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A robust residual-based a posteriori estimator is proposed for the SUPG finite element method applied to
stationary convection–diffusion-reaction equations. The error in the natural SUPG norm is estimated. The
main concern of this paper is the consideration of the convection-dominated regime. A global upper
bound and a local lower bound for the error are derived, where the global upper estimate relies on some
hypotheses. Numerical studies demonstrate the robustness of the estimator and the fulfillment of the
hypotheses. A comparison to other residual-based estimators with respect to the adaptive grid refine-
ment is also provided.
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1. Introduction

A posteriori error estimation in the context of stationary con-
vection-dominated convection–diffusion-reaction equations is
studied in this paper. This kind of equations describe the transport
of a quantity such as temperature or concentration. In applications,
the convective forces usually dominate the diffusive forces. In this
case, standard discretization methods do not provide good
approximations. Stabilization techniques are employed to produce
accurate numerical approximations. The study of appropriate
schemes to deal with the convection-dominated regime is a sub-
ject that has received a lot of attention in the last decades, see
[21,23] for an overview of methods and of results. The most popu-
lar stabilized finite element method is the Streamline-Upwind Pet-
rov–Galerkin (SUPG) method introduced in [3,12]. This method
will be considered in the present paper. The numerical results ob-
tained with the SUPG method are generally not perfect because
there are often spurious oscillations in a vicinity of layers. Never-
theless, the SUPG method has been proved in a competitive study
of stabilized discretizations [2] as a good choice to compute
approximations where sharpness and position of layers are impor-
tant. With respect to efficiency (quality of the computed solution
per computing time), this method outperformed all modern ap-
proaches that were included in the studies of [2].

In the review [23], the author prognosticates that adaptive
methods will triumph over all types of convection–diffusion prob-
lems, although much work remains to be done. It is well known
that for the design of an adaptive method the provision of an
appropriate a posteriori error estimator is necessary. A robust
(with respect to the ratio of diffusion and convection) upper esti-
mate serves as actual error estimate and stopping criterion of the
solution process. Local lower estimates control an adaptive grid
refinement. About a decade ago, a competitive study of a number
of proposed error estimators for the SUPG solution of convection-
dominated convection–diffusion equations [16] came to the con-
clusion that none of them is robust and that the quality of the
adaptively refined grids is often not satisfactory. Since then, only
a few contributions concerning new a posteriori error estimators
for the considered class of problem and type of discretization can
be found in the literature. The important ones [26,22,9,10] will
be discussed below.

In the present paper, robust residual-based a posteriori error
bounds are derived for the error of the SUPG finite element approx-
imation. The error bounds are obtained in the norm typically used
in the a priori analysis of this method. Since the SUPG method is
the most popular stabilized finite element method for convec-
tion–diffusion problems, there were of course attempts to derive
a posteriori error estimates for this method. In Verfürth [25], an
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a posteriori error bound is presented for the error in the norm
ðekrvk2

0 þ kvk
2
0Þ

1=2
; e being the diffusion parameter. This bound is

not robust. An extension of the analysis of [25] led in [26] to a robust
error estimator for a norm that adds to the norm of [25] a dual norm
of the convective derivative. The additional term in this norm can be
only approximated. Some error bounds are also proved in [22] in the
one-dimensional case in a norm that includes a semi-norm of the er-
ror of order 1=2. Robust a posteriori error estimators for the L1ðXÞ
and L2ðXÞ norm of the error can be found in [8–10]. Unlike the ap-
proaches from, e.g., [25,26] and the approach used in the present pa-
per, the derivation of these estimators is based on the variational
multiscale theory [14]. It can be applied to stabilized discretizations
since their error distribution is practically local [13]. The essential
part in the derivation consists in computing or approximating an
appropriate norm of a local Green’s function, see [10] for the P1

and Q1 finite element in two dimensional situations, and [9] for
higher order finite elements in one dimension. However, the L1ðXÞ
and L2ðXÞ norm are comparably weak norms, e.g., spurious oscilla-
tions of the numerical solution contribute generally little to the er-
rors in these norms. The a priori error analysis is performed
usually for stronger norms, like the SUPG norm for the SUPG discret-
ization. In Hauke et al. [9], a remark can be found concerning the
extension of the approach based on the variational multiscale theory
to the H1ðXÞ semi norm, but we are not aware of the derivation of
concrete estimators. In summary, there are robust a posteriori error
estimates in the literature but only for norms that do not show up in
the a priori analysis or that are hard to compute or that are, in our
opinion, not of interest in applications.

The main goal of this paper is to prove a robust a posteriori error
bound for the method in the same norm as it is used in the a priori
error analysis, namely the SUPG norm. As shall be seen in Section 3,
the derivation of the upper bound will use some hypotheses. These
hypotheses are probably not fulfilled in the worst case. But it will
be argued and checked numerically that they are true in standard
situations. Because of the hypotheses, the obtained results are from
the mathematical point of view less general than, e.g., the results of
[26]. However, we think that from the practical point of view the
derivation of a robust error estimator for the natural norm of the
SUPG method is of interest. A similar situation can be found in
[4], where the derivation of an a posteriori error estimator for
the natural norm of some other stabilized discretization is also
based on an assumption (a saturation assumption) that most prob-
ably is not satisfied in the worst case.

The paper is organized as follows. In Section 2, the considered
equations, some preliminaries, and notations are presented. Sec-
tion 3 is devoted to the derivation of a robust global upper bound
for the error in the SUPG norm. Hypotheses that relate the error of
an interpolant in different norms and the error of the SUPG approx-
imation will be assumed. A comparison between the derived error
estimator and other residual-based error estimators from the liter-
ature is provided in Remark 4. In Section 4, local lower bounds for
the error are obtained. Both in Sections 3 and 4, the convection-
dominated regime is considered to be able to bound the errors in
the SUPG norm. The key point is that in this regime there are
two additional terms in the bounds that are negligible in this case
compared with the other terms, see Remarks 3 and 6. On the other
hand, in the diffusion-dominated regime, the derived error estima-
tor possesses the same weights as the estimators from [25,26], see
Remark 4. Section 5 provides numerical studies. For the derived er-
ror estimator, the robustness of the effectivity index can be ob-
served for different examples and finite elements of different
polynomial degree. With respect to the adaptive grid refinement,
it turns out that the proposed error estimator tends to refine sub-
regions with strong singularities deeper and to start the refinement
of subregions with weaker singularities later than other residual-
based a posteriori error estimators.
2. The equations, notations, preliminaries

Throughout the paper, standard notations are used for Sobolev
spaces and corresponding norms, see, e.g. [5]. In particular, given a
measurable set x � Rd, the inner product in L2ðxÞ or L2ðxÞd is de-
noted by ð�; �Þx and the notation ð�; �Þ is used instead of ð�; �ÞX. The
norm (semi norm) in Wm;pðxÞ will be denoted by k � km;p;x
(j � jm;p;x), with the convention k � km;x ¼ k � km;2;x.

This paper considers stationary convection–diffusion-reaction
equations of the form

� eDuþ b � ruþ cu ¼ f in X;

u ¼ 0 on CD;

e
@u
@n
¼ e@nu ¼ g on CN;

ð1Þ

where X is a polygonal domain in Rd; d P 2, with Lipschitz bound-
ary C consisting of two disjoint components CD and CN . The Dirich-
let part CD has a positive ðd� 1Þ-dimensional Lebesgue measure
and @X� � CD; @X

� being the inflow boundary of X, i.e., the set of
points x 2 @X such that bðxÞ � nðxÞ < 0. It will be assumed that
0 < e; b 2W1;1ðXÞ, c 2 L1ðXÞ; f 2 L2ðXÞ, and (1) is scaled such that
kbkL1ðXÞ ¼ Oð1Þ, kckL1ðXÞ ¼ Oð1Þ, and 0 < e� 1. Hence, the convec-
tion-dominated regime is studied. Furthermore, it will be assumed
that one of the following conditions is fulfilled: either

cðxÞ � 1
2

divðbðxÞÞ ¼ lðxÞP l0 > 0 8 x 2 X; ð2Þ

or

�1
2

divðbðxÞÞ ¼ lðxÞP l0 ¼ 0 8 x 2 X; and c � 0: ð3Þ

Then, it is well known that (1) possesses a unique weak solution
u 2 H1

DðXÞ ¼ fv 2 H1ðXÞ : vjCD
¼ 0g that satisfies

eðru;rvÞ þ ðb � ru;vÞ þ ðcu;vÞ ¼ ðf ; vÞ þ ðg; vÞCN
8v 2 H1

DðXÞ;
ð4Þ

e.g. see [21].
Let fT hg; h > 0, be a family of partitions of X. In the analysis, it

will be assumed that all partitions are admissible, i.e. any two
(compact) mesh cells are either disjoint or they share a complete
k face, 0 6 k 6 d� 1. Furthermore, the family should be regular,
i.e., there exists a constant r such that for each mesh cell K 2 T h

it holds hK=qK 6 r, where hK and qK denote the diameter of K
and the diameter of the largest ball inscribed into K, respectively.
The characteristic parameter of the triangulation is given by
h ¼maxK2T h

hK . The conforming finite element space on a triangu-
lation T h consisting of piecewise polynomials of local degree less
than or equal to r that vanish on the Dirichlet boundary will be de-
noted by Vh;r � H1

