations and the e�ciency and robustness of solvers.
Concerning the �rst aspect, boundary �tted higher order �nite element discretizations turned

out to compute the most accurate benchmark coe�cients. This could be expected in view of
the results of the 2D study. The more important outcome is a considerable improvement of
the reference values for the benchmark parameters in comparison to those given in Reference
[1]. The new reference values, presented in Section 5, may serve for a better evaluation of
numerical techniques which are used in solving the 3D Navier–Stokes equations.
All solvers of the arising saddle point problems which are considered here are based on

coupled multigrid methods. Besides using the standard multigrid approach and the multiple
discretization multigrid method as solvers, we apply them also as preconditioners in the �exible
GMRES (FGMRES) method by Saad [3]. For the saddle point problems arising from higher
order �nite element discretizations, the FGMRES method with multiple discretization multigrid
method turns out to be the best solver.

2. THE BENCHMARK PROBLEM OF THE 3D FLOW AROUND A CYLINDER

We consider the �ow around a cylinder which was de�ned by Sch�afer and Turek [1] as
a benchmark problem within the DFG high-priority research program �ow simulation with
high-performance computers. The �ow is governed by the steady state incompressible Navier–
Stokes equations

−��u+ (u · ∇)u+∇p= f in �
∇ · u=0 in �

u= g on @�in

(−pI + �∇u)n= 0 on @�out

u= 0 on @�\(@�in ∪ @�out)

(1)

The domain � is the channel with a cylinder shown in Figure 1. The boundary of � is
denoted by @� and the outer normal by n. The height of the channel is H =0:41 m and the
diameter of the cylinder D=0:1m. The right-hand side of the momentum equation vanishes in
the benchmark problem, f = 0. The kinematic viscosity of the �uid is given by �=10−3 m2=s
and its density by �=1 kg=m3. The in�ow is prescribed by

g=


16Uyz(H − y)(H − z)=H 4

0
0




with U =0:45m=s. The �ow has the Reynolds number 20 based on �; D and the mean in�ow
�U =0:2 m=s.
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Figure 1. The channel with the cylinder.

The benchmark coe�cients to compute are the drag and the lift coe�cient at the cylinder
and the pressure di�erence �p between the point (0:45; 0:2; 0:205) at the front of the cylin-
der and the point (0:55; 0:2; 0:205) at the back of the cylinder. Let S be the surface of the
cylinder, nS be the inward pointing unit normal with respect to � and �1; �2 tangential vectors
given by

nS =


nxny
0


; �1 =


 ny
−nx
0


; �2 =


00
1


 (2)

The projection of the velocity into the direction of �1 is denoted by u�1 = u · �1. With the drag
force Fd and the lift force F‘

Fd =
∫
S

(
��
@u�1
@nS

ny − pnx
)
ds; F‘=−

∫
S

(
��
@u�1
@nS

nx + pny

)
ds (3)

the drag coe�cient cd and the lift coe�cient c‘ are de�ned by

cd =
2Fd

� �U 2DH
; c‘=

2F‘
� �U 2DH

(4)

This gives in the present example

cd =
500
0:41

Fd ; c‘=
500
0:41

F‘

The computation of the surface integrals in (3) can be replaced by a computation of volume
integrals which is in general preferable from the numerical point of view. We will derive
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the volume integral formula for cd. A straightforward computation gives for the vectors of
form (2) and u=(u1; u2; u3)

@u�1
@nS

ny=
(
@u1
@x
nxny +

@u1
@y
n2y −

@u2
@x
n2x −

@u2
@y
nxny

)
ny (5)

From u|S ≡ 0 follows @u=@�1 = @u=@�2 = 0 on S, in particular
@u1
@x
ny − @u1

@y
nx=0;

@u2
@x
ny − @u2

@y
nx=0;

@u3
@z
=0 (6)

Substituting (6) into (5), noting n2x + n
2
y=1 and using ∇ · u=0 gives

@u�1
@nS

ny =
(
@u1
@y

− @u2
@x

)
ny=

@u1
@y
ny − @u2

@y
nx=

@u1
@x
nx +

@u1
@y
ny +

@u3
@z
nx

=
@u1
@x
nx +

@u1
@y
ny (7)

The volume integral is derived from the momentum equation of the Navier–Stokes equations.
We consider a function vd ∈ (H1(�))3, where H1(�) is the standard Sobolev space, with

vd|S =

10
0


; vd|@�\S =


00
0


 (8)

The momentum equation is multiplied with vd, integrated on � and integration by parts is
applied. One obtains, using the special form of the normal nS pointing into �

−[(�∇u;∇vd) + ((u · ∇)u; vd)− (p;∇ · vd)− (f ; vd)]=
∫
S
�
(
@u1
@x
nx +

@u1
@y
ny

)
− pnx ds (9)

where (· ; ·) denotes the inner product in (L2(�))d; d¿1. Combining (3), (7) and (9) for
�=1 kg=m3, leads to the volume integral formula for computing the drag coe�cient

cd =− 2
�U 2DH

[(�∇u;∇vd) + ((u · ∇)u; vd)− (p;∇ · vd)− (f ; vd)] (10)

Similar considerations with a function v‘ ∈ (H1(�))3 with

v‘|S =

01
0


; v‘|@�\S =


00
0


 (11)

give a volume integral formula for the lift coe�cient c‘

c‘=− 2
�U 2DH

[(�∇u;∇v‘) + ((u · ∇)u; v‘)− (p;∇ · v‘)− (f ; v‘)] (12)

