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SUMMARY

In recent benchmark computations [Schäfer M, Turek S. The benchmark problem ‘Flow around a
cylinder’. In Flow Simulation with High-Performance Computers II, Hirschel EH (ed.), vol. 52 of Notes
on Numerical Fluid Mechanics. Vieweg: Wiesbaden, 1996; 547–566], coupled multigrid methods have
been proven as efficient solvers for the incompressible Navier–Stokes equations. A numerical study of
two classes of smoothers in the framework of coupled multigrid methods is presented. The class of
Vanka-type smoothers is characterized by the solution of small local linear systems of equations in a
Gauss–Seidel manner in each smoothing step, whereas the Brass–Sarazin-type smoothers solve a large
global saddle point problem. The behaviour of these smoothers with respect to computing times and
parallel overheads is studied for two-dimensional steady state and time-dependent Navier–Stokes
equations. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: Braess–Sarazin-type smoothers; incompressible Navier–Stokes equations; parallel cou-
pled multigrid methods; Vanka-type smoothers

1. INTRODUCTION

Over the last decades, various methods for the numerical solution of the incompressible
Navier–Stokes equations have been developed. Solvers and discretizations of the imcompress-
ible Navier–Stokes equations were already compared by benchmark computations, e.g. within
the priority research program ‘Flow simulation with high-performance computers’ of the
Deutsche Forschungsgemeinschaft (DFG). As one result of the critical evaluation of these
benchmark computations [1], coupled multigrid methods seem to be among the best classes of
solvers that are known currently.
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The efficiency of a multigrid method is essentially influenced by the smoothing algorithm.
Two classes of smoothers for coupled multigrid methods are studied numerically in this paper;
on the one hand, smoothers of Vanka type [2], and on the other hand, Braess–Sarazin-type
smoothers [3]. The Vanka-type smoothers can be considered as block Gauss–Seidel methods,
where in each smoothing step a number of small linear systems of equations have to be solved.
In contrast, Braess–Sarazin-type smoothers solve a large saddle point problem in each
smoothing step. This saddle point problem is easier to solve than the saddle point problem
arising in the discretization of the linearized Navier–Stokes equations and it will be solved by
a pressure Schur complement method.

Vanka-type smoothers in coupled multigrid methods for solving the Navier–Stokes equa-
tions have been studied in a number of papers, e.g. References [4–7]. Pressure Schur
complement schemes as smoothers in coupled multigrid methods have been reported on as
much in the literature. Gjesdal and Lossius [8] studied several SIMPLE-type methods and
mentioned that they may not be as efficient as Vanka-type smoothers. Recently, the smoothing
properties of SIMPLE-type methods have been studied more carefully for the Stokes problem
and a new pressure Schur complement scheme with better smoothing properties has been
proposed by Braess and Sarazin [3]. These new type of smoothers will be compared with the
Vanka-type smoothers for the parallel solution of the incompressible Navier–Stokes
equations.

The current numerical studies are based on

– the non-conforming P1/P0-finite element spatial discretization with upwind stabilization,
– the Crank–Nicolson time discretization,
– unstructured grids,
– a MIMD parallel computer.

The paper is organized as follows. In Section 2 the problems and their discretization are
given. Section 3 contains details on the coupled multigrid methods that are used in the
numerical tests, including remarks on their general behaviour on parallel computers. Both
classes of smoothers are described in Section 4. In this section, algorithmic aspects, like the
choice of parameters, are also discussed. The numerical comparison of the two types of
smoothers is presented in Section 5. The numerical tests include benchmark problems defined
in Reference [1], high Reynolds number lid-driven cavity problems, and the flow through a
Venturi pipe. The conclusions obtained in these studies are summarized in Section 6.

2. THE PROBLEMS AND THEIR DISCRETIZATION

We consider the steady state incompressible Navier–Stokes equations

−nDu+ (u·9)u+9p= f in V
9 ·u=0 in V
u=g on (V

(1)
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and the time-dependent incompressible Navier–Stokes equations

(u
(t

−nDu+ (u·9)u+9p= f in V× (0, T ]

9 ·u=0 in V× (0, T ]

u=g on (V× (0, T ]

u=u0 in V for t=0

(2)

In Equations (1) and (2), V denotes a bounded domain in R2 with boundary (V, u is the
velocity, p is the pressure, n is the kinematic viscosity of the fluid, u0 is an initial velocity, g is
a Dirichlet boundary condition satisfying the compatibility condition

&
(V

g·n(V dg=0

T is a fixed end of the time interval, and f represents exterior forces.
In the stationary case, the non-linear equation (1) is linearized by a fixed point iteration. In

each non-linear iteration step, a so-called Oseen equation

−nDun+1+ (un ·9)un+1+9pn+1= f in V
9 ·un+1=0 in V
un+1=g on (V

(3)

with the given iterate (un, pn) having to be solved. Problem (3) is discretized by the non-
conforming P1/P0-finite element discretization from Crouzeix and Raviart [9]. Let th be an
admissible triangulation of V into triangles. If necessary, the boundary (V is approximated by
a polygon with the vertices of the polygon on (V. Then, the discrete velocity is computed as
an element of

Vh�
!space of vector-valued piecewise linear functions that are

continous at the midpoints of edges of the triangulation
"

whereas the discrete pressure belongs to the space

Qh�{space of piecewise constant functions with zero mean value on V}

This pair of non-conforming finite element spaces guarantees the inf–sup stability condition
uniformly with respect to the mesh size and the shape regularity constant of the mesh. Besides
this favourable analytical property, there are also advantages from the point of view of the
implementation on a parallel computer. The degrees of freedom of the velocity are connected
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with the midpoints of the edges of the triangles (see Figure 1). Thus, those degrees of freedom
that belong to an interface between two sub-domains, each of which stored on a separate
processor, have to be stored on two processors only. That is why only one communication is
needed to interchange information between the same degrees of freedom on different proces-
sors. This is, in general, not true for conforming finite element approximations, where the
degrees of freedom are connected with the vertices of triangles. In this case, the degrees of
freedom at so-called cross-points can belong to and have to be stored on more than two
processors. As a consequence, a complete interchange of information in case of cross-points
requires more than one communication. This results in an increase of the communication
overhead.