DðXÞ.
Since the triangulations are assumed to be regular, the follow-

ing inverse inequality holds for each vh 2 Vh;r and each mesh cell
K 2 T h, see, e.g. [5, Theorem 3.2.6],

kvhkm;q;K 6 cinvh
l�m�d 1

q0�
1
q

� �
K kvhkl;q0 ;K ; ð5Þ

where 0 6 l 6 m 6 1 and 1 6 q0 6 q 61. In addition, it is assumed
that the space Vh;r satisfies the following local approximation prop-
erty: for each v 2 H1

DðXÞ \ Hrþ1ðXÞ there exists v̂h 2 Vh;r such that

kv � v̂hk0;K þ hKkrðv � v̂hÞk0;K þ h2
KkDðv � v̂hÞk0;K 6 Chrþ1

K kvkrþ1;K :

Following the notation of [25], the set of all d� 1 faces in T h is de-
noted by Eh. This set can be decomposed into Eh ¼ Eh;X [ Eh;N [ Eh;D,
where Eh;X; Eh;N and Eh;D refer to interior faces, faces on the
Neumann boundary CN , and faces on the Dirichlet boundary CD,
respectively. For E 2 Eh, let hE be the diameter of E. The shape
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regularity of the triangulations implies that hK ’ hE whenever E � @K
and hK ’ hK 0 if K \ K 0 – ;. The set of mesh cells having a common
d� 1 face is denoted by xE ¼ [E�@K 0K

0. For any piecewise continuous
function v and any E 2 Eh;X, the jump of v across E in an arbitrary but
fixed direction nE orthogonal to E is denoted by svtE. Let xK denote
the patch of mesh cells that have a joint face with K.

Let q 2 ½1;1Þ and let s 2 f0;1g with s 6 t 6 r þ 1. Then, Ih de-
notes a bounded linear interpolation operator Ih : Wt;qðXÞ ! Vh;r

that satisfies for all v 2Wt;qðXÞ and all mesh cells K 2 T h

jv � Ihv js;q;K 6 Cht�s
K jvjt;q;K ; ð6Þ

e.g. see [5]. Using the technique of [20, Lemma 2.1], one obtains for
all v 2 H1

DðXÞ \Hrþ1ðXÞ the estimate

kDðv � IhvÞk2
0;K 6 Ch2r�2

K kvk2
rþ1;K 8 K 2 T h: ð7Þ

A local trace inequality that takes the size of the mesh cell into ac-
count was proved in [25, Lemma 3.1]: For v 2 H1ðKÞ and E � @K it
holds

kvk0;E 6 C h�1=2
E kvk0;K þ kvk

1=2
0;K krvk1=2

0;K

� �
: ð8Þ

For presenting the SUPG finite element discretization of (1), the
bilinear form aSUPGð�; �Þ : H1

D � H1
D ! R is introduced

aSUPGðu;vÞ ¼ eðru;rvÞ þ ðb � ru;vÞ þ ðcu;vÞ
þ
X
K2T h

dKð�eDuþ b � ruþ cu;b � rvÞK ;

where dK is the stabilization parameter (generally a function
depending on x). There are several proposals for concrete choices
of dK available in the literature, see [17] for an overview. All propos-
als possess the same asymptotic limits dK ¼ OðhK=kbkK;1Þ in the
convection-dominated regime PeK � 1 and dK ¼ Oðh2

K=eÞ in the dif-
fusion-dominated regime PeK 6 1, where

PeK ¼
kbk1;K hK

2re
is the local Péclet number. Only these limits are important for a dis-
cussion of the analytical results. To facilitate this discussion, the fol-
lowing concrete proposal from [23, (10.11)] is considered

dK ¼
d0

hK
kbk1;K

if PeK P 1;

d1
h2

K
e else;

8<: ð9Þ

where d0 and d1 are user-chosen constants. In the convection-domi-
nated regime, the particular value d0 ¼ ð2 maxfr; C2

KgÞ
�1 will be cho-

sen, where CK is a constant defined below in (43) and (44). Then, the
SUPG finite element method reads as follows: Find uh 2 Vh;r such that

aSUPGðuh;vhÞ ¼ ðf ;vhÞ þ ðg; vhÞCN
þ
X
K2T h

dKðf ;b � rvhÞK 8vh 2 Vh;r:

ð10Þ

The natural norm for performing the a priori error analysis of (10) is
given by

kvkSUPG :¼ ekrvk2
0 þ

X
K2T h

dKkb � rvk2
0;K þ kl1=2vk2

0

 !1=2

ð11Þ

in the case l0 > 0 and by

kvkSUPG :¼ ekrvk2
0 þ

X
K2T h

dKkb � rvk2
0;K

 !1=2

ð12Þ

in the case l0 ¼ 0. A straightforward calculation shows that the
SUPG method satisfies the Galerkin orthogonality

aSUPGðu� uh;vhÞ ¼ 0; 8vh 2 Vh;r : ð13Þ
3. A global upper error bound

This section provides the global upper a posteriori bound of the
error. The analysis concentrates on the convection-dominated case
and it relies on Hypothesis 1 below that relates interpolation errors
in different norms and the error of the SUPG approximation in the
SUPG norm. Hypothesis 1 will be discussed in detail and numeri-
cally checked in Section 5. The diffusion-dominated regime will
be discussed in Remark 4.

Hypothesis 1. It will be assumed that several norms of the
interpolation error u� Ihu can be bounded by norms of the error
u� uh:X
K2T h

d�1
K ku� Ihuk2

0;K 6 2ku� uhk2
SUPG; ð14Þ

X
K2T h

dKkb � rðu� IhuÞk2
0;K 6 2ku� uhk2

SUPG; ð15Þ

X
E2Eh

kbk1;Eku� Ihuk2
0;E 6 2ku� uhk2

SUPG: ð16Þ
Remark 1 (Discussion of Hypothesis 1). Hypothesis 1 is only
needed in the convection-dominated case. Let u 2 H1

DðXÞ\
Hrþ1ðXÞ and consider a family of uniform triangulations. Since
r P 1 it follows that u 2 H2ðXÞ and then the Lagrange interpolation
operator can be used. From the error analysis of the SUPG method,
it is well known [21] that the estimate

ku� uhk2
SUPG ¼ O h2rþ1

� �
ð17Þ

holds. Using the optimal choice dK ¼ OðhKÞ of the stabilization
parameter, as given e.g. by (9), one gets from the interpolation esti-
mate (6)X
K2T h

d�1
K ku� Ihuk2

0;K ¼ O h2rþ1
� �

;

X
K2T h

dKkb � rðu� IhuÞk2
0;K 6 kbk

2
1

X
K2T h

dKkrðu� IhuÞk2
0;K ¼ O h2rþ1

� �
:

With the trace estimate (8), one obtains alsoX
E2Eh

kbk1;Eku� Ihuk2
0;E 6 C

X
K2T h

h�1
K ku� Ihuk2

0;K

�
þku� Ihuk0;Kkrðu� IhuÞk0;K

�
¼ O h2rþ1

� �
:

Hence, all terms in (14)–(16) are of the same order with respect to h.
It is well known from numerical simulations that the solutions

obtained with the SUPG method are polluted with spurious
oscillations in a vicinity of layers [17,2]. In contrast, the interpo-
lation Ihu with the Lagrange interpolation operator is nodally exact.
The absence of spurious oscillations in the interpolant justifies, in
our opinion, Hypothesis 1, at least in some standard case. This
statement will be supported numerically in Section 5, see partic-
ularly Example 2. Of course, we are aware that Hypothesis 1 most
probably does not hold in the worst case scenario.
Lemma 1. Let v ¼ u� uh; u 2 H2ðXÞ being the solution of (4) and uh

its SUPG approximation computed by solving (10). If the SUPG param-
eters are chosen such that

dK 6
h2

K

8c2
inve

; ð18Þ
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and in the case (2) also such that

dK 6
l0

2kck2
K;1

c2
inv; ð19Þ

then

aSUPGðv ;vÞP
1
2
kvk2

SUPG �
X
K2T h

4dK h�2
K e2c2

invkrðu� IhuÞk2
0;K

�
X
K2T h

2dKe2kDðu� IhuÞk2
0;K : ð20Þ
Proof. The proof will be presented for the case (2). The simplifica-
tions for the case (3) are obvious. A straightforward calculation
leads from the definition of aSUPGð�; �Þ to

aSUPGðv ;vÞ ¼ kvk2
SUPG þ

X
K2T h

dKðcv ;b � rvÞK �
X
K2T h

dKeðDv ;b � rvÞK :