Formulae (10) and (12) were used in all computations instead of the surface integral formulae.
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Formulae (4), (10) for cd and (4), (12) for c‘ are equivalent for the solution (u; p) of
the continuous problem. The property ∇ · u=0 was used in the derivation of (10) and (12).
However, one obtains in general di�erent results if the drag (lift) coe�cient for a �nite element
solution (uh; ph) is computed with (4) or (10) (or (12)). A study of several possibilities of
computing these values in a 2D Navier–Stokes problem [4] shows that the volume integral
formulae give more accurate results than the surface integral formulae.
The functions vd in (8) and v‘ in (11) are prescribed only on the boundary of �. The

form of vd ; v‘ in � is arbitrary as long as both functions belong to (H1(�))3. To minimize
the cost of computing the volume integrals in (10) and (12), both functions should have
a small support around the obstacle. Let Vh be the conforming �nite element space of the
velocity. We extend Vh to a �nite element space Ṽ h by all functions with the same polynomial
degree which possess in addition degrees of freedom on the closure �S of S. Then, we choose
vd ; v‘ ∈ Ṽ h such that for the nodes x

vd =





10
0


 if x∈ �S

0 if x �∈ �S
; v‘=





01
0


 if x∈ �S

0 if x �∈ �S
(13)

Thus, the volume integrals need to be computed only in one layer of mesh cells around the
obstacle and only �nite element functions have to be integrated.
If Vh is a non-conforming �nite element space, we de�ne vd and v‘ also as given in

(13). Then, both functions do not belong to (H1(�))3 in general, but from the 2D bench-
mark problem, we have the experience that the computed benchmark parameters do not di�er
much compared to the benchmark coe�cients obtained with conforming test functions, see
Reference [4]. For discontinuous discrete pressure approximations, ph (0:45; 0:2; 0:205) and
ph (0:55; 0:2; 0:205) are computed by averaging ph in these points.

3. THE FINITE ELEMENT DISCRETIZATIONS

In this section, the �nite element spaces and discretizations are described which were compared
in the numerical tests.
The Navier–Stokes equations are linearized by a �xed point iteration. Let (un; pn) be the

current iterate, then the next iterate is computed by solving

−��un+1 + (un · ∇)un+1 +∇pn+1 = 0 in �
∇ · un+1 = 0 in � (14)

where un+1 ful�ls the same boundary conditions as u. The linear saddle point problem (14)
is discretized by a �nite element method.
Let Th be a decomposition of � into either hexahedra or tetrahedra. We will use

so-called mapped �nite elements, i.e. all �nite elements are de�ned �rst on a reference
cell K̂ and the �nite elements on an arbitrary mesh cell K are de�ned with the help of the
reference map to the reference cell.
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In the following, we will consider only such pairs of �nite element spaces Vh;Qh, which
ful�l the inf–sup or Babu	ska–Brezzi condition, i.e. there exists a constant �¿0 independent
of the triangulation Th such that

inf
qh∈Qh

sup
vh∈Vh

(∇h · vh; qh)
|vh|1 ‖qh‖0 ¿� (15)

where ‖ · ‖0 and | · |1 denote the norm in L2(�) and the seminorm in (H1(�))3, respectively.
In the case of small data, (15) together with the coerciveness of the discrete bilinear form
(∇h · ;∇h ·) guarantee the unique solvability of the arising discrete problem.
The cube (−1; 1)3 is used as reference hexahedron K̂ . The reference transformation from

the closure of K̂ onto the closure of a mesh cell K is denoted by FK . In general, the mapping
FK is trilinear. We denote by Qk(K̂) and Pk(K̂) the following sets of polynomials on K̂ :

Qk(K̂) :=

{
q̂=

k∑
i; j; l=0

aijlx̂ iŷ j ẑ l
}
; Pk(K̂) :=

{
p̂=

i+j+l6k∑
i; j; l=0

bijlx̂ iŷ j ẑ l
}

The spaces on an arbitrary mesh cell K are given by

Qk(K) := {q= q̂ ◦F−1
K : q̂∈Qk(K̂)}; Pk(K) := {p= p̂ ◦F−1

K : p̂∈Pk(K̂)}
and the global �nite element spaces by

Qk := {v∈H1(�): v|K ∈Qk(K)}; k¿1

Q0 := {v∈L2(�): v|K ∈Q0(K)}
Pdisck := {v∈L2(�): v|k ∈Pk(K)}; k¿1

In addition, let Q rot1 be the space of non-conforming, point-value oriented, rotated bilinears
de�ned and analysed by Rannacher and Turek [5] and Schieweck [6]. In our numerical tests,
we use the following inf–sup stable pairs of �nite element spaces on hexahedral grids:

• Q rot1 =Q0, Q2=Pdisc1 , Q2=Q1, Q3=Pdisc2

As commonly done, the fact that the velocity space is a vector-valued function is not indicated
in these notations. For de�ning tetrahedral �nite elements, the reference tetrahedron with the
vertices (0; 0; 0), (1; 0; 0), (0; 1; 0) and (0; 0; 1) is used. In the case of tetrahedra, the reference
map is a�ne. Using the spaces on the mesh cells given above, we de�ne

P0 := {v∈L2(�): v|K ∈P0(K)}
Pk := {v∈H1(�): v|K ∈Pk(K)}; k¿1

Furthermore, let Pnc1 the space of non-conforming, piecewise linears which are continuous at
the midpoint of each face, the so-called Crouzeix–Raviart �nite element space [7]. We will
use the following inf–sup stable pairs of �nite element spaces on tetrahedral grids:

• Pnc1 =P0, P2=P1, P3=P2
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Since the domain � has a non-polyhedral boundary, the cylinder, the application of bound-
ary �tted �nite elements seems to be advantageous. The numerical study of the 2D channel
�ow around a cylinder presented in Reference [2] shows a great improvement in the accuracy
using isoparametric �nite elements compared to a polygonal approximation of the boundary.
In order to obtain a better approximation of the boundary for the 3D �ow around a cylinder,
all degrees of freedom which belong to the curved face S were moved from the plane face
of a mesh cell onto S. We will refer to this technique as boundary �tted �nite elements. This
technique was applied to the Q2=Pdisc1 , Q2=Q1, Q3=Pdisc2 ; P2=P1 and P3=P2 pairs of �nite element
spaces.
The numerical study of the 2D �ow around a cylinder in Reference [2] shows that the

standard Galerkin discretization gives the most accurate results for higher order �nite elements.
A stabilization of the convective term was not necessary. The situation is somewhat di�erent
for non-conforming �nite elements of lowest order. That is why, we will present also results
for the Samarskij upwind discretization. Upwind stabilizations are studied analytically by
Schieweck and Tobiska [8] for the Crouzeix–Raviart �nite element and by Schieweck [6] for
the Q rot1 =Q0 pair of �nite element spaces.