If convection dominates, an additional stabilization becomes necessary. We use a Samarskij
upwinding stabilization analysed by Schieweck and Tobiska [10] for the non-conforming
P1/P0-finite element discretization of the steady state Navier–Stokes equations.

In addition, for improving the accuracy of the discrete solution, we apply the so-called
pressure separation technique proposed by Schieweck [6] and Dorok [11]. Instead of the
original problem (1), we solve

−nDu+ (u·9)u+9(p− p̃)= f−9p̃ in V
9 ·u=0 in V
u=g on (V

(4)

with a suitable approximation p̃ of p. The idea behind this technique is to reduce the part of
the error in the error estimate for (1) that is caused by the term ch Re
p
1, where h is the
maximal diameter of all triangles of th and Re is the Reynolds number, which is proportional
to n−1. Thus, if 
p− p̃
1�
p
1, the negative influence of increasing the Reynolds number on
the accuracy becomes less dramatic. There are several suggestions for choosing p̃ [12]. In our
numerical studies, we solve Equation (4) iteratively and use a projection of the current
non-conforming approximation of p onto a conforming function p̃ to determine the next
approximate of p. In a different context, the same projection has been used by Oswald [13].

Figure 1. Scalar component of a basis function of Vh.
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Now we describe the temporal discretization for discretizing Equation (2). Let tk and tk+1

be two successive discrete times, u=u(tk+1), p=p(tk+1), t= tk+1− tk, and f1(tk)=nDu(tk)−
(u(tk) ·9)u(tk)+ f(tk). We apply a Crank–Nicolson scheme of the form

u−u(tk)
t

+
1
2

(−nDu+ (u·9)u)+9p=
1
2

f(tk+1)+
1
2

f1(tk) in V

9 ·u=0 in V
u=g(tk+1) on (V

(5)

In this scheme, the velocity and the external forces of the previous time step but not the
pressure are used to compute the right-hand side. The term 9p may be replaced by (9p+
9p(tk))/2. Turek [4] stated that both strategies lead to results with the same accuracy. The
advantage of Equation (5) consists in not needing to store p(tk). The linearization and
discretization in space is carried out analogously to the steady state problem. In a comparative
study [12], the Crank–Nicolson scheme (5) has produced often more accurate results than the
BDF (2) scheme.

Thus, the linearization and discretization of the incompressible Navier–Stokes equations
lead to large saddle point problems of the following form:

A
�u

p
�

=
� A B

BT 0
��u

p
�

=
�f

g
�

(6)

3. COUPLED MULTIGRID METHODS

Coupled multigrid methods compute the solution for both types of unknowns (velocity and
pressure) of Equation (6) simultaneously. Here, we describe those components of the multigrid
methods that are not varied in this paper, in particular the grid transfer operations, the
coarsest grid solver, and a step length control. A detailed description of the different types of
smoothers is given in Section 4.

3.1. The prolongation and the coarser grid systems

We use L2-projections for the prolongation. Within the multigrid method, a linear system has
to be defined on each level l, 05 l5 lmax. The matrix Al is assembled by discretizing the Oseen
problem (6) on level l. The convection on level l is given by the restriction of un from the finest
level to level l with L2-projections. The right-hand side of level l is defined by defect restriction,
i.e. by testing the defect of level l+1 with the prolongation of all basis functions of the finite
element space on level l. Note, the defect restriction and the restriction of the finite element
function un to level l are different operations.
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3.2. The coarsest grid sol6er

The linear system on the coarsest grid is often too large for an efficient direct solution.
Therefore, we use an iterative method, namely the same iterative method used as the smoother
on the finer levels.

3.3. The step length control

In addition to standard multigrid methods we apply a step length control after each multigrid
cycle. Let (u, p)i be the current iterate and (du, dp)i+1 be the correction proposed by the
multigrid method. This correction is accepted only as a direction of correction and the next
iterate is set to be

�u
p
�i+1

=
�u

p
�i

+k
�du

dp
�i+1

The factor k�R is chosen such that the Euclidean norm of the residual of the linearized system
(6) becomes minimal. This one-dimensional optimization problem has the solution

k=

��f
g
�

−A
�u

p
�i�

·
�
A
�du

dp
�i+1�

�
A
�du

dp
�i+1�

·
�
A
�du

dp
�i+1�

Numerical tests [12] show the important role of the step length control to improve the
efficiency of multigrid methods.

3.4. Remarks on the parallel beha6iour

Multigrid methods show in many situations a good numerical efficiency. However, their
parallel efficiency is not always convincing. The reason for this behaviour can be detected on
all grids that are coarser than the finest one. The numerical work (flops) on these grids is, in
general, small compared with the amount of communications. Even idleness of processors will
occur. This situation is worst on the coarsest grid.