ð21Þ

The terms on the right hand side of (21) have to be bounded. Using
the Cauchy–Schwarz inequality, Young’s inequality, and (19) gives
directlyX
K2T h

dKðcv;b � rvÞK

�����
����� 6X

K2T h

dKðcv ; cvÞK þ
1
4

X
K2T h

dKkb � rvk2
0;K

6

X
K2T h

dK
kck2

K;1

l0
kl1=2vk2

0 þ
1
4

X
K2T h

dKkb � rvk2
0;K

6
1
2
kl1=2vk2

0 þ
1
4

X
K2T h

dKkb � rvk2
0;K : ð22Þ

The estimate of the second term on the right hand side of (21) starts
also with the Cauchy–Schwarz inequality and Young’s inequality

�
X
K2T h

dKeðDv ;b � rvÞK

�����
����� 6X

K2T h

dKe2kDvk2
0;K þ

1
4

X
K2T h

dKkb � rvk2
0;K :

ð23Þ

For the first term on the right hand side of (23), adding and sub-
tracting Ihu yieldsX
K2T h

dKe2kDvk2
0;K 6 2

X
K2T h

dKe2 kDðu� IhuÞk2
0;K þ kDðIhu� uhÞk2

0;K

� �
:

ð24Þ

One gets for the second term on the right hand side of (24) by
applying the inverse estimate (5), adding and subtracting u, and
applying the upper bound of the stabilization parameters (18)X
K2T h

2dKe2kDðIhu� uhÞk2
0;K 6

X
K2T h

2dKe2h�2
K c2

invkrðIhu� uhÞk2
0;K

6 4
X
K2T h

dKe2h�2
K c2

inv krvk2
0;K þ krðu� IhuÞk2

0;K

� �
6

1
2
ekrvk2

0 þ 4
X
K2T h

dKe2h�2
K c2

invkrðu� IhuÞk2
0;K : ð25Þ

Inserting (25) into (24), then (24) into (23) and finally (23) and (22)
into (21) gives (20). h
Remark 2 (On Lemma 1). If kckK;1 ¼ 0 in (19), then dK should be
just bounded on K.

Condition (18) is fulfilled in the convection-dominated case
PeK � 1 since

dK ¼
d0

2p
Pe�1

K
h2

K

e
:

In the diffusion-dominated case one has to choose d1 6 1=ð8c2
invÞ.

With the definition (9) of the stabilization parameter, condition
(18) might be violated in some transition region between the con-
vection- and diffusion-dominated case. However, for this region
and also in the diffusion-dominated case, a different kind of analysis
can be applied, see Remark 4.

The H2ðXÞ regularity of u is needed in the proof only locally, for
each K 2 T h. However, the analysis should be valid for all meshes
such that the regularity assumption from Lemma 1 is appropriate.
This assumption can be relaxed, e.g., in the case that u R H2ðXÞ but a
non-smooth behavior of u occurs only on a known piecewise linear
ðd� 1Þ-dimensional manifold and one considers only meshes where
this manifold does not cut the interior of any mesh cell.

In the next step, a representation of the error will be derived.
Using the Galerkin orthogonality (13), the weak form of Eq. (4),
and integration by parts gives for all v 2 H1

DðXÞ

aSUPGðu� uh;vÞ ¼ ðf ;v � IhvÞ þ ðg;v � IhvÞCN

þ
X
K2T h

dKðf ;b � rðv � IhvÞÞK � eðruh;rðv � IhvÞÞ

� ðb � ruh;v � IhvÞ � ðcuh; ðv � IhvÞÞ
�
X
K2T h

dKð�eDuh þ b � ruh þ cuh;b � rðv � IhvÞÞK

¼
X
K2T h

ðf þ eDuh � b � ruh � cuh;v � IhvÞK

þ
X
K2T h

dKðf þ eDuh � b � ruh � cuh;b � rðv � IhvÞÞK

þ
X

E2Eh;X

ð�es@nE uhtE;v � IhvÞE þ
X

E2Eh;N

ðg � e@nE uh;v � IhvÞE

¼
X
K2T h

ðRKðuhÞ;v � IhvÞK þ
X
K2T h

dKðRKðuhÞ;b � rðv � IhvÞÞK

þ
X
E2Eh

ðREðuhÞ;v � IhvÞE; ð26Þ

where the mesh cell and the face residuals are defined by

RKðuhÞ :¼ f þ eDuh � b � ruh � cuhjK ;

REðuhÞ :¼
�es@nE uhtE if E 2 Eh;X;

g � e@nE uh if E 2 Eh;N ;

0 if E 2 Eh;D:

8><>:
Setting v ¼ u� uh and observing that v � Ihv ¼ ðu� uhÞ�
Ihðu� uhÞ ¼ u� Ihu leads together with (20) to

1
2
ku� uhk2

SUPG 6
X
K2T h

ðRKðuhÞ;u� IhuÞK

þ
X
K2T h

dKðRKðuhÞ;b � rðu� IhuÞÞK þ
X
E2Eh

ðREðuhÞ;u� IhuÞE

þ
X
K2T h

4dK h�2
K e2c2

invkrðu� IhuÞk2
0;K þ

X
K2T h

2dKe2kDðu� IhuÞk2
0;K :

ð27Þ

Now, the first three terms on the right hand side of (27) have to be
bounded such that expressions with u� Ihu are absorbed by the left
hand side. The norm on the left hand side consists of two or three
terms, respectively, see (11) and (12). Thus, there are different ways
for absorbing u� Ihu.

Consider the first term on the right hand side of (27). In the first
step of the estimate, the Cauchy–Schwarz inequality givesX
K2T h

ðRKðuhÞ;u� IhuÞK 6
X
K2T h

kRKðuhÞk0;Kku� Ihuk0;K

¼
X

K2T h
kRKðuhÞk0;Kkv � Ihvk0;K :
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In the case (2), one can apply the interpolation estimate (6) to
kv � Ihvk0;K with s ¼ t ¼ 0 and Young’s inequality to getX
K2T h

ðRKðuhÞ;u� IhuÞK 6
X
K2T h

CkRKðuhÞk0;Kku� uhk0;K

6

X
K2T h

C
l0
kRKðuhÞk2

0;K þ
1

12
kl1=2ðu� uhÞk2

0: ð28Þ

Alternatively, one can use (6) with s ¼ 0; t ¼ 1 to obtainX
K2T h

ðRKðuhÞ;u� IhuÞK 6
X
K2T h

CkRKðuhÞk0;K hKkrðu� uhÞk0;K

6

X
K2T h

Ch2
K

e
kRKðuhÞk2

0;K þ
e

12
krðu� uhÞk2

0: ð29Þ

Finally, one can try to use the term with the streamline derivative
for the bound. Young’s inequality yieldsX
K2T h

ðRKðuhÞ;v � IhvÞK 6 6
X
K2T h

dKkRKðuhÞk2
0;K þ

1
24

X
K2T h

d�1
K ku� Ihuk2

0;K :

ð30Þ
Collecting the estimates (28)–(30) together with hypothesis (14)
leads toX
K2T h

ðRKðuhÞ;u� IhuÞK 6 min
C
l0
;Ch2

Ke
�1;6dK

� �
kRKðuhÞk2

0;K

þ 1
12
ku� uhk2

SUPG: ð31Þ
The size of the individual terms in the minimum will be discussed
in Remark 4.

For estimating the second term on the right hand side of (27),
first the Cauchy–Schwarz and Young’s inequality are appliedX
K2T h

dKðRKðuhÞ;b � rðu� IhuÞÞK 6 6
X
K2T h

dKkRKðuhÞk2
0;K

þ 1
24

X
K2T h

dKkb � rðu� IhuÞk2
0;K :

Using (15), one obtainsX
K2T h

dKðRKðuhÞ;b � rðu� IhuÞÞK

6 6
X
K2T h

dKkRKðuhÞk2
0;K þ

1
12
ku� uhk2

SUPG: ð32Þ

The estimate of the third term on the right hand side of (27) starts
like the estimates of the other termsX
E2Eh

ðREðuhÞ;u� IhuÞE 6
X
E2Eh

kREðuhÞk0;Eku� Ihuk0;E

¼
X
E2Eh

kREðuhÞk0;Ekv � Ihvk0;E: ð33Þ

Using (8) and (6), the shape regularity of the mesh cells, the Cau-
chy–Schwarz inequality, and a straightforward estimate given in
[25, Lemma 3.2], one gets

kv � Ihvk0;E 6 C
�

h�1=2
K min hKe�1=2;l�1=2

0

n o
� e1=2krvk0;K þ kl1=2vk0;K

� �
þe�1=4 min hKe�1=2;l�1=2

0

n o1=2

� e1=2krvk0;K þ kl1=2vk0;K

� �1=2
e1=4krvk1=2

0;K

�
6 Ce�1=4 min hKe�1=2;l�1=2

0

n o1=2

� ekrvk2
0;K þ kl1=2vk2

0;K

� �1=2

6 C min
h1=2

K

e1=2 ;
1

l1=4
0 e1=4

( )
ku� uhkSUPG;K :
This estimate is inserted into (33) and Young’s inequality is applied.
A second estimate of the term on the faces can be obtained by
applying first Young’s inequality in (33) and afterwards (16). Using
the shape regularity of the triangulation, one obtainsX