4. THE SOLVER OF THE LINEAR SADDLE POINT PROBLEMS

Linearization (14) and discretization of the Navier–Stokes equations lead to a linear saddle
point problem of the abstract form

A

(
u
p

)
=
(
A B
C 0

)(
u
p

)
=
(
f
g

)
(16)

A system of this type has to be solved approximately in each step of the �xed point iteration.
We will study four di�erent types of solvers for (16) which are based on multigrid ap-

proaches. We use so-called coupled multigrid methods, i.e. multigrid methods which solve
(16) for both types of unknowns, the velocity u and the pressure p, together. In Section 4.1,
we will present two types of multigrid approaches, the standard one and one approach which
uses di�erent discretizations on di�erent levels of the multigrid hierarchy. In the numerical
tests, these two multigrid methods are applied as solvers for (16) and as preconditioner within
a �exible GMRES (FGMRES) method.
This section describes the individual components of the solvers. A multigrid method is

de�ned by

• the grid hierarchy,
• the grid transfer operators (restriction and prolongation),
• the smoother on �ner levels,
• the coarse grid solver.

We will also mention the parameters of the solvers, which are not varied in the numerical
tests.

4.1. The standard and the multiple discretization multigrid approach

We have used two di�erent multigrid approaches for the solution of (16), see Figure 2. In
the standard multigrid approach, the number of geometric grid levels and the number of
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Figure 2. The standard and the multiple discretization multigrid approach for higher order discretizations.

levels in the multigrid hierarchy coincide. The same discretization is used on each multi-
grid level. In a numerical study of a benchmark problem for the Navier–Stokes equations
in 2D [2] great di�culties are reported with the standard multigrid approach for solving
the linear saddle point problems arising in some higher order �nite element discretizations.
However, the higher order �nite element discretizations have given very accurate results for
the benchmark reference values. In contrast, lowest order non-conforming discretization with
upwind stabilization were rather inaccurate but the standard multigrid approach has been
proven as a very e�cient solver, see also Reference [9]. This situation led to the idea
of constructing a multigrid method for higher order �nite element discretizations which is
based on a stable lowest order non-conforming �nite element discretization. We will call
this approach the multiple discretization multigrid method. There are of course many possi-
bilities to construct such a multigrid method. We use in our tests the approach depicted in
Figure 2. In this approach, the multigrid hierarchy possesses one level more than the ge-
ometric grid hierarchy. On the �nest geometric grid, level L, two discretizations are ap-
plied. One of them, which forms the �nest level of the multigrid hierarchy, is the discretiza-
tion which we are interested in, e.g. a higher order discretization. The second discretiza-
tion on the geometric level L is a lowest order non-conforming discretization with upwind.
On all coarser geometric levels, also a stable lowest order non-conforming discretization is
applied.
In the numerical study of the benchmark problem of the Navier–Stokes equations in 2D

[2] it is mentioned that the multiple discretization multigrid approach works for higher order
�nite element discretizations in principal and the solutions could be obtained in reasonable
computing times. A comparison of both multigrid approaches was not presented.
A convergence analysis of the multiple discretization multigrid approach applied to the

Stokes equations can be found in Reference [10]. The analysis is done for smoothers of
Braess–Sarazin-type [11].
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4.2. The grid transfer operators

In the multiple discretization multigrid approach, the data have to be transferred between
di�erent �nite element spaces on the multigrid levels L and L + 1. We use a grid transfer
operator by Schieweck [12]. This operator allows a transfer between almost arbitrary �nite
element spaces. Its application is given by an appropriate local averaging. For a detailed
description of the construction and the analytical properties of this operator, we refer to
References [12, 10]. A short description is contained also in Reference [2].
In the multigrid approach, the prolongation of the update from level l can be damped and

then will be added to the current iterate on level l + 1. In the numerical tests presented in
this report, we use the damping factor 1.0 (no damping).

4.3. The Vanka-type smoothers

This section contains a detailed description of the smoothers which are used. In addition, we
illustrate the increase of the numerical costs of these smoothers in three dimensions compared
to two dimensions.
The coupled multigrid method is applied with local smoothers, the so-called Vanka-type

smoothers, see Reference [13]. Vanka-type smoothers can be considered as block Gauss–Seidel
methods. Let Vh and Qh be the set of velocity and pressure degrees of freedom, respectively.
These sets are decomposed into

Vh=
J⋃
j=1

Vh
j ; Qh=

J⋃
j=1

Qhj (17)

The subsets are not required to be disjoint.
Let Aj be the block of the matrix A which is connected with the degrees of freedom of

Wh
j =Vh

j ∪Qhj , i.e. the intersection of the rows and columns of A with the global indices
belonging to Wh

j ,

Aj=
(
Aj Bj
Cj 0

)
∈Rdim(Wh

j )×dim(Wh
j )

Similarly, we denote by (·)j the restriction of a vector on the rows corresponding to the
degrees of freedom in Wh

j . Each smoothing step with a Vanka-type smoother consists in a
loop over all sets Wh

j , where for each Wh
j a local system of equations connected with the

degrees of freedom in this set is solved. The local solutions are updated in a Gauss–Seidel
manner. The (full) Vanka smoother computes new velocity and pressure values for the degrees
of freedom in Wh

j by

(
u
P

)
j
:=
(
u
P

)
j
+A−1

j

((
f
g

)
−A

(
u
P

))
j

The general strategy for choosing the sets Vh
j and Qhj is as follows. First, pick some

pressure degrees of freedom which de�ne Qhj . Second, V
h
j is de�ned by all velocity degrees

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:775–798
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Table I. Degrees of freedom for the local systems of the mesh cell oriented Vanka smoother
(velocity: each component).