Using the V-cycle, the losses of parallel and total efficiency (computing time) are less
dramatic provided that the problems are large (with respect to the number of processors) and
the number of levels is moderate (510), e.g. see McBryan et al. [14].

Studies of the V-cycle and deeply refined multigrids were done by Axelsson and Neytcheva
[15], who introduced the short multigrid cycle. In the short multigrid cycle, the level of the
coarsest grid is defined as a function of the level of the finest grid. The coarsest grid in the
short multigrid cycle possesses enough degrees of freedom such that the ratio of numerical
work to communications is much better than on the original coarsest grid. In addition, idleness
of processors is avoided.
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The application of the W-cycle for improving the numerical efficiency and robustness can
lead to a considerable loss of parallel and total efficiency on parallel computers. In order to
enhance the parallel and total efficiency of the W-cycle, the coarsest grid plays an essential
role. Either it can be defined as a function of the finest grid, like in the short multigrid cycle,
or the iterations on the coarsest grid should be limited to a small number. In addition, we do
not compute the norm of the residual before, during and after the iteration on the coarsest grid
since this computation requires a global communication each time. The gain of parallel as well
as total efficiency of this approach was demonstrated in Reference [16].

The number of grid levels is moderate in all numerical studies presented in Section 5. Using
the V-cycle, we solve the coarsest grid systems iteratively up to a reduction of the Euclidean
norm of the residual by the factor 10. In the W-cycle, only ten iteration steps are performed
on the coarsest grid without computing the norm of the residual. The F-cycle showed in our
tests with both strategies a similar behaviour. We present in this paper the results for the
F-cycle, which were obtained with ten iterations on the coarsest grid avoiding the computation
of the norm of the residual.

4. THE SMOOTHERS

The main objective of the paper is to compare different iterative schemes as smoothers within
coupled multigrid methods. On each level of a coupled multigrid method, a system of form (6)
has to be solved approximately. The smoother should damp out the highly oscillating error
modes of these systems. In the following, we shall omit the indices for indicating the levels.

4.1. The Vanka-type smoothers

The Vanka-type smoothers, originally proposed by Vanka [2] for finite difference schemes, can
be considered as block Gauss–Seidel methods, where a block corresponds to all degrees of
freedom that are connected with one element. For the non-conforming P1/P0-finite element
discretization, these are six velocity degrees of freedom and one pressure degree of freedom
(see Figure 2). Thus, a smoothing step with a Vanka-type smoother consists in a loop over all
elements, where in each element a 7×7 linear system of equations has to be solved. The

Figure 2. Degrees of freedom in the Vanka-type smoothers.
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degrees of freedom are updated in a Gauss–Seidel manner. Since each velocity degree of
freedom belongs to two triangles, it is updated twice in one smoothing step.

We denote by AT the block of the matrix A that is connected with the degrees of freedom
of the element T, i.e. the intersection of the rows and columns of A with the global indices of
{u11, . . . , u32, p1},

AT=
�AT BT

BT
T 0

�
�R7×7

In addition, we define

DT=
�diag(AT) BT

BT
T 0

�
�R7×7

Similarly, we denote by ( · )T the restriction of a vector on the rows corresponding to the
degrees of freedom connected with T.

Diagonal Vanka smoother
The diagonal Vanka smoother updates the velocity and pressure values connected to element
T by

�u
p
�

T

�
�u

p
�

T

+DT
−1��f

g
�

−A
�u

p
��

T

Full Vanka smoother
The full or stabilized Vanka smoother computes new velocity and pressure values in each
element by

�u
p
�

T

�
�u

p
�

T

+AT
−1��f

g
�

−A
�u

p
��

T

This smoother was found to be superior to the diagonal Vanka smoother on anisotropic
meshes (Reference [6], Remark 8.1). The full Vanka smoother needs three times more floating
point operations than the diagonal Vanka smoother. However, in numerical tests we have
observed an increase of the computing time by a factor of about 1.5 only. The full Vanka
smoother takes advantages from the current hardware architecture, in particular from very fast
floating point operations on data that are stored on the cache memory. The computing times
of the diagonal Vanka and the full Vanka smoother are considerably determined by the
memory access times for loading subsequently the data of the elements. These memory accesses
are time-consuming in comparison with the floating point operations in the cache.

Because the Vanka-type smoothers solve elementwise saddle point problems of form (6),
they are also called local smoothers (‘local MPSC’ in Reference [5]). In Reference [5], the
behaviour of Vanka-type smoothers is investigated in a non-parallel context and for the
non-conforming rotated Q1/Q0-finite element discretization.
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In order to avoid communications within a smoothing iteration, we apply the Vanka-type
smoothers in parallel on each processor. The values at the interfaces are averaged by one
communication step after each smoothing iteration.

Since the Vanka-type smoothers are block Gauss–Seidel methods, the numbering of the
degrees of freedom can considerably influence their behaviour. The Vanka-type smoothers are
applied by a loop over all elements. We have used lexicographical ordering: an element with
barycentre co-ordinates (x0, y0) is predecessor of an element with barycentre co-ordinates
(x1, y1) iff (x0Bx1)�((x0=x1)� (y0By1)).