E2Eh
ðREðuhÞ;u� IhuÞE 6

X
E2Eh

min
6

kbk1;E
;C

hE

e
;

C

e1=2l1=2
0

( )
kREðuhÞk2

0;E

þ 1
12
ku� uhk2

SUPG: ð34Þ
Theorem 1. Let the conditions of Lemma 1 hold. Under Hypothesis 1,
one gets the following global upper bound

ku� uhk2
SUPG 6 g2

1 þ g2
2 þ g2

3 þ
X
K2T h

16dK h�2
K e2c2

invkrðu� IhuÞk2
0;K

þ
X
K2T h

8dKe2kDðu� IhuÞk2
0;K ; ð35Þ

where

g2
1 ¼

X
K2T h

min
C
l0
;C

h2
K

e
;24dK

( )
kRKðuhÞk2

0;K ;

g2
2 ¼

X
K2T h

24dKkRKðuhÞk2
0;K ;

g2
3 ¼

X
E2Eh

min
24
kbk1;E

;C
hE

e
;

C

e1=2l1=2
0

( )
kREðuhÞk2

0;E:

ð36Þ
Proof. The proof follows directly by inserting (31), (32) and (34)
into (27). h
Remark 3 (On the additional terms on the right hand side of
(35)). Besides the a posteriori terms, there are two extra terms on
the right hand side of (35). It will be discussed here that these terms
are in the convection-dominated regime negligible compared with
the error of the SUPG approximation. This point justifies the use of
the quantity ðg2

1 þ g2
2 þ g2

3Þ
1=2 as an upper error estimate.

Consider the convection-dominated regime. For the first extra term
on the right hand side of (35), one obtains with (9) and (11) or (12)X
K2T h

16dK h�2
K e2c2

invkrðu� IhuÞk2
0;K 6 C

X
K2T h

Pe�1
K ku� Ihuk2

SUPG;K : ð37Þ

One can expect that ku� IhukSUPG;K is generally not much larger than
ku� uhkSUPG;K . Then, in the case PeK � 1, the right hand side of (37)
becomes small compared with the left hand side of (35).

The order of convergence of the error of the SUPG approxima-
tion is r þ 1=2, see (17). For the other additional term, one can
apply (7) and (9) to getX
K2T h

8dKe2kDðu� IhuÞk2
0;K 6 C

X
K2T h

dKe2h2r�2
K kuk2

rþ1;K

6 C
X
K2T h

kbk1;K Pe�2
K h2rþ1

K kuk2
rþ1;K :

This bound possesses the same asymptotic with respect to h like the
left hand side of (35) but a very small factor for PeK � 1. The actual
size of the extra terms will be studied numerically in Example 2.

In the diffusion-dominated regime, an analysis can be per-
formed such that there are no extra terms, see Remark 4.
Remark 4 (Comparisons with residual-based error estimators from
the literature). Residual-based a posteriori error estimators for con-
vection–diffusion-reaction equations can be obtained for different
norms. With the traditional approach of deriving this kind of esti-
mators [24] and taking care only on the dependency of the weights
on the local mesh width, one gets
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krðu� uhÞk2
0 6 C

X
K2T h

h2
KkRKðuhÞk2

0;K þ
X
E2Eh

hEkREðuhÞk2
0;E

 !
þ h:o:t:; ð38Þ

ku� uhk2
0 6 C

X
K2T h

h4
KkRKðuhÞk2

0;K þ
X
E2Eh

h3
EkREðuhÞk2

0;E

 !
þ h:o:t: ð39Þ

The estimates (38) and (39) are not robust in the convection-dom-
inated regime, i.e., the constants C depend on the Péclet number, cf.
the numerical studies in [16]. They become robust if diffusion dom-
inates. The higher order terms describe data approximation errors
but not extra terms of the form that appear in (35).

A robust error estimator in the L2ðXÞ norm was derived in [10].
The weights in this estimator depend on the concrete finite
element. Moreover, the estimator in [10] is given in terms of the
L1ðKÞ norm of the residual. To use a uniform framework, we
consider here a counterpart of this estimator that is using the
square (this gives a factor of 2 from the triangle inequality) of the
L2ðXÞ norm of the local residuals. It has the form

ku� uhk2
0 K 2

X
K2T h

g2
L2 ;K
kRKðuhÞk2

0;K þ
1
4

X
E�@K

jEj
jKjg

2
L2 ;K
kREðuhÞk2

0;E

 !
;

ð40Þ

where jEj and jKj are the measures of E and K, respectively, and

gL2 ;K ¼min
~hKffiffiffi

2
p
kbkL1ðKÞ

;
h2

K

3
ffiffiffiffiffiffi
10
p

e
;

1
kckL1ðKÞ

( )

for the Q1 finite element, see [10, Appendix C]. Here, ~hK is the cell
diameter in the direction of the convection vector. The approxima-
tion sign comes not only from the transform in our framework but
also from some approximation in the derivation of this estimator.
Note that in the convection-dominated regime, the weights in
(40) are Oðh2

KÞ for the mesh cell residuals and OðhEÞ for the face
residuals, i.e., (40) has more or less the same weights with respect
to the local mesh width as (38) but both error estimators were de-
rived for different norms.

In Verfürth [25], a non-robust residual-based error estimator
for the energy norm

kvken ¼ ekrvk2
0 þ kl1=2vk2

0

� �1=2

was derived. The analysis of [25] was refined in [26], leading to a
robust residual-based a posteriori error estimator for the energy
norm plus a dual norm of the convective derivative

ku� uhk2
en þ sup

v2H1
DðXÞ

hb � rðu� uhÞ;vi2

kvk2
en

6 C
X
K2T h

min
1
l0
;
h2

K

e

( )
kRKðuhÞk2

0;K

 

þ
X
E2Eh

min
hE

e
;

1

e1=2l1=2
0

( )
kREðuhÞk2

0;E

!
þ h:o:t: ð41Þ

The weights of the estimators from [25,26] are the same. Note that
the weights in front of the local residuals in (41) appear also in (36).

In the diffusion-dominated regime, the weights including hK

and hE will eventually become effective in (36) and (41) such that
in both cases one obtains

ku� uhk2
SUPG 6 C

X
K2T h

h2
K

e
kRKðuhÞk2

0;K þ
X
E2Eh

hE

e
kREðuhÞk2

0;E

 !
þ h:o:t:
That means, the weights of the H1 norm estimator (38) divided by e
are recovered. At this point, a comment about the two additional
terms in (35) is in order. In the diffusion-dominated regime, the
norms k � ken and k � kSUPG are equivalent. Then, one can apply the error
bounds for the energy norm instead of the SUPG norm and following
the analysis of [25,26], the two extra terms in (35) do not appear.

On the other hand, in the convection-dominated regime
PeK � 1, the other weights 24dK and 24 are effective in (36) since
the minimum is attained at these values of the weights, hence

ku� uhk2
SUPG 6 C

X
K2T h

hK

kbk1;K
kRKðuhÞk2

0;K þ
1

kbk1;E

X
E2Eh

kREðuhÞk2
0;E

 !
þ h:o:t: ð42Þ

Both parts
P

K2T h
dKkb � rðu� uhÞk2

0;K

� �1=2
and kl1=2ðu� uhÞk0 of the

SUPG error are bounded by the right hand side of (42). This estimate
gives for the a posteriori bound the same difference with respect to

the mesh size of order h1=2 between the weighted L2ðXÞ norm and the
L2ðXÞ norm of the streamline derivative that is known from the a priori
error analysis. In the convection-dominated regime, the weights in (42)
will be generally smaller than the weights of (41). Thus, the right hand
side of (42) will be a smaller upper bound of the error in the energy norm
compared with the right hand side of (41). Note that the scaling for the
interior residual in (42) is the same as for an a posteriori error estimator
of an interior penalty finite element method applied to convection-
reaction equations, see [4]. The norm considered in [4] possesses also
a contribution from the streamline derivative.
Remark 5 (Dimensionality considerations). Let u be a concentration
with the unit ðmolÞ or a temperature with the unit ðKÞ. Given a dif-
fusion e (m2/s), a velocity field b (m/s), a reaction c (1/s), a right hand
side f (mol/s) or (K/s), and the stabilization parameters fdKg (s), a
straightforward calculation reveals that both sides of estimate (35)
possess the same dimension (mol2md/s) or (K2md/s). In this sense,
the weights of the estimator (36) are dimensionally correct.
4. A local lower error bound

This section presents a local lower a posteriori estimate for the
error in the SUPG norm. The derivation of this estimate does not
require an hypothesis of the kind it was used for the global upper
error bound. For the derivation of the estimate only the convec-
tion-dominated regime PeK � 1 will be considered, for the diffu-
sion-dominated case see Remark 7 at the end of the section.