2D 3D

Velocity Pressure Total Velocity Pressure Total

Qnc1 =Q0 4 1 9 6 1 19
Q2=Pdisc1 9 3 21 27 4 85
Q3=Pdisc2 16 6 38 64 10 202
Pnc1 =P0 3 1 7 4 1 13

of freedom which are connected with the pressure degrees of freedom from Qhj by non-zero
entries in the matrix C.
We have applied two types of Vanka smoothers with respect to this strategy. The �rst one is

called mesh cell oriented, because Qhj is de�ned by all pressure degrees of freedom which are
connected to the mesh cell j. For this type of Vanka smoother, J coincides with the number
of mesh cells. The mesh cell oriented Vanka smoother is applied only for discretizations with
discontinuous pressure approximation, i.e. Qh ∈{P0; Q0; Pdisc1 ; Pdisc2 }. For such discretizations,
Vh
j consists of all velocity degrees of freedom which are connected to the mesh cell j. This
property is not given for discretizations with continuous pressure approximation. For these
discretizations, we use a decomposition in which Qhj is de�ned by a single pressure degree of
freedom, dimQhj =1. This smoother is called pressure node oriented Vanka smoother. For this
smoother, the number of subsets J in decomposition (17) is equal to the number of pressure
degrees of freedom.
For a continuous pressure approximation, a pressure degree of freedom on a given mesh

cell K is in general connected to velocity degrees of freedom on other mesh cells. In this case
it is also possible to generate the local systems with the pressure degrees of freedom on K in
order to perform a mesh cell oriented Vanka smoother. But in comparison to discontinuous
pressure approximations, the overhead of searching all connections and allocating the local
matrix and right-hand side is much higher.
Using discontinuous discrete pressure, the local matrix of the mesh cell oriented Vanka

smoother can be generated on the current mesh cell. The size of the local systems is known
a priori and it is given for di�erent discretizations in Table I. It can be seen that the
dimension of the local systems for the higher order discretizations in 3D is relatively
large.
The size of the local systems for the pressure node oriented Vanka smoother applied in dis-

cretizations with continuous pressure approximation depends on the particular pressure degree
of freedom and on the given grid. In addition, the size of the local systems cannot be bounded
a priori since it depends on the maximal number of neighbour cells of K . A neighbour is
a mesh cell K1 with �K ∩ �K1 �= ∅. To illustrate the size of the local systems, we give it for
concrete degrees of freedom in typical situations (Figure 3) in Table II. It can be observed
that these sizes are considerably larger than for the mesh cell oriented Vanka smoother for
discretizations with discontinuous pressure (Table I). In addition, the number of local systems
which must be solved in each smoothing step is in general a multiple compared to the mesh
cell oriented Vanka smoother since the number of pressure degrees of freedom is in general
larger than the number of mesh cells.
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Figure 3. Degree of freedom for which the size of the local systems in the pressure node oriented
Vanka smoother is given in Table II. (bottom right: 6 tetrahedra in two directions (coloured) and 2
tetrahedra in six directions, i.e. 24 tetrahedra are connected with this pressure degree of freedom).

Table II. Degrees of freedom for the local systems of the pressure node oriented Vanka
smoother (velocity: each component).

2D 3D

Velocity Pressure Total Velocity Pressure Total

Q2=Q1 25 1 51 125 1 376
P2=P1 19 1 39 65 1 196
P3=P2 37 1 75 175 1 526

The size of the local systems using higher order �nite element discretizations may be
rather large, see Tables I and II. We have applied in the computations two approaches for
their solution:

• Direct solution using the Gaussian elimination with column pivoting.
• Approximate solution using the GMRES method which stops after having reduced the
Euclidean norm of the residual by a prescribed factor. In our numerical tests, the factor
10 is prescribed.

In both approaches, the solution of the large number of local systems is the most time-
consuming part of the whole algorithm.
The mesh cell and the pressure node oriented Vanka smoother are equivalent for piecewise

constant discrete pressure if the mesh cells and the pressure nodes are numbered in the same
way.
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Figure 4. Coarse grids, level 0.

Since the Vanka-type smoothers are block Gauss–Seidel methods, their performance depends
on the ordering of the degrees of freedom. We did not study this dependence in our tests. In
the computations, we ordered the degrees of freedom, with possibly few exceptions, from the
in�ow to the out�ow.
Sometimes it becomes necessary to damp the result of the smoother iteration. Let (ul; pl)

be the current iterate on the multigrid level l and (�ul; �pl) be the update computed by one
iteration of the smoother. Then, the new iterate is computed by (ul; pl) + !l(�ul; �pl). The
damping parameter can be chosen di�erently on all levels of the multigrid hierarchy.

4.4. The coarse grid solver

The systems on the coarsest grid, level 0, are solved approximately by the same iterative
scheme which is used as smoother. The iteration is stopped either after having reduced the
Euclidean norm of the residual by the factor 10 or after 100 iterations.

4.5. The �exible GMRES (FGMRES) method

Besides using the coupled multigrid methods described above as solver for systems of type
(16), we applied them also as preconditioned in the right preconditioned �exible GMRES
method by Saad [3, 14].
We will describe only the part of this approach which is connected with the application

of the preconditioner. After the ith step of the FGMRES iteration, an (i + 1)th dimensional
Krylov space with basis {v0; : : : ; vi}, ‖vj‖=1, j=0; : : : ; i, is constructed. The application of
the preconditioner M in the next FGMRES iteration looks as follows:

1: yi := 0
2: (k := 0;k<prec maxit; k++)
3: solve Mdi = vi- Ayi
4: update yi := yi+ di
5: endfor
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Table III. The benchmark coe�cients computed with the boundary �tted Q2=Pdisc1 �nite
element discretization and the derived reference values.