4.2. The Braess–Sarazin-type smoothers

Braess and Sarazin [3] studied pressure Schur complement schemes as smoothers in coupled
multigrid methods for the Stokes equations. A well-known pressure Schur complement scheme
is the SIMPLE algorithm by Patankar and Spalding [17]. This algorithm applied to solve (6)
has the form

SIMPLE algorithm

1. Given p 0, a\0 and C−1 which is an approximation to A−1.
2. Iterate k =0, . . . , K−1

p k +1 =p k +q k +1 =p k −a( BTC−1B) −1( BTA−1( Bpk −f )+ g) (7)

3. Compute the new velocity

u K=A−1( f −BpK)−( aC) −1BqK (8)

For given a and C−1, the error in iteration (7) depends only on the current pressure iterate pk

but not on any velocity value. Therefore, this algorithm is called p-dominant in Reference [3].
It is well known that SIMPLE converges if a is chosen small enough. Analytical investigations
as well as numerical tests in Reference [3] showed that the smoothing property of the SIMPLE
algorithm may be poor and therefore it is in general not suited as a smoother.

In Reference [3], a pressure Schur complement scheme was proposed, which shows better
smoothing properties than SIMPLE. Iteration (7) and the velocity update (8) can be written in
the form

pk+1=pk−a(BTC−1B)−1(BTA−1(Auk+Bpk− f )+ (g−BTuk))

uK=A−1( f−Auk−BpK)− (aC)−1BqK+uk

for an arbitrary velocity uk. Now, the new pressure Schur complement scheme, in the following
called the Braess–Sarazin-type smoother, can be derived from the SIMPLE algorithm by
replacing A−1 with (aC)−1. Thus, it has the form
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Braess–Sarazin-type smoother

1. Given u 0, a\0 and C−1.
2. Compute the new pressure

p k +1 =p k +q k +1 =p k −( BTC−1B) −1( BTC−1( Auk +Bpk −f )+ a( g −BTu k))

= −( BTC−1B) −1( BTC−1( Auk −f )+ a( g −BTu k)) (9)

3. Compute the new velocity

u k +1 =u k −( aC) −1(( Auk +Bpk −f )+ Bqk +1)= u k −( aC) −1( Auk +Bpk +1 −f ) (10)

4. If stopping criterion is fulfilled then stop, else go to 2.

Note, this algorithm can be written in the form

�aC B
BT 0

��uk+1

pk+1

�
=
�f− (A−aC)uk

g
�

(11)

It differs in some important properties from SIMPLE. First, the error in the Braess–Sarazin-
type smoothers depends only on the velocity uk but not on the pressure. Therefore, these
smoothers are called u-dominant. Second, if Equations (9) and (10) are solved exactly, then
uk+1 satisfies BTuk+1=g. Third, the convergence of the coupled multigrid W-cycle with
Braess–Sarazin-type smoothers was proven for the Stokes equations, C=I, and inf–sup stable
conforming finite element methods if a is chosen large enough [3]. This proof can be extended
to the non-conforming P1/P0-finite element discretization [18].

In contrast to the Vanka-type smoothers, the Braess–Sarazin-type smoothers are non-local,
i.e. a linear saddle point problem of form (11) for all degrees of freedom has to be solved. For
this reason, they are called global smoothers.

The numerical behaviour of four different SIMPLE-like pressure Schur complement schemes
in coupled multigrid methods applied to the stationary Navier–Stokes equations has been
studied in Reference [8]. Three of these methods behaved similarly, whereas the fourth was not
robust in some test cases. It was already mentioned [8] that SIMPLE-type methods might not
be as efficient smoothers as local coupled methods like Vanka-type smoothers. The numerical
tests presented in Section 5, in which the efficiency is measured by computing times, will
maintain this statement also for Braess–Sarazin-type smoothers. However, compared with the
results obtained in Reference [7], the pressure Schur complement schemes behaved much better
as smoothers in coupled multigrid methods than as solvers for (6).

The approximation C−1 of A−1 must be chosen for the Braess–Sarazin-type smoothers. In
the case of the Stokes problem, the matrix A is symmetric positive definite and Braess and
Sarazin [3] have obtained good results with C−1=I and even better results with the
preconditioning matrix for A, which is usually used as a symmetric successive overrelaxation
(SSOR) preconditioner [19]. For the steady state Navier–Stokes equations, A is no longer
symmetric, therefore we use C−1= [ILUb(0)(A)]−1, i.e. a block ILU-decomposition of A with
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no fill-in and the fixed damping parameter b=1 [20,21]. In this decomposition, a block
corresponds to all velocity degrees of freedom that are stored on one processor and within the
blocks a lexicographical ordering of the degrees of freedom is used.

For the time-dependent Navier–Stokes equations, discretized with small time steps, the
matrix A is close to a diagonal matrix. In this case, we can choose C−1= (diag(A))−1. This
choice, together with the use of the non-conforming P1/P0-finite element discretization, offers
an easy and efficient way to store the Schur complement matrix BTC−1B explicitly [12]. In this
way, the computing times for matrix–vector products can be considerably reduced compared
with the successive multiplication with each factor.

An important parameter is the damping factor a. Even for the Stokes equations, Sarazin [19]
observed ‘small deviations from the optimal value may lead occasionally to very bad rates of
convergence’. The dependence of the efficiency of coupled multigrid methods on a for the
Navier–Stokes equations is studied numerically in Section 5.