Bubble functions are usually applied in the derivation of local
lower residual-based a posteriori error estimates. Let wK be the
interior bubble function associated to the mesh cell K and let wE

be the face bubble function associated to the face E that vanishes
on the boundary of xE ¼ K [ K 0, where K and K 0 are the two mesh
cells sharing the face E, see [24] for details. It is known that there
exists a constant CK independent of v and hK such that for all poly-
nomials v on K of degree p P 0 the following bounds hold

C�1
K kvk

2
0;K 6 ðv ;vwKÞ0;K 6 CKkvk2

0;K ; ð43Þ

C�1
K kvk0;K 6 kvwKk0;K þ hKkrðvwKÞk0;K 6 CKkvk0;K : ð44Þ

For the proof of these estimates see [24], [1, Theorem 2.2]. Similar
estimates hold for the face bubble functions. There exists a constant
C independent of v and hK such that for all polynomials v on K of de-
gree p P 0 and for all E � @K , the following bounds

C�1kvk2
0;E 6 ðv; vwEÞ0;E 6 Ckvk2

0;E; ð45Þ

h�1=2
K kvwEk0;K þ h1=2

K krðvwEÞk0;K 6 Ckvk0;E ð46Þ

are valid. Again, the proof can be found in [24], [1, Theorem 2.4].
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4.1. Interior residuals

Consider a mesh cell K and let

RK;hðuhÞ ¼ fh � euh � bh � ruh � chuh

be a continuous approximation of the interior residual on K in a
suitable finite-dimensional space, not necessarily in Vh;r , where
fh; bh, and ch are appropriate approximations of the coefficients.
Then, it follows from (43) that

kRK;hðuhÞk2
0;K 6 CK RK;hðuhÞ;RK;hðuhÞwK


 �
K : ð47Þ

Let v ¼ RK;hðuhÞwK . This function vanishes on the boundary of K and
it can be extended to the rest of the domain as a continuous func-
tion by defining its value outside K to be zero. The resulting func-
tion, again denoted by v, belongs to the space H1

DðXÞ. Using the
same technique as for the derivation of (26), without applying the
Galerkin orthogonality, leads to

aSUPGðe;RK;hðuhÞwKÞ ¼ RKðuhÞ;RK;hðuhÞwK


 �
K

þ dK RKðuhÞ;b � rðRK;hðuhÞwKÞ

 �

K ; ð48Þ

where e ¼ u� uh. From (47) and (48), one obtains

kRK;hðuhÞk2
0;K 6 CK RK;hðuhÞ � RKðuhÞ;RK;hðuhÞwK


 �
K

�
þaSUPGðe;RK;hðuhÞwKÞ � dK RKðuhÞ;b � rðRK;hðuhÞwKÞ


 �
K



¼ CK RK;hðuhÞ � RKðuhÞ;RK;hðuhÞwK


 �
K

�
þaSUPGðe;RK;hðuhÞwKÞ
� dK RKðuhÞ � RK;hðuhÞ


 �
;b � rðRK;hðuhÞwKÞ


 �
K

� dK RK;hðuhÞ;b � rðRK;hðuhÞwKÞ

 �

K



: ð49Þ

The terms on the right hand side of (49) have to be bounded. Be-
sides the Cauchy–Schwarz inequality or Hölder’s inequality, esti-
mate (44) will be used. One gets for the first term

RK;hðuhÞ � RKðuhÞ;RK;hðuhÞwK


 �
0;K

��� ���
6 kwK RK;hðuhÞk0;KkRK;hðuhÞ � RKðuhÞk0;K

6 CKkRK;hðuhÞk0;KkRK;hðuhÞ � RKðuhÞk0;K : ð50Þ

For the third term, one obtains with (9)
�dK RKðuhÞ � RK;hðuhÞ


 �
;b � rðRK;hðuhÞwKÞ


 �
K

�� ��
6 dKkRKðuhÞ � RK;hðuhÞk0;Kkbk1;KkrðRK;hðuhÞwKÞk0;K

6 CKdK h�1
K kbk1;KkRK;hðuhÞ � RKðuhÞk0;KkRK;hðuhÞk0;K

6
1

2CK
kRK;hðuhÞ � RKðuhÞk0;KkRK;hðuhÞk0;K ð51Þ

and for the fourth term

�dK RK;hðuhÞ;b � rðRK;hðuhÞwKÞ

 �

K

�� ��
6 dKkRK;hðuhÞk0;Kkbk1;KkrðRK;hðuhÞwKÞk0;K

6 CKdK h�1
K kbk1;KkRK;hðuhÞk2

0;K 6
1

2CK
kRK;hðuhÞk2

0;K : ð52Þ

The goal of estimating the second term on the right hand side of
(49) consists in introducing the SUPG norm of the error. To this
end, the estimate starts with

aSUPGðe;RK;hðuhÞwKÞ
�� �� 6 e1=2krek0;Ke

1=2krðRK;hðuhÞwKÞk0;K

þ d1=2
K kb � rek0;Kd�1=2

K kRK;hðuhÞwKk0;K

þ kl1=2ek0;Kkck1;Kl
�1=2
0 kRK;hðuhÞwKk0;K

þ dKekDek0;Kkbk1;KkrðRK;hðuhÞwKÞk0;K

þ d1=2
K kb � rek0;Kd1=2

K kbk1;KkrðRK;hðuhÞwKÞk0;K

þ kl1=2ek0;KdKkck1;Kl
�1=2
0 kbk1;K

� krðRK;hðuhÞwKÞk0;K : ð53Þ
Note that the terms with l�1=2
0 are not there if l0 ¼ 0 since then the

reactive term is not present, see (3). Using the inverse inequality (5),
one gets

kDek0;K 6 kDðu� IhuÞk0;K þ kDðIhu� uhÞk

6 kDðu� IhuÞk0;K þ cinvh�1
K krðIhu� uhÞk0;K

6 kDðu� IhuÞk0;K þ cinvh�1
K krek0;K þ krðu� IhuÞk0;K

� �
:

Inserting this estimate into (53), applying (44), and rearranging
terms leads to

aSUPGðe;RK;hðuhÞwKÞ
�� �� 6 e1=2CK h�1

K kbk
�1=2
1;K þ e1=2dK h�2

K cinvCK

�h
� kbk1=2

1;K

�
kbk1=2

1;Ke
1=2krek0;K þ kck1;Kl

�1=2
0 CK

�
� kbk�1=2

1;K þ dKl�1=2
0 kck1;K CK h�1

K kbk
1=2
1;K

�
� kbk1=2

1;Kkl1=2ek0;K þ d�1=2
K CKkbk�1=2

1;K

�
þd1=2

K h�1
K CKkbk1=2

1;K

�
d1=2

K kbk
1=2
1;Kkb � rek0;K

þeh�1=2
K krðu� IhuÞk0;K dK CK h�3=2

K kbk1;K cinv

� �
þeh1=2

K kDðu� IhuÞk0;K dK CK h�3=2
K kbk1;K

� �i
� kRK;hðuhÞk0;K : ð54Þ

Let ~aK be the maximum of the terms in parentheses in (54), i.e.

~aK ¼max e1=2CK h�1
K kbk

�1=2
1;K þ e1=2dK h�2

K cinvCKkbk1=2
1;K

� �
; . . .ð Þ; . . .

n o
and set aK ¼

ffiffiffi
3
p

~aK . Then, it follows that

aSUPGðe;RK;hðuhÞwKÞ
�� �� 6 aKkbk1=2

1;KkekSUPG;K

h
þ~aK eh�1=2

K krðu� IhuÞk0;K þ eh1=2
K kDðu� IhuÞk0;K

� �i
kRK;hðuhÞk0;K :

ð55Þ
Inserting (50), (51), (52), and (55) into (49) leads to

1
2
kRK;hðuhÞk0;K 6 CKaKkbk1=2

1;KkekSUPG;K

þ C2
K þ

1
2

� �
kRK;hðuhÞ � RKðuhÞk0;K

þ CK ~aK eh�1=2
K krðu� IhuÞk0;K þ eh1=2

K kDðu� IhuÞk0;K

� �
: ð56Þ

Using (9), an inspection of the individual terms of aK and, conse-
quently, ~aK gives that aK 6 Ch�1=2

K and ~aK 6 Ch�1=2
K (note that

aK ; ~aK have the correct unit ðm�1=2Þ). Denoting by

gint;K :¼ h1=2
K

kbk1=2
1;K

kRKðuhÞk0;K ; ð57Þ

one obtains from (56) with the help of the triangle inequality

gint;K 6 CkekSUPG;K þ
C

kbk1=2
1;K

h1=2
K kf � fhk0;K þ kðb� bhÞ � ruhk0;K

�h
þkðc � chÞuhk0;K

�
þ eh�1=2

K krðu� IhuÞk0;K þ eh1=2
K kDðu� IhuÞk0;K

i
:

ð58Þ

Note that for dK as defined in (9) the local error estimator gint;K

is of the form as the local contribution g2 of the global error estima-
tor, see (36). If the minimum of the terms in g1 is the last term,
which will be the case in the convection-dominated regime, cf. Re-
mark 4, then also the local contribution of g1 is of the same form as
gint;K .