Level l d.o.f. cd Order c‘ Order �p

1 117 360 6.1652287 1:0098526e− 2 1:7092581e− 1
2 899 040 6.1835048 9:4548796e− 3 1:7012569e− 1
3 7 035 840 6.1852335 3.40 9:4047889e− 3 3.68 1:7040289e− 1
4 55 666 560 6.1853267 4.21 9:4012217e− 3 3.81 1:7077855e− 1
4th order extrapolation 6.1853329 9:4009839e− 3

In our case, M−1 represents one coupled multigrid cycle and A is the system matrix of (16).
The parameter prec maxit controls the number of multigrid cycles applied for precondition-
ing. In all computations, we use prec maxit=1. The result of the application of the precondi-
tioner is a vector yi which is needed for the computation of the �nal result of the FGMRES
iteration.
In lines 2–5, a system Ayi= vi is solved iteratively with the help of the preconditioner. The

result of this iteration depends of course on the initial iterate, which is set in line 1. We use
in all computations the zero vector as initial iterate. We think that this choice is not optimal
since the norm of the right-hand side vi is one, and thus, the solution of Ayi= vi cannot be
expected to be close to the zero vector. But we are not aware of any studies of the topic
how to choose the initial iterate. We use the zero vector just for simplicity and expect that a
clever choice of the initial iterate will enhance the performance of the method.

5. THE ACCURACY OF THE COMPUTED BENCHMARK COEFFICIENTS

The benchmark coe�cients which are computed with the di�erent �nite element spaces are
compared in this section. In Reference [1], reference intervals are de�ned: cd; ref ∈ [6:05; 6:25],
cl; ref ∈ [0:008; 0:01];�pref ∈ [0:165; 0:175]. We will �rst derive reference values from our nu-
merical results to make the comparison more transparent.
The non-linear systems are solved in these tests up to an Euclidean norm of the residual

vector less than 10−12.
For the 2D �ow around a cylinder, it was possible to obtain very accurate reference values

from computational results on very �ne grids, see Reference [2]. These reference values can
be considered to be reliable for at least six leading digits. But in 3D it is not possible to
use such extremely �ne meshes like in 2D. Hence, the same accuracy of the reference values
cannot be expected. However, it is possible to de�ne reference values which allow a clear
assessment of the results obtained with higher and lower order �nite element spaces or with
boundary �tted and non-boundary �tted discretizations. We obtain the reference values by
extrapolating the results which we consider as most accurate. These are the results computed
with the boundary �tted Q2=Pdisc1 �nite element discretization, see Table III. The numerical
order of convergence for the drag and the lift coe�cient, which is given in the column ‘Order’

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:775–798



788 V. JOHN

in this table, is computed by

log

(
|cl−1d − cld|
|cld − cl+1d |

)/
log(2)

This order is approximately 4. A fourth order convergence of these coe�cients was ob-
served for this discretization also in the 2D �ow around a cylinder [2]. Thus, we take
cd; ref = 6:1853267 and c‘; ref = 9:4009839e − 3. The values for �p do not converge mono-
tonically for the boundary �tted Q2=Pdisc1 �nite element discretization such that we cannot
extrapolate them. To de�ne a reference value, we take the average of the value on level 4
given in Table III and the value computed with the boundary �tted Q3=Pdisc2 �nite element dis-
cretization on level 3 (22.7 millions degrees of freedom) �p=1:70875442e−1. This leads to
�pref = 1:70826996e−1. We think that at least the three leading digits of all de�ned reference
values are correct.
The di�erences of the computed drag coe�cients to cd; ref are presented in Figure 5. The

most accurate coe�cients are computed with boundary �tted �nite element discretizations
of higher order. Using a polyhedral approximation of the boundary gives in general drag
coe�cients which are considerably worse. Only for the P2=P1 �nite element discretization, the
order of convergence seems to be the same for the boundary �tted and the polyhedral version.
The most inaccurate results are obtained with non-conforming �nite element discretizations
of lowest order, e.g. the Q rot1 =Q0 Samarskij upwind discretization with 20 million degrees
of freedom gives a more inaccurate result than the boundary �tted Q3=Pdisc2 �nite element
discretization with 50 000 degrees of freedom. It was not possible to solve the systems for
the lowest order non-conforming Galerkin �nite element discretizations on coarse levels.
The computed lift coe�cients are compared in Figure 6. Similar to the drag coe�cient,

the most accurate lift coe�cients are computed in general with boundary �tted �nite element
discretizations of higher order. Only for the P2=P1 �nite element, the non-boundary �tted
version gives a bit more accurate lift coe�cients than the boundary �tted counterpart. In
comparison to the higher order discretizations, the results obtained with the lowest order
non-conforming �nite element discretizations are extremely inaccurate.
Figure 7 presents the errors of the computed pressure di�erences to �pref . In general, there

is almost no di�erence in the computed values between boundary �tted and polyhedral �nite
element methods of higher order. Once more, the lowest order non-conforming discretizations
are by far the most inaccurate ones.

6. THE COMPARISON OF THE SOLVERS

This section investigates the e�ciency of the solvers introduced in Section 4. They were
applied for solving the linear saddle point problems obtained by higher order �nite element
discretizations and non-stabilized lowest order non-conforming discretizations.
The �nite element spaces which were considered in this numerical study, the discretizations

which were applied, the geometric grid levels L on which the solutions are computed and the
corresponding number of degrees of freedom on the �nest level of the multigrid hierarchy are
given in Table IV. We used the same initial grids as for computing the benchmark parameters,
see Figure 4.
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Figure 5. Errors of the computed drag coe�cients to cd; ref .

The initial iterate on the geometric grid level L was chosen to be the interpolation of
the solution of level L − 1 in each test. We applied two stopping criteria for the iterative
solution of the linear system in each step of the �xed point iteration for solving the Navier–
Stokes equations. Either, the iteration is stopped after the reduction of the Euclidean norm
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Figure 6. Errors of the computed lift coe�cients to c‘; ref .

of the residual vector by the factor 10 or maximal 10 iterations (multigrid or FGMRES)
were performed. The �xed point iteration itself was stopped if the Euclidean norm of the
residual vector was less than 10−10. If not mentioned otherwise, the local systems are solved
by Gaussian elimination.
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Figure 7. Errors of the computed pressure di�erences to �pref .