For the choice C−1= [ILUb(0)(A)]−1, the computation of the new pressure (9) requires the
solution of the linear system of equations

BT[ILUb(0)(A)]−1Bpk+1= −BT[ILUb(0)(A)]−1(Auk− f )−a(g−BTuk) (12)

The system matrix of (12) is known only implicitly. Therefore, iterative schemes that require
only matrix–vector products seems to be appropriate solvers of (12). Since A is in general
non-symmetric, ILUb(0)(A) and BT[ILUb(0)(A)]−1B will be non-symmetric, too. The numeri-
cal costs of a smoothing step depend on the number of iterations for the solution of (12). We
want to apply only a few iterations in order to prevent a very large increase of these costs.
That is why iterative solvers with unpredictable behaviour at the beginning of the iteration
(e.g. CGS) have not been taken into consideration. We employ instead a GMRES from Saad
and Schultz [22]. This solver can be applied to non-symmetric systems and the norm of the
residual is reduced in each iteration. However, additional memory requirements are connected
with GMRES of about the number of pressure degrees of freedom on the finest level times the
number of GMRES iterations (the last number is chosen small to avoid a restart).

In the case C−1= (diag(A))−1, the new pressure is computed by solving

BT(diag(A))−1Bpk+1= −BT(diag(A))−1(Auk− f )−a(g−BTuk) (13)

where BT(diag(A))−1B is stored explicitly. The system matrix in (13) is symmetric and positive
definite after fixing the constant of the pressure. We solve (13) with a preconditioned conjugate
gradient (PCG) method with diagonal preconditioner. The easy availability of this precondi-
tioner results from the explicit storage of BT(diag(A))−1B.

5. NUMERICAL STUDIES

All computations were performed on a Parsytec GCPowerPlus (80 MHz, 9.2 MFlops/
processor (LINPACK), 35 MB s−1 communication, 5 ms message set-up time, 60 ms minimal
network latency). This parallel computer has a fast floating point operation speed compared
with its communication speed. The implementation of the algorithms was done using parts of
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the program package ugp1.0 by Bastian and co-workers [23]. This program is an early version
of the now available program UG3 [24]. In particular, data structures, load balancing routines
and the parallel environment of ugp1.0 were used. However, the data structures had to be
extended in order to handle multi-dimensional data and non-conforming finite elements.

Next we explain the abbreviations in the tables given below:

diagVan diagonal Vanka smoother

fullVan full Vanka smoother

Braess–Sarazin-type smoother with C−1= [ILU1(0)(A)]−1 and GMRES asBS–ilu
solver for (12)

Braess–Sarazin-type smoother with C−1= (diag(A))−1 and PCG as solverBS–diag
for (13)

On each level, which is not the coarsest one, pre- and postsmoothing iterations are applied
with the same number nsm of smoothing steps. This number was chosen equal for all levels. In
the stationary test problems, we used as initial guess for the fixed point iteration on level l the
interpolation of the solution on level l−1. In the time-dependent case, a good initial guess for
the fixed point iteration at time step tk+1 is easily available by using the solution of the
previous time step tk. The linear saddle point problem (6) was solved in each step of the fixed
point iteration up to a reduction of the Euclidean norm of the residual by the factor 10.

The different smoothers are compared with respect to the total computing time. Although
the computing time depends on the hardware, the programming language, the data structures,
the compiler, etc., it is the most important measure in applications. Since all algorithms are
implemented in the same code, the above mentioned aspects should have approximately the
same influence on all methods. Thus, we think that a comparison by computing times gives fair
evidence about the capabilities of each method.

5.1. Example 1. A steady state benchmark problem

Numerical studies were performed on a benchmark problem for the steady state Navier–
Stokes equations defined in the DFG priority research program ‘Flow simulation with
high-performance computers’ [1]. The problem describes the flow in a channel around a
cylinder, which is slightly closer to the lower than to the upper wall (see Figure 3).

The solution of (1) has to be computed with n=10−3, f=0, a parabolic inflow and outflow

Figure 3. Domain of the DFG-benchmark problems.
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profile with maximal value 0.3, and no-slip conditions on the other boundaries. The Reynolds
number of this flow is Re=20.

The coarsest grid (level 0) shown in Figure 4 was used. We present results for refinement
level 4 (296832 velocity degrees of freedom, 99328 pressure degrees of freedom). The stopping
criterion for the fixed point iteration was an Euclidean norm of the residual lower than 10−10.
The parallel computations were carried out on eight processors.

The results of the computational studies are presented in Tables I and II. The Vanka-type
smoothers proved to be clearly more efficient in these studies than the Braess–Sarazin-type
smoother.

Employing the Vanka-type smoothers, the best choices were two to four smoothing steps for
all types of multigrid cycles (see Table I). Within this range, the full Vanka V-cycle was the
best solver. For a small number of smoothing steps, the full Vanka smoother was in general
somewhat superior to the diagonal Vanka smoother. The W(1, 1)-cycle showed bad behaviour.
It converged very slowly for the full Vanka smoother and did not converge for the diagonal
Vanka smoother. The behaviour of the diagonal Vanka F(1, 1)-cycle was also unsatisfactory.

Table II presents the computing times and the communication overheads for the Braess–
Sarazin-type smoother with different combinations of the number of smoothing steps and the
number of GMRES iterations for solving (12). The damping factor was set to be a=1.0. The

Figure 4. Coarsest grid for the steady state benchmark problem.

Table I. Steady state benchmark problem, Vanka-type smoothers.