Remark 6 (On the additional terms on the right hand side of
(58)). The application of (6) yields
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eh�1=2
K krðu� IhuÞk0;K 6 Ceh�1=2

K hr
Kkukrþ1;K

6 Ckbk1;K Pe�1
K h

rþ1
2

K kukrþ1;K ð59Þ

and using (7) the same bound is valid for the other term

eh1=2
K kDðu� IhuÞk0;K 6 Ceh1=2

K hr�1
K kukrþ1;K

6 Ckbk1;K Pe�1
K h

rþ1
2

K kukrþ1;K : ð60Þ

Reasoning in the same way like for the second term in Remark 3,
one finds that (59) and (60) are in the convection-dominated
regime PeK � 1 negligible compared with kekSUPG;K . The other addi-
tional terms in (58) are just the usual data approximation errors. In
practice, one has to take care that the data are approximated suffi-
ciently well such that these terms are also negligible compared with
kekSUPG;K . Then, gint;K is the first contribution of a local a posteriori
error estimator.
4.2. Face residuals

The analysis of the face residuals follows in principal the anal-
ysis of the interior residuals. Let RE;hðuhÞ be an approximation to
the face residual from a suitable finite-dimensional space. Then,
one obtains with (45)

kRE;hðuhÞk2
0;E 6 CðRE;hðuhÞ;RE;hðuhÞwEÞE: ð61Þ

Now, the function v ¼ RE;hðuhÞwE is defined, which is continuous and
which vanishes on the boundary of xE. This function can be ex-
tended by zero to X such that a function v 2 H1

DðXÞ is obtained.
Inserting v into the analog of (26), which is obtained without the
application of the Galerkin orthogonality, gives

aSUPGðe;RE;hðuhÞwEÞ ¼
X

K2xE

ðRKðuhÞ;RE;hðuhÞwEÞK

þ
X

K2xE

dKðRKðuhÞ;b � rðRE;hðuhÞwEÞÞK

þ ðREðuhÞ;RE;hðuhÞwEÞ0;E: ð62Þ

From (61) and (62), one gets

kRE;hðuhÞk2
0;E 6 C

"
ðRE;hðuhÞ � REðuhÞ;RE;hðuhÞwEÞE þ aSUPGðe;RE;hðuhÞwEÞ

�
X

K2xE

ðRKðuhÞ;RE;hðuhÞwEÞK

�
X

K2xE

dKðRKðuhÞ;b � rðRE;hðuhÞwEÞÞK

#
: ð63Þ

The four terms on the right hand side of (63) have to
be bounded. Applying the Cauchy–Schwarz inequality and (45)
yields

ðRE;hðuhÞ � REðuhÞ;RE;hðuhÞwEÞ0;E
��� ���
6 kRE;hðuhÞw1=2

E k0;EkðRE;hðuhÞ � REðuhÞÞw1=2
E k0;E

6 CkRE;hðuhÞk0;EkðRE;hðuhÞ � REðuhÞÞk0;E: ð64Þ

For estimating the third and fourth term on the right hand side of
(63), inequality (46) is appliedX
K2xE

ðRKðuhÞ;RE;hðuhÞwEÞK

�����
����� 6 X

K2xE

kRKðuhÞk0;KkRE;hðuhÞwEk0;K

6 C
X

K2xE

h1=2
K kRKðuhÞk0;K

 !
kRE;hðuhÞk0;E

ð65Þ
andX
K2xE

dKðRKðuhÞ;b � rðRE;hðuhÞwEÞÞK

�����
�����

6

X
K2xE

dKkRKðuhÞk0;Kkbk1;KkrðRE;hðuhÞwEÞk0;K

6 C
X

K2xE

dK h�1=2
K kRKðuhÞk0;Kkbk1;K

 !
kRE;hðuhÞk0;E

6 C
X

K2xE

h1=2
K kRKðuhÞk0;K

 !
kRE;hðuhÞk0;E; ð66Þ

where in the last estimate the definition (9) of dK has been used. Fi-
nally, the definition of aSUPGð�; �Þ, (54) and (46) give for the second
term on the right hand side of (63)

aSUPGðe;RE;hðuhÞwEÞ
�� �� 6 C

X
K2xE

kbk1=2
1;Ke

1=2krek0;K e1=2h�1=2
K kbk�1=2

1;K

�h
þe1=2dK h�3=2

K cinvkbk1=2
1;K

�
þ d1=2

K kbk
1=2
1;Kkb � rek0;K d�1=2

K h1=2
K kbk

�1=2
1;K

�
þd1=2

K h�1=2
K kbk1=2

1;K

�
þ kbk1=2

1;Kkl1=2ek0;K h1=2
K l�1=2

0 kck1;Kkbk
�1=2
1;K

�
þdK h�1=2

K l�1=2
0 kck1;Kkbk

1=2
1;K

�
þ eh�1=2

K krðu� IhuÞk0;K

� dK h�1
K kbk1;K cinv

� �
þ eh1=2

K kDðu� IhuÞk0;K dK h�1
K kbk1;K

� �i
� kRE;hðuhÞk0;E: ð67Þ

In the case l0 ¼ 0, the same remark holds as given after (53). Note
that for dK as defined in (9) all terms in parentheses in (67) are
dimensionless and Oð1Þ with respect to hK . Using the definition of
k � kSUPG, one gets

aSUPGðe;RE;hðuhÞwEÞ
�� �� 6 C

X
K2xE

kbk1=2
1;KkekSUPG;K þ

X
K2xE

eh�1=2
K krðu� IhuÞk0;K

"

þ
X

K2xE

eh1=2
K kDðu� IhuÞk0;K

#
kRE;hðuhÞk0;E: ð68Þ

Inserting (64)–(66) and (68) into (63) yields

kRE;hðuhÞk0;E 6 C
X

K2xE

kbk1=2
1;KkekSUPG;K þ kRE;hðuhÞ � REðuhÞk0;E

"
þ
X

K2xE

h1=2
K kRKðuhÞkK þ

X
K2xE

eh�1=2
K krðu� IhuÞk0;K

þ eh1=2
K kDðu� IhuÞk0;K

#
: ð69Þ

The term kRE;hðuhÞ � REðuhÞk0;E vanishes on the interior faces and it
reduces to g � gh on the Neumann boundary, where gh is a finite
dimensional approximation to g. Denoting by

gedge;E :¼ 1

kbk1=2
1;xE

kREðuhÞk0;E ð70Þ

and using the definition (57), one gets from (69)

gedge;E 6 C
X
K2xE

kekSUPG;K þ
X
K2xE

gint;K

 !
þ C

kbk1=2
1;xE

X
E�@K;E2Eh;N

kg � ghk0;E

0@
þ
X

K2xE

eh�1=2
K krðu� IhuÞk0;K þ eh1=2

K kDðu� IhuÞk0;K

!
: ð71Þ

The last two terms on the right hand side of (71) can be
bounded in the same way the bounds of (59) and (60) were de-
rived. It can be observed that in the convection-dominated re-
gime the term gedge;E from (70) is of the same principal form as
g3 from (36).
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Theorem 2. Consider the convection-dominated regime PeK � 1, let
K 2 T h, let the stabilization parameter be defined by (9), and let
u 2 Hrþ1ðxKÞ. Then the following local lower a posteriori estimate
holds

g2
int;K þ

X
E�@K

g2
edge;E 6 Ckek2

SUPG;xK
þ C

X
K2xK

hK

kbk1;K
kf � fhk2

0;K

�
þkðb� bhÞ � ruhk2

0;K þ kðc � chÞuhk2
0;K

�
þ C

X
E�@K;E2Eh;N

1
kbk1;xE

kg � ghk
2
0;E

þ C
X

K2xK

kbk1;K Pe�2
K h2rþ1

K kuk2
rþ1;K :
Proof. The estimate is obtained by combining (58) and (71). h
Remark 7. Note that in the derivation of this estimate only the
convection-dominated regime was considered. Unlike the global
error estimator, there is no transition of the weights in the case
that the local mesh Péclet number becomes smaller, see Remark
4. However, this situation has to be faced for adaptively refined
grids. Since the norms k � ken and k � kSUPG are equivalent in the dif-
fusion-dominated regime, it is reasonable to use the same weights
as for the estimator (41) in this regime. For this reason, we propose
to use as local estimator the local counterpart of the global
estimator

min
C
l0
;C

h2
K

e
;24dK

( )
kRKðuhÞk2

0;K þ 24dKkRKðuhÞk2
0;K

 

þ
X
E2@K

min
24
kbk1;E

;C
hE

e
;

C

e1=2l1=2
0

( )
kREðuhÞk2

0;E

!1=2

: ð72Þ

Note that for simplifying the implementation, in the last weight
kbk1;E instead of kbk1;xE

is used.
5. Numerical studies

The numerical studies will present, on the one hand, results
with respect to the effectivity of the error estimators (35) and
(36), the fulfillment of the hypotheses (14)–(16), and the size
of the extra terms on the right hand side of estimate (35). On
the other hand, the adaptive grid refinement controlled
by the local estimator (72) will be compared with the refine-
ments obtained with the other residual-based estimators from
Remark 4.