The e�ciency of the solvers will be evaluated by computing times. Of course, the computing
time is in�uenced by many factors which are computer and compiler dependent, but it is the
most important measure in applications. All computations were performed on a computer with
HP PA-RISC 8500 processors (440MHz, 1760M�ops=s peak). To simplify the evaluation of
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Table IV. Finite element spaces, discretizations, geometric grid level L and number of
degrees of freedom for the comparison of the solvers.

Finite element space Discretization L d.o.f.

Q rot1 =Q0 Galerkin 3 2 496 000
Pnc1 =P0 Galerkin 3 10 398 720
Q2=Pdisc1 boundary �tted Galerkin 3 7 035 840
Q2=Q1 boundary �tted Galerkin 2 810 160
P2=P1 boundary �tted Galerkin 2 810 160
Q3=Pdisc2 boundary �tted Galerkin 2 2 882 640
P3=P2 boundary �tted Galerkin 1 367 000

Table V. Q rot1 =Q0 Galerkin �nite element discretization, multigrid methods with mesh
cell oriented Vanka smoother.

Cycle FGMRES +

Standard mg Mult. disc. mg Standard mg Mult. disc. mg

mg cyc. Time mg cyc. Time mg cyc. Time mg cyc. Time

V (1; 1) — Div. 22=209 13 054 12=108 3822 10=70 4472
V (2; 2) 11=96 6146 11=55 6503 10=82 5311 10=49 5803
V (3; 3) 11=90 8365 10=47 8099 11=70 6515 10=39 6722

F(1; 1) — Div. 10=29 3044 10/69 2988 10=28 2954
F(2; 2) 10=49 3750 10=19 3668 10=44 3373 10=20 3865
F(3; 3) 10=43 4716 10=19 5303 10=37 4038 10=18 5044

W (1; 1) — Div. 10=28 3286 10=62 2805 10=28 3273
W (2; 2) 10=44 3474 10=18 3788 10=39 3095 10=18 3780
W (3; 3) 10=38 4282 10=18 5447 10=35 3961 10=18 5443

the results given in Tables V–XII, we emphasize the fastest computing times in each test and
all other computing times which are within 10% of the fastest time.
We did not study the behaviour of the solvers with respect to the damping parameter in

the smoother iteration, see Section 4.3. In most tests, we did not apply damping at all, i.e. we
used !l=1 on all grid levels l. Only in the computations using the Q2=Q1 and P3=P2 �nite
element spaces, we used !l=0:8, l=0; : : : ; L in the standard multigrid method and !l=1,
l=0; : : : ; L, !L+1 =0:8 in the multiple discretization multigrid method.
In the column ‘mg cyc.’ of Tables V–XII, we give the number of �xed point iterations

to solve the non-linear system and the total number of iterations of the linear solver within
these �xed point iterations. The abbreviation ‘Div.’ indicates that the iteration diverges and
‘No conv.’ means that the stopping criterion of the �xed point iteration is not ful�lled after
50 steps. The computing times are given in seconds.
The evaluation of the numerical results is split into three parts.
In the �rst part, we consider non-stabilized lowest order non-conforming �nite element dis-

cretizations, see Tables V and VI. Although the computed benchmark coe�cients are rather
inaccurate, see Section 5, the solution of the discrete problems causes some di�culties such
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Table VI. Pnc1 =P0 Galerkin �nite element discretization, multigrid methods with mesh
cell oriented Vanka smoother.

Cycle FGMRES +

Standard mg Mult. disc. mg Standard mg Mult. disc. mg

mg cyc. Time mg cyc. Time mg cyc. Time mg cyc. Time

V (1; 1) Div. — Div. — 19=184 20 960 10=81 16 750
V (2; 2) Div. — Div. — 11=92 18 449 10=51 18 511
V (3; 3) Div. — No conv. — 10=68 19 268 9=39 20 255

F(1; 1) Div. — Div. — No conv. — No conv. —
F(2; 2) Div. — 9=27 15 937 No conv. — 9=24 14 176
F(3; 3) Div. — 9=21 17 649 9=42 13 913 9=19 15 965

W (1; 1) Div. — Div. — Div. — No conv. —
W (2; 2) Div. — 9=33 20 800 No conv. — 9=24 15 418
W (3; 3) Div. — 9=20 18 232 9=42 14 330 9=18 16 340

Table VII. Q2=Pdisc1 boundary �tted Galerkin �nite element discretization, multigrid methods
with mesh cell oriented Vanka smoother.

Cycle FGMRES +

Standard mg Mult. disc. mg Standard mg Mult. disc. mg

mg cyc. Time mg cyc. Time mg cyc. Time mg cyc. Time

V (1; 1) 5=23 26 709 No conv. — 5=17 19 439 6=40 38 994
V (2; 2) 5=12 26 787 6=36 69 234 5=13 28 546 6=25 48 130
V (3; 3) 5=11 36 387 5=20 57 486 5=10 32 550 5=19 54 650

F(1; 1) 5=18 24 836 5=23 23 388 5=14 19 232 5=16 16 252
F(2; 2) 5=11 29 043 5=18 36 067 5=9 23 335 3=13 26 009
F(3; 3) 5=8 31 002 5=13 38 892 5=8 30 483 5=11 32 820

W (1; 1) 5=17 24 309 5=23 23 518 5=14 20 094 5=16 16 417
W (2; 2) 5=11 30 398 5=17 34 357 5=9 24 369 5=13 26 213
W (3; 3) 5=8 32 006 5=12 36 381 5=8 31 430 5=11 33 057

that these discretizations may serve as good examples for testing solvers. For the Q rot1 =Q0
Galerkin �nite element discretization, only the standard multigrid method with one pre- and
post-smoothing step fails. The fastest computing times of the multiple discretization multigrid
method and the FGMRES method with both types of multigrid preconditioners are simi-
lar. Considering also the computing times using more than one pre- and post-smoothing
step, the FGMRES method with standard multigrid method preconditioner might be pre-
ferred somewhat. The situation is considerably di�erent for the Pnc1 =P0 Galerkin �nite element
discretization, Table VI. For this discretization, the standard multigrid method failed com-
pletely. The multiple discretization multigrid method converged if the F- or W-cycle with
at least two pre- and post-smoothing steps were used. Using the multigrid methods as pre-
conditioner in FGMRES increases the robustness of the solver considerably. The FGMRES
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Table VIII. Q3=Pdisc2 boundary �tted Galerkin �nite element discretization, multigrid methods
with mesh cell oriented Vanka smoother, local systems solved with Gaussian elimination.