4 6 8Cycle 10Smoother nsm 1 2 3

11441025 1205V 928diagVan Comp. time 1103 1056 910
3.4 3.1 2.9 2.8Comm. in % 4.6 4.6 3.5

128312171248fullVan 844Comp. time 815 715 741
1.8 1.6Comm. in % 3.1 2.6 2.5 2.4 2.3

1131962 1319F 916diagVan Comp. time 2065 764 803
2.6 2.4 2.4 2.3Comm. in % 3.7 3.0 2.7

1108 14041073fullVan 1157Comp. time 883 753 873
1.7 1.7Comm. in % 2.8 2.2 2.0 1.9 1.8

1151975 1345W 969diagVan Comp. time div. 793 841
3.3 3.2Comm. in % — 4.5 4.0 3.7 3.4

1168 1286fullVan Comp. time 4087 762 754 908 1093
2.5 2.3 2.5Comm. in % 4.5 2.43.4 2.7
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Table II. Steady state benchmark problem, Braess–Sarazin-type smoother, C−1= [ILU1(0)(A)]−1.

GMRES iter. 20nsmCycle 151210753

1995 1977V 1 Comp. time 4271 3144 24782512 1997
Comm. in % 8.2 9.3 11.6 11.6 12.2 12.8 13.4

21852 Comp. time 3066 28032384 1987 1806 1957
11.3 12.311.8Comm. in % 8.9 9.49.3 9.4

26452199190019002243 34262964Comp. time3
10.39.49.28.58.98.47.9Comm. in %

1 Comp. time 10720F 11090 7583 8065 8921 12140 38490
25.6Comm. in % 10.2 12.6 14.6 17.6 19.5 22.0

2 Comp. time 3458 2725 25322259 2061 2243 3649
15.1 17.913.212.010.18.67.1Comm. in %

28362430214926083347 3474Comp. time3 4449
Comm. in % 6.4 7.7 9.0 10.8 11.7 13.5 17.0

22710105909790103201518013460 div.Comp. time1W
Comm. in % 15.6 19.0 22.0 25.2 27.6 30.9 —

4019296325562330246129833813Comp. time2
28.1Comm. in % 11.8 14.2 16.1 19.1 20.9 24.0

51553 Comp. time 3669 2919 2414 2755 3247 4008
21.919.617.815.413.611.5 25.2Comm. in %

V-cycle was the most efficient choice for this smoother. In our tests, the best results were
obtained with the V(2, 2)-cycle and ten GMRES iterations. However, the fastest computing
time with the Vanka-type smoothers is about 2.5 times better. For all types of cycles we
observe that the optimal number of GMRES iterations decreases if the number of smoothing
steps increases. The F(1, 1) and W(1, 1)-cycle had problems to converge also with the
Braess–Sarazin-type smoother.

For the V(2, 2)-cycle with ten GMRES iterations, we studied also the dependence of the
computing time on the damping factor a (see Table III). The minimal computing time was
obtained with a=1.25, but the computing times varied only slightly for a� [0.75, 1.5]. In this
range, the Braess–Sarazin-type smoother showed only a weak dependence on a. If a was
chosen too small, e.g. a=0.5, the multigrid method did not converge. In References [3,18] it
was proven that the coupled multigrid method with the Braess–Sarazin-type smoothers
applied to the Stokes equations converges if a is large enough. The same behaviour can be seen
now numerically for the Navier–Stokes equations.

The lower efficiency of the Braess–Sarazin-type smoother is not caused by its smoothing
property since the number of multigrid cycles to solve the linear systems was in general not
greater than for the Vanka-type smoothers. The main reason for the larger computing times
are the much higher computational costs to perform a smoothing step.

It was observed in Reference [7] that pressure Schur complement schemes for the solution of
Navier–Stokes equations need considerable more communications on parallel computers than
coupled multigrid methods with Vanka-type smoothers. Comparing the communication over-
head of the coupled multigrid methods with the different smoothers, a similar observation
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Table III. Steady state benchmark problem, Braess–Sarazin-type smoother,
C−1= [ILU1(0)(A)]−1, V(2, 2)-cycle, dependence on a.

0.5 0.75 0.8 1.0 1.25 1.5 2.0 3.0a 4.0

div. 1856 1859 1806 1757 1978 2500 3519 5001

can be made. While the Vanka-type smoothers had a communication overhead of 1.6–4.6 per
cent of the computing time, the Braess–Sarazin-type smoother needed 6.4–30.9 per cent. The
latter may be improved somewhat, for instance, by using an iterative method on the coarsest
grid that needs less communications than the Braess–Sarazin-type smoother.

5.2. Example 2. Lid-dri6en ca6ity flow

We study the lid-driven cavity problem for different Reynolds numbers Re=n−1. This
problem is defined in the unit square. The right-hand side f is set to be zero. No-slip boundary
conditions are imposed for x=0, x=1, and y=0. The velocity at the upper boundary is given
by g= (1, 0).

Figure 5 presents the initial triangulation of the domain (level 0). The studies were
performed on level 7 (392192 velocity degrees of freedom, 131072 pressure degrees of freedom)
and the fixed point iteration was stopped for an Euclidean norm of the residual lower than
10−10. The computations were carried out on eight processors.

The results of the numerical studies are presented in Table IV. In these studies, the
Braess–Sarazin-type smoother was applied with a=1 and ten GMRES iterations. As in the
previous example, the Vanka-type smoothers were clearly superior to the Braess–Sarazin-type
smoother. The fastest solution times were obtained with the diagonal Vanka smoother applied
in the F- and W-cycles. The more expensive full Vanka smoother did in general not improve
the behaviour of the solver. The V-cycle turned out to be inefficient. The most important
reason of the high computing times of the Braess–Sarazin-type smoother within the W-cycle
is again the enormous parallel overhead.