A comprehensive discussion concerning possible choices of the
SUPG stabilization parameter can be found in [17]. In the numeri-
cal studies presented below, the same choice of this parameter as
in [17] was used

dK ¼
~hK

2rjbj nð
fPeKÞ with nðaÞ ¼ coth a� 1

a
; fPeK ¼

jbj~hK

2re
;

where ~hK is the cell diameter in the direction of the convection
vector b, like in the weight of (40), and jbj is the Euclidean
norm of this vector. The arising linear systems of equations
were either solved with the direct sparse solver UMFPACK [6]
or with a flexible GMRES method with multigrid preconditioner
until the Euclidean norm of the residual vector was less than
10�14. All simulations were performed with the code MooNMD
[19].

A posteriori error estimators should, on the one hand, estimate
the error in a certain norm. The quality of the fulfillment of this
task is usually measured by the effectivity index
geff ¼
g

ku� uhk
;

where g is the computed error estimate and k � k is the
norm the estimator is designed for. For the proposed error estima-
tor, it is

g ¼ g2
1 þ g2

2 þ g2
3


 �1=2
; ð73Þ

where g1; g2; g3 are given in (36). The constants in g1 and g3

were chosen to be C ¼ 1, also for the lower estimator (72). Note
that the choice of the constant C is relevant only in the diffusion-
dominated regime. A reason to choose the constants in this way
is that one obtains the same weights as in the error estimator
(41). On the other hand, a posteriori error estimators should con-
trol an adaptive grid refinement. There are several strategies for
utilizing local error estimates in this process, see [16] for a dis-
cussion of this topic. Here, the same strategy as in [16] was used.
After having computed the local error estimates, e.g. (72), for all
mesh cells, the maximal value �g was determined. Then, all mesh
cells were refined whose local estimate is at least tol ¼ 0:5 of �g.
For efficiency reasons, tol was decreased by 0.9 as long as less
than 10% of the mesh cells were marked for refinement. It turned
out that in all simulations the minimal amount of mesh cells that
should be refined became effective such that the initial value for
tol was of little importance.

Example 1 (Smooth solution). This example studies the effectivity
of the a posteriori error estimator (73) for the diffusion- and
convection-dominated regime. To this end, Eq. (1) is considered in
X ¼ ð0;1Þ2 with b ¼ ð1;�4ÞT ; c ¼ 1, and with f chosen such that

uðx; yÞ ¼ sinðpxÞ sinðpyÞ

is the solution of (1). Dirichlet boundary conditions were prescribed
at x ¼ 0; y ¼ 0, and y ¼ 1. At x ¼ 1, Neumann boundary conditions
were applied.

Uniformly refined grids were used in the simulations. The
coarsest grids (level 0) are presented in Fig. 1. The finest grid in all
simulations was the first grid with more than 106 degrees of
freedom. Simulations were performed for first, second, and third
order finite elements.

Results with respect to the effectivity index for different finite
elements and different diffusion parameters e are presented in
Fig. 2. In all cases, the effectivity index is in the interval [5,12].
Considering only the convection-dominated case, then the effec-
tivity index is always in the interval [6.5,7]. In summary, one can
observe that the effectivity index behaves robustly with respect to
the Péclet number.

In our studies, we could observe that also the L2ðXÞ
error estimator (40) was robust, whereas the error estimators for
the H1 norm (38), the L2 norm (39), and the energy norm
estimator from [25] do not possess this property even in this
example with a smooth solution, see also [16] for corresponding
studies.

Finally, it shall be noted that the hypotheses (14)–(16) were
always fulfilled in the convection-dominated regime. Only in
two simulations with m ¼ 1 and m ¼ 10�2, the factor of 2:1
instead of 2 would have been necessary on the right hand side
of (14). However, in the diffusion-dominated regime, the
weights which are based on hypotheses (14)–(16) are not
effective in the error estimator (35) and (36). For the sake of
brevity, detailed results concerning this topic will be presented
only in Example 2.
Example 2 (Solution with circular interior layer). This example was
proposed in [15] and it is defined by X ¼ ð0;1Þ2, e ¼ 10�4;

b ¼ ð2;3ÞT ; c ¼ 2, and f such that



Fig. 1. Coarsest grids for the simulations on the unit square.
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uðx; yÞ ¼ 16x ð1� xÞy ð1� yÞ

� 1
2
þ arctan½2e�1=2 ð0:252 � ðx� 0:5Þ2 � ðy� 0:5Þ2Þ	

p

 !
satisfies (1), see Fig. 3. Dirichlet conditions were applied at the
whole boundary. It has been recently observed in [18] that the dif-
fusion should not be chosen too small in this example. Otherwise,
the quadrature error of the right hand side term of the finite ele-
ment problem might dominate. For this reason, the same diffusion
e ¼ 10�4 and the same quadrature rules were used as in [18].
Fig. 2. Example 1. Effectivity index for different values
Solutions on adaptively refined grids were studied in this
example. The coarse grids from Fig. 1 were used and uniform grid
refinement was applied until the first grid with more than 250
degrees of freedom was obtained. Starting from this grid, local
adaption in the way described above was applied. The solution
process was stopped after having computed the solution on the
first grid with more than 105 degrees of freedom.

Snapshots of the adaptively refined grids using the local
estimator (72) for the P1 finite element are presented in Fig. 4.
For quadrilateral grids, an adaptive refinement with hanging nodes
was applied. The effectivity indices on adaptively refined grids for
different finite elements are presented in Fig. 5. One can observe a
very similar behavior as in Example 1. Starting from the second
coarsest grid, the indices are always in the interval [6.5,7]. In
addition, we could observe that the proposed error estimator (35)
and (36) is robust in estimating the error in the SUPG norm also on
the grids obtained with the other estimators.

A study of quantities involved in hypotheses (14)–(16) is
presented in Fig. 6, where for the sake of brevity only one result is
presented for each finite element of order higher than one. It can be
seen that for this example the hypotheses were almost always
fulfilled, there is only one exception for the Q3 finite element on the
third coarsest grid. But this is the only exception on the meshes
obtained with (72), it is very small, and the quadrature error might
of the diffusion and for different finite elements.



Fig. 3. Solution of Example 2.
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still have some non-negligible influence on this coarse grid. In our
opinion, it can be seen that hypotheses (14)–(16) are quite
reasonable.

Two representative results concerning the size of the extra
terms on the right hand side of estimate (35) are shown in Fig. 7.
For the constant from the inverse inequality for different finite
elements, values from [7] were used. It can be observed that these
terms are very small for large Péclet numbers compared with the
error (and thus also with the error estimator). On finer grids, the
extra terms become more important which follows also from the
considerations in Remark 3.

The considered example possesses only one layer. All estima-
tors lead more or less to the same type of adaptive refinement.
Instead of presenting visualizations of grids, this statement will be
illustrated by the fact that the solutions computed on the
adaptively refined grids obtained with the (local counterparts of
the) error estimators (38)–(41) and (72) possess a very similar
error in the SUPG norm, see Fig. 8 for some representative results.
Fig. 4. Example 2. Adaptively refined grids obtained by
Example 3 (Hemker problem). The Hemker problem, defined in
[11], is a simple two-dimensional model of the transport of tem-
perature from a hot obstacle (circle) in the direction of a con-
stant convection field. It possesses a number of properties
which are encountered also in problems coming from applica-
tions, see [2] for a discussion of this topic. From the point of
view of adaptive grid refinement, the interesting property of
the Hemker problem is the appearance of different layers:
boundary layers at the circle and interior layers starting from
the circle and evolving in the direction of the convection. The
Hemker problem has been studied recently in [2] for a number
of stabilized discretizations and the current study will follow
the lines of [2].

The Hemker problem is defined in X ¼ f½�3;9	 � ½�3;3	gn
fðx; yÞ : x2 þ y2 < 1g, the coefficients of (1) are e ¼ 10�4; b ¼
ð1;0ÞT ; c ¼ 0, and f ¼ 0, and the boundary conditions are given by

uðx; yÞ ¼
0; for x ¼ �3;
1; for x2 þ y2 ¼ 1;
eru � n ¼ 0; else;

8><>:
see Fig. 9 for the solution of this problem.

For assessing numerical solutions of the Hemker problem, not
errors in Sobolev spaces or in the SUPG norm are of interest.
Instead, quantities like the size of spurious oscillations or the
smearing of layers are important. None of the considered error
estimators in this paper is designed to adapt the grids with respect
to such outputs of interest. Based on the experience from [16], it
can be expected that error estimator will lead to the best grids
which adapts the grids most uniformly, since this strategy mini-
mizes the probability of neglecting the refinement of an important
subregion.
using the local estimator (72), P1 finite element.