Cycle FGMRES +

Standard mg Mult. disc. mg Standard mg Mult. disc. mg

mg cyc. Time mg cyc. Time mg cyc. Time mg cyc. Time

V (1; 1) 5=25 45 017 No conv. — 5=18 32 065 6=43 50 536
V (2; 2) 5=13 42 302 6=33 78 390 5=13 41 440 6=25 58 387
V (3; 3) 5=11 50 430 6=25 88 935 5=11 49 681 6=22 76 969

F(1; 1) 5=29 64 974 5=36 42 435 5=17 38 841 5=23 27 126
F(2; 2) 5=12 47 718 5=24 56 156 5=11 45 238 5=19 44 585
F(3; 3) 5=11 59 641 5=18 63 031 5=11 59 748 5=12 42 192

W (1; 1) 5=29 64 596 5=36 43 373 5=17 38 816 5=23 27 193
W (2; 2) 5=12 47 505 5=24 56 471 5=11 45 219 5=18 42 207
W (3; 3) 5=11 59 109 5=18 64 620 5=11 59 631 5=14 49 123

Table IX. Q3=Pdisc2 boundary �tted Galerkin �nite element discretization, multigrid methods
with mesh cell oriented Vanka smoother, local systems solved approximately with GMRES.

Cycle FGMRES +

Standard mg Mult. disc. mg Standard mg Mult. disc. mg

mg cyc. Time mg cyc. Time mg cyc. Time mg cyc. Time

V (1; 1) Div. — Div. — 5=28 28 846 6=45 30 469
V (2; 2) 6=29 51 444 Div. — 5=15 27 775 6=34 46 686
V (3; 3) 5=16 41 569 Div. — 5=10 27 121 6=29 58 694

F(1; 1) Div. — Div. — No conv. — 6=36 26 229
F(2; 2) 5=36 71 531 Div. — 5=16 38 606 5=24 34 411
F(3; 3) 5=17 51 889 Div. — 5=10 32 797 5=19 40 726

W (1; 1) Div. — Div. — No conv. — 6=35 25 590
W (2; 2) 5=36 71 492 Div. — 5=16 38 334 5=24 34 689
W (3; 3) 5=17 51 874 Div. — 5=10 32 448 5=19 40 771

with the multiple discretization multigrid method preconditioner converges already with two
pre- and post-smoothing steps in the F- and W-cycle whereas the standard multigrid method
preconditioner within the FGMRES needs three pre- and post-smoothing steps.
Altogether, for non-stabilized lowest order non-conforming �nite element discretizations, the

FGMRES with either type of multigrid preconditioner was the most e�cient of the considered
solvers.
The second part of the evaluation concerning the behaviour of the solvers considers their

application to higher order �nite element discretizations with discontinuous pressure approx-
imation (Tables VII–IX). We apply the mesh cell oriented Vanka smoother for these dis-
cretizations. For the Q2=Pdisc1 boundary �tted Galerkin �nite element discretization, the fastest
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Table X. P2=P1 boundary �tted Galerkin �nite element discretization, multigrid methods
with pressure node oriented Vanka smoother.

Cycle FGMRES +

Standard mg Mult. disc. mg Standard mg Mult. disc. mg

mg cyc. Time mg cyc. Time mg cyc. Time mg cyc. Time

V (1; 1) 9=78 22 231 10=85 18 287 9=62 18 145 10=69 15 598
V (2; 2) 9=44 24 265 9=46 19 240 9=32 18 328 9=41 18 186
V (3; 3) 9=34 26 765 9=36 22 050 9=25 20 426 9=33 21 731

F(1; 1) 9=81 26 611 10=54 12 657 9=61 20 704 10=48 11 963
F(2; 2) 9=50 31 793 9=30 13 527 9=34 22 216 9=29 13 979
F(3; 3) 9=34 32 438 9=25 16 725 9=26 25 838 9=24 16 865

W (1; 1) 9=81 26 746 10=51 12 200 9=61 20 682 10=48 12 058
W (2; 2) 9=50 31 788 9=28 12 959 9=34 22 243 9=27 13 049
W (3; 3) 9=34 32 516 9=25 16 903 9=26 25 840 9=24 17 191

Table XI. Q2=Q1 boundary �tted Galerkin �nite element discretization, multigrid methods
with pressure node oriented Vanka smoother.

Cycle FGMRES +

Standard mg Mult. disc. mg Standard mg Mult. disc. mg

mg cyc. Time mg cyc. Time mg cyc. Time mg cyc. Time

V (1; 1) 12=120 137 114 No conv. — 10=95 113 719 11=105 101 441
V (2; 2) 11=110 241 408 11=107 201 564 9=85 190 924 9=84 164 816
V (3; 3) 12=120 390 973 9=86 242 904 9=83 274 209 9=75 221 758

F(1; 1) 11=110 139 530 12=120 113 453 10=94 134 995 10=87 86 610
F(2; 2) 11=110 279 385 9=86 163 748 9=82 219 214 9=78 153 761
F(3; 3) 12=120 502 987 9=85 243 214 9=78 308 347 9=68 194 954