5.3. Example 3. A time-dependent benchmark problem

Within the DFG priority research program ‘Flow simulation with high-performance comput-
ers’ [1], time-dependent benchmark problems describing flows in the channel depicted in Figure
3 were defined. We consider a Kármán vortex street given by n=10−3, f=0, a steady state
parabolic inflow and outflow profile with maximal value 1.5, and no-slip conditions on the
other boundaries. The length of a period is denoted by T and it was found numerically to be
T:0.335 s. The Reynolds number of this flow is Re=100.

The coarsest grid shown in Figure 6 was used for the computations. We present results on
level 5 (588416 velocity degrees of freedom, 196608 pressure degrees of freedom) (Tables V, VI
and VII). The Crank–Nicolson scheme (5) was used with equidistant time steps t. The
stopping criterion for the fixed point iteration in each time step was an Euclidean norm of the
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Figure 5. Initial triangulation for the lid-driven cavity problem.

residual less than 10−6. Two pre- and two postsmoothing steps were applied on each level
except on the coarsest one. The Braess–Sarazin-type smoothers were applied with ten GMRES
or PCG iterations for solving (12) or (13) respectively. The pressure separation was not used
in the spatial discretization of this problem because it results in an increase of the computing
times by a factor of 2–4. The computations were performed on 16 processors.

Table IV. Lid-driven cavity problem for different values of n.

6000Smoother nsm¯n−1 1000 2000 4000Cycle

970982803888 10 8602diagVanV
12 0403 3485 6422 9578
12 9909730821638884

fullVan 2 3258 6824 11 030 13 800
15 7603 4067 6570 9905

7822 19 12013 26034714
BS–ilu 2 5717 10 410 14 710 17 420

22 2203 4628 9857 16 330

F diagVan 2 907 1558 3162 6578
11 0103182191511843

4 1344 2227 3904 8231
7244fullVan 2 1259 2180 3834

10 31044853 1514 2691
4 1663 2955 5405 10 190

BS–ilu 2 3030 6086 12 760 16 100
21 67016 430671337773

6234diagVan 2W 991 1518 3995
98093877189010923

4 1144 2291 4569 8128
8206fullVan 2 1266 2008 4176

3 1349 11 00048992474
4 1370 3059 5917 10 640

26 800BS–ilu 2 4214 10 310 21 370
35 4903 5748 8882 26 480
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Figure 6. Coarsest grid for the time-dependent benchmark problem.

Table V. Time-dependent benchmark problem, time step t=0.01.

SmootherCycle a Time/period Time/step Comm. in %

diagVan 3664V 102 3.5
fullVan 3991 111 2.9
BS–ilu 1.0 9270 258 10.0
BS–diag 1.5 8033 223 7.4

F diagVan 2996 83 4.5
fullVan 3889 108 3.4
BS–ilu 1.0 12 304 342 22.8
BS–diag 1.5 10 240 284 16.3

W diagVan 3669 102 7.0
fullVan 4409 122 6.1
BS–ilu 1.0 16 898 469 39.3
BS–diag 1.5 13 684 380 30.3

The most efficient solver for all time steps was the F-cycle with the diagonal Vanka
smoother. The diagonal Vanka smoother outperformed the full Vanka smoother in this
example. The V- and F-cycles were superior to the W-cycle for large time steps and for both
types of Vanka smoothers. Similar to the stationary benchmark problem, the best computing
time with the Vanka-type smoothers is about 2.5 times better than with the Braess–Sarazin-
type smoothers.

Using the Braess–Sarazin-type smoothers, the V-cycle was clearly the most efficient cycle.
Analogously to the stationary problem, the W-cycle showed an enormous parallel overhead.
The choice of C=diag(A) combined with the explicit storage of BT(diag(A))−1B and the
solution of (13) with PCG (‘BS–diag’) resulted in faster solutions of the instationary Navier–
Stokes equations with less parallel overhead than choosing C= [ILUb(0)(A)] and solving (12)
with GMRES (‘BS–ilu’).

The dependence on a of the coupled multigrid method V(2, 2)-cycle with the Braess–
Sarazin-type smoother and C−1= (diag(A))−1 is demonstrated in Table VIII. Similar to the
steady state benchmark problem (Table III) there was a range on which the method depends
relatively weakly on a (here a� [1.25, 1.75]) and the method did not converge in the case of
choosing a too small.
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Table VI. Time-dependent benchmark problem, time step t=0.005.

Smoother aCycle Time/period Time/step Comm. in %

diagVan 5759V 82 3.6
fullVan 6424 92 2.6
B–Silu 1.0 14 500 207 10.2
BS–diag 1.5 11 497 164 7.4

diagVan 4808F 69 4.5
fullVan 6481 93 3.3
BS–ilu 1.0 16 213 232 22.6
BS–diag 1.5 15 511 222 15.5

diagVan 5749W 82 7.4
fullVan 7622 109 5.5
BS–ilu 1.0 22 214 317 39.1
BS–diag 1.5 19 975 285 28.6

Table VII. Time-dependent benchmark problem, time step t=0.0025.