W (1; 1) 11=110 138 957 11=110 104 770 10=94 133 899 10=87 86 486
W (2; 2) 11=110 275 076 9=86 163 610 9=82 217 081 9=78 151 624
W (3; 3) 12=120 490 209 9=85 249 410 9=78 307 020 9=67 193 803

computing times are obtained with FGMRES and the multiple discretization multigrid method
F(1; 1)- and W (1; 1)-cycle as preconditioner. Using both multigrid methods as preconditioner
in FGMRES was in general faster than using them as solver. Most of the solvers work satis-
factorily, only the solvers with the multiple discretization multigrid method V-cycles behaved
worse than the other ones. For the Q3=Pdisc2 boundary �tted Galerkin �nite element discretiza-
tion, we study also the behaviour of the solvers with respect to the two approaches of solving
the local systems described in Section 4.3. Table VIII contains the results for solving the
local systems by Gaussian elimination. The solvers behave very similar to the Q2=Pdisc1 pair
of �nite element spaces. Clearly the fastest solver is the FGMRES method with the mul-
tiple discretization multigrid method F(1; 1)- and W (1; 1)-cycle as preconditioner. And, the
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Table XII. P3=P2 boundary �tted Galerkin �nite element discretization, multigrid methods
with pressure node oriented Vanka smoother.

Cycle FGMRES +

Standard mg Mult. disc. mg Standard mg Mult. disc. mg

mg cyc. Time mg cyc. Time mg cyc. Time mg cyc. Time

V (1; 1) Div. — 9=84 42 586 Div. — 10=78 40 679
V (2; 2) Div. — 10=63 64 401 Div. — 10=56 58 474
V (3; 3) Div. — 9=52 79 431 Div. — 9=41 65 661

F(1; 1) Div. — 10=79 40 317 Div. — 10=62 33 171
F(2; 2) Div. — 10=55 55 802 Div. — 9=43 45 883
F(3; 3) Div. — 9=38 57 340 Div. — 9=33 51 495

W (1; 1) Div. — 9=79 39 872 Div. — 10=62 33 359
W (2; 2) Div. — 10=55 56 866 Div. — 9=43 45 840
W (3; 3) Div. — 9=38 59 118 Div. — 9=33 53 110

solvers with multiple discretization multigrid V-cycles worked considerably worse than all
other solvers. Solving the local systems only approximately makes the solvers less robust,
see Table IX. The multiple discretization multigrid method failed completely as solver and
also the standard multigrid method worked much less e�cient. The FGMRES method was
necessary to construct an e�cient and robust solver using this approach for solving the local
systems. Only FGMRES with the standard multigrid method F(1; 1)- and W (1; 1)-cycle pre-
conditioner did not converge. For all other multigrid cycles, the computing times are better
than using Gaussian elimination for solving the local systems. However, comparing the fastest
computing times, the gain is small.
For discretizations with discontinuous pressure approximation, the FGMRES with the multi-

ple discretization multigrid method F(1; 1)- and W (1; 1)-cycle as preconditioner was the most
e�cient solver. The application of the multigrid methods as preconditioner in FGMRES is
much more e�cient than using them as solver. The global saddle point problems can be
solved with nearly all solvers using Gaussian elimination for solving the local systems. The
approximate solution of the local systems improves the e�ciency in most cases in the FGM-
RES solver and it led to a completely unsatisfactory behaviour of the multigrid methods as
solvers. The stopping criterion for the GMRES iteration in the solution of the local systems
is a sensible parameter which balances e�ciency and robustness. We prefer, for the reason
of the better robustness, the Gaussian elimination for solving the local problems.
Last, we consider discretizations with continuous pressure approximation (Tables X–XII).

For solving the saddle point problems arising from such discretizations, we used the pressure
node oriented Vanka smoother and the local problems were solved approximately by GMRES,
see Section 4.3. This was much faster than using Gaussian elimination, e.g. considering the
P2=P1 �nite element discretization and FGMRES with the multiple discretization multigrid
method F(1; 1)-cycle preconditioner, the computation takes with Gaussian elimination more
than 78 000 s in contrast to less than 12 000 s as given in Table X. For the boundary �tted
P2=P1 �nite element discretization, the multiple discretization multigrid method is clearly more
e�cient than the standard multigrid method. There is almost no di�erence between using the
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former as solver or as preconditioner in FGMRES. Again, the multiple discretization multigrid
method V-cycle is considerably worse than the F- and W-cycle. The computing times using
the Q2=Q1 �nite element discretization, Table XI, are extremely long compared to the P2=P1
�nite element discretization with the same number of degrees of freedom, Table X, and the
Q2=Pdisc1 discretization on a �ner grid, see Table VII. The standard multigrid approach was also
for this discretization clearly less e�cient than the multiple discretization multigrid approach.
Best behaves once more the FGMRES method with multiple discretization multigrid F(1; 1)-
and W (1; 1)-cycle preconditioner. The standard multigrid method fails completely for the P3=P2
�nite element discretization, Table XII. The reason is the divergence of the smoother iteration
on the coarsest grid. In contrast, the saddle point problems can be solved with all solvers
which use the multiple discretization multigrid method. Also here, the fastest computing times
were obtained by the FGMRES method with the multiple discretization multigrid F(1; 1)- and
W (1; 1)-cycle as preconditioner.
Only the FGMRES method with multiple discretization multigrid preconditioner has been

proven to be an e�cient solver for the saddle point problems arising from the considered
discretizations with continuous pressure approximation. For such discretizations, the multiple
discretization multigrid approach was much superior to the standard multigrid approach. It
was more e�cient to use the multigrid methods as preconditioner in FGMRES than to use
them as solvers.

7. SUMMARY

We like to summarize the most important conclusions of our numerical study at the three-
dimensional �ow around a cylinder.

• New reference values for the benchmark coe�cients could be de�ned.
• The most accurate benchmark coe�cients, especially drag and lift coe�cients, could be
obtained with boundary �tted higher order �nite element discretizations.

• The use of lowest order non-conforming discretizations led to comparatively very inac-
curate results.

• The arising discrete systems could be solved fastest with the FGMRES method and the
multiple discretization multigrid method F- and W -cycle preconditioner.

• Using the multigrid methods as preconditioner in FGMRES was much more e�cient
than using them as solver.
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