Cycle Smoother a Time/period Time/step Comm. in %

diagVan 9639V 70 3.6
fullVan 10 646 77 2.5
BS–ilu 1.0 21 949 159 10.3
BS–diag 1.5 19 306 140 7.0

diagVan 7966F 58 4.4
fullVan 10 674 77 3.2
BS–ilu 1.0 31 965 232 22.6
BS–diag 1.5 25 699 186 15.3

diagVan 9552W 69 7.1
fullVan 10 470 76 5.2
BS–ilu 1.0 43 783 317 39.0
BS–diag 1.5 33 731 244 28.7

5.4. Example 4. Time-dependent flow through a Venturi pipe

Flows through a Venturi pipe are studied in References [4,5]. We consider the Venturi pipe
shown in Figure 7 with the coarsest triangulation depicted in Figure 8. A parabolic inflow with
maximum 1 is prescribed at the inlet. Do-nothing boundary conditions are applied at the right
end of the pipe and the end of the small upper channel. All other boundaries possess no-slip
conditions. The viscosity was set to be n=10−2, which results in a Reynolds number of
Re:500 [5]. The solution of the Stokes problem was used as initial condition.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 453–473



NUMERICAL PERFORMANCE OF SMOOTHERS IN COUPLED MULTIGRID METHODS 471

Table VIII. Time-dependent benchmark problem, Braess–Sarazin-type
smoother with C−1= (diag(A))−1, V(2, 2)-cycle, t=0.005, dependence on a.

1.0 1.25 1.5Damping factor a 1.75 2.0 3.0

div. 10 634 11 497 13 325Time/period 14 961 21 418
152Time/step 164 190 214 306

We studied the Venturi pipe flow on refinement level 5 (183296 velocity degrees of freedom,
61440 pressure degrees of freedom) in the time interval t� [0, 20] and for equidistant time steps
t=0.02. Thus, the solution at 1000 time steps had to be computed. The fixed point iteration
at each discrete time was stopped if the Euclidean norm of the residual was lower than 10−6.
All smoothers were applied with two pre- and two postsmoothing steps. We used eight
processors of the parallel computer.

The computing times and the communication overheads found in the numerical studies are
presented in Table IX. The Braess–Sarazin-type smoothers were applied with a=1 and ten
iterations for the solution of (12) or (13) respectively. The diagonal Vanka smoother showed
again the best efficiency. The computing time of ‘BS–diag’ applied in the V-cycle is, in contrast
to the previous examples, not much worse than for the Vanka-type smoothers. This type of
Braess–Sarazin smoother shows here an acceptable efficiency for the solution of the time
dependent problem.

Figure 7. The Venturi pipe.

Figure 8. Initial triangulation for the Venturi pipe problem.
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Table IX. Flow through the Venturi pipe, T=20, time step t=0.02.

Cycle Smoother Computing time Comm. in %

diagVan 65 338V 6.9
fullVan 74 671 5.1
BS–ilu 143 734 19.0
BS–diag 85 175 9.5

F diagVan 64 567 6.6
fullVan 77 600 5.3
BS–ilu 205 259 27.7
BS–diag 112 396 15.4

W diagVan 68 899 8.2
fullVan 81 138 6.8
BS–ilu 288 072 38.0
BS–diag 142 687 24.1

6. SUMMARY

In this paper, two classes of smoothers within coupled multigrid methods for solving
two-dimensional incompressible Navier–Stokes equations have been studied. The most impor-
tant conclusions of the numerical tests are the following:

� The Vanka-type smoothers have clearly been more efficient than the Braess–Sarazin-type
smoothers in the steady state problems.

� The Vanka-type smoothers have been superior to the Braess–Sarazin-type smoothers also
in the time dependent tests. However, this superiority is not so dramatic as for the steady
state problems.

� The F-cycle has always been a good and often even the best choice for the Vanka-type
smoothers.

� The inferiority of the Braess–Sarazin-type smoothers is mainly caused by the high
computational costs for performing one smoothing step. Moreover, their parallel overhead
is very large, especially within the W-cycle.

� The possibility of storing BT(diag(A))−1B explicitly in the non-conforming P1/P0-finite
element discretization has reduced the computing times in the instationary problem as well
as the parallel overhead of the Braess–Sarazin-type smoothers considerably.

� There is a sufficiently large interval where the computing times depend only weakly on the
damping factor a in the Braess–Sarazin-type smoothers. The coupled multigrid method
fails to converge if a is chosen too small.
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1. Schäfer M, Turek S. The benchmark problem ‘flow around a cylinder’. In Flow Simulation with High-Performance
Computers II, vol. 52 of Notes on Numerical Fluid Mechanics, Hirschel EH (ed.). Vieweg: Weisbaden, 1996; 547–566.

2. Vanka S. Block-implicit multigrid calculation of two-dimensional recirculating flows. Computer Methods in Applied
Mechanics and Engineering 1986; 59(1): 29–48.

3. Braess D, Sarazin R. An efficient smoother for the Stokes problem. Applied Numerical Mathematics 1997; 23(1):
3–19.

4. Turek S. A comparative study of time-stepping techniques for the incompressible Navier–Stokes equations: from
fully implicit non-linear schemes to semi-implicit projection methods. International Journal for Numerical Methods
in Fluids 1996; 22: 987–1011.

5. Turek S. Efficient Sol6ers for Incompressible Flow Problems: An Algorithmic and Computational Approach, vol. 6
of Lecture Notes in Computational Science and Engineering. Springer: Berlin, 1999.
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