Fig. 5. Example 2. Behavior of the effectivity index of estimator (73) on adaptively
refined grids obtained with (72), different finite elements.
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Results on adaptively refined quadrilateral grids with hanging
nodes will be presented for this example. The initial grid is
depicted in Fig. 10. It was refined uniformly until the first grid with
more than 2500 degrees of freedom was obtained. Starting from
Fig. 6. Example 2. Quantities from hypotheses (14)
this grid, an adaptive grid refinement was applied. The simulations
were terminated after having computed the first solution with
more than 250,000 degrees of freedom. For choosing the mesh cells
for refinement, the strategy described at the beginning of this
section was applied. Note that for this example l0 ¼ 0 and the
weights of the estimators (38) are the weights of the estimator (41)
times e. Since the selection procedure for refining the mesh cells is
based on a relative comparison of the local error estimates, both
estimators lead to the same locally refined grids.

The final adaptively refined grids obtained with the (local
counterparts of the) error estimators (38)–(40), and with the error
estimator (72) are presented in Fig. 11. It can be seen that the grids
look quite differently, in particular for the Q2 finite element.
Whereas the adaptive grid obtained with the L2 error estimator
(39) refines the interior layer completely, the other estimators
concentrate the refinement to the neighborhood of the circle. This
behavior was already explained in [16]. All estimators start to
refine the regions with the strongest layer, which is for the Hemker
problem the boundary layer at the circle, in particular in a
neighborhood of the point ð�1;0Þ. In this layer, the largest local
residuals occur. All error estimators multiply the local residuals by
a weight that depends on the size of the mesh cell. The smaller the
weights are, the sooner the refinement of large mesh cells in
weaker layers will start. Having a look at the weights in (38)–(40)
and (72), then it becomes clear that the L2 estimator (39) will first
refine the interior layers, then the H1 estimator (38) and the robust
–(16) with Ihu being the Lagrange interpolant.



Fig. 7. Example 2. Size of the additional terms on the right hand side of estimate (35) vs. the left hand side.

Fig. 8. Example 2. Error in the SUPG norm on adaptively refined grids with different error estimators.

Fig. 9. Solution of the Hemker problem. Fig. 10. Hemker problem, initial grid.
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L2ðXÞ estimator (40) will be second, and the SUPG estimator (72)
will be last. In this sense, the L2 estimator refines most uniformly
among the considered estimators. This situation can be clearly
observed in Fig. 11.

One criterion defined in [2] for the quality of the computed
solution is the size of the undershoots and overshoots. It was
observed in [2] that for the SUPG solution on uniformly refined
grids in particular the size of the undershoots is comparatively
large. The largest undershoots occur at the starting points of the
interior boundary layers at the circle. Fig. 12 shows that the local
grid refinement at the circle leads to a reduction of the under-
shoots, without removing them. The largest reductions were
obtained on the grids computed with the L2 estimator (39). This
statement is also true with respect to the overshoots. Thus, the
better resolution of the region of the interior layers on the grids
obtained with the L2 estimator is also of advantage for the
reduction of the spurious oscillations.

Another criterion for the quality of the computed solution
defined in [2] is the smearing of the interior layer at x ¼ 4, see [2]
for a precise definition of the layer width and the reference value.
Results with respect to this criterion are presented in Fig. 13. Not
surprisingly, the sharpest layers are obtained on the grids com-
puted with the L2 estimator (39) since these grids are finest in the
considered region.

Since a clear conclusion can be already drawn and for the sake
of brevity, results concerning the other quality criteria from [2] will
be omitted. Having problems with quantities of interest in
different kinds of layers, the adaptive grid refinement should be



Fig. 11. Hemker problem, final adaptively refined grids, left: Q1 finite element, right: Q2 finite element, top to bottom: error estimators (38)–(40) and (72), note that error
estimator (41) leads to the same grids as error estimator (38).
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controlled by an error estimator that relatively soon selects large
mesh cells in weaker layers for refinement. Among the considered
error estimators, the L2 estimator (39) meets this criterion. The use
of this estimator for controlling the adaptive grid refinement in this
situation was already recommended in [16].
Example 4 (Example with non-smooth solution). The derivation of
the global upper bound assumed for the solution of (4) that
u 2 H2ðXÞ, see Lemma 1. Here, the behavior of the proposed error
estimator is studied for an example where this assumption is
violated. It is defined by X ¼ ð0;1Þ2 n ½1=3;1=3	2; e ¼ 10�3;

b ¼ ð1;0Þ2, and c ¼ f ¼ 0. Homogeneous Dirichlet boundary con-
ditions were described at x ¼ 0; y ¼ 0; y ¼ 1, and homogeneous
Neumann boundary conditions at x ¼ 1. At the boundary of the
interior body, u ¼ 1 was prescribed. With this setting, one can
expect singularities at the re-entrant corners ð1=3;1=3Þ and
ð1=3;2=3Þ.
Simulations were performed with the P1 and the Q1 finite
element on uniformly refined grids, see Fig. 14 for the coarsest
grids. To approximate the errors, reference solutions were
computed on level 10 (more than 33 million of degrees of
freedom). Because of the slow convergence due to the singular-
ities, we used for computing the reference solutions the finest
grid that was feasible with our hardware. The methodology for
performing the numerical studies was as follows. First of all, a
value of e was searched that allows a reliable computation of the
errors. To this end, the error in the SUPG norm of the solution
on level 1 was computed with the solutions on level 9 and level
10 as reference, respectively. The numerical quadrature was
performed on the finer grid. A quadrature rule that is exact for
polynomials of degree 19 was used on triangles and a Gaussian
quadrature rule that is exact for polynomials of degree 17 on
squares. The reference solution on level 10 was considered to be
sufficiently accurate if both errors were not much different. This
was the case for e ¼ 10�3 (
 0:3% relative difference) but not for



Fig. 12. Hemker problem, undershoots and overshoots.

Fig. 13. Hemker problem, layer width at x ¼ 4.

V. John, J. Novo / Comput. Methods Appl. Mech. Engrg. 255 (2013) 289–305 303
e ¼ 10�4 (
 17% relative difference). Then, all errors for com-
puting the effectivity indices were computed on level 10, after
having prolongated the solutions from the coarser grids. Note
that the reverse approach, the restriction of the reference
solution to the coarser grids and performing the numerical
quadrature on the coarser grids, leads to very inaccurate results
since the values and derivatives in the quadrature points on the
coarse grids are not taken from the reference solution but only



Fig. 14. Example 4. Coarsest grids (level 0).
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from its restriction. Since a lot of details of the reference
solution are lost by the restriction, the values and derivatives of
these two functions might be quite different, in particular in a
vicinity of layers.

The SUPG norm is a mesh-dependent norm because it includes
the stabilization parameters. Thus, one has to take care to use the
mesh-dependent weights from the coarser grids even if the
numerical quadrature is performed on the finest grid. The only
efficient way to pay attention to this aspect is the use of
triangulations where all mesh cells on a given level have the same
stabilization parameter. For this reason, uniform grids were
considered.

The effectivity indices and results concerning hypotheses (14)–
(16) are presented in Fig. 15. From the setup of the numerical
simulations, it follows that higher Péclet numbers appear only on
the coarsest levels. On the finer levels, already a transition to the
diffusion-dominated case starts. All effectivity indices are in the
interval [1,8], but there is some increase on finer levels. We
observed that the computed errors were usually too small if the
level of the reference solution was not sufficiently fine compared
with the level of interest. Consequently, the computed effectivity
indices were too large in this case. For instance, considering the Q1

finite element, the solution on level 3 with the reference solution
on level 5 gives an effectivity index of 3.85. To obtain an accurate
result for level 3 (effectivity index below 2.35), at least the
reference solution on level 7 has to be used. Similarly, the
effectivity index on level 8 is 8.35 if it is computed with the
reference solution from level 9 and it becomes 7.43 for the
reference solution computed on level 10, see Fig. 15 for the latter
result. Thus, on the one hand, the effectivity indices presented in
Fig. 15 might be still somewhat inaccurate (too large) for finer
levels. But on the other hand, the diffusion-dominated regime will
Fig. 15. Example 4. Effectivity indices (left) and quantities from
be reached soon with further refinement. Then, the effectivity
index will be bounded because the estimator is robust in this
regime, cf. Remark 4.

To compute the approximations of the left hand sides of (14)–
(16), u was taken to be the reference solution and Ihu was
computed by first restricting the reference solution to the coarser
grids, by taking the values in the corresponding nodes like in the
Lagrangian interpolation, and then prolongating this restriction, by
inclusion, again to the finest grid. The numerical quadrature was
performed on the finest grid, where for computing the left hand
side of (16) of course only those edges were used that were present
on the respective coarse grid. The results in Fig. 15 show that the
approximations obtained in this way fulfill the hypotheses (14)–
(16). One can see that the interpolation quantities with stabiliza-
tion parameters behave differently in the convection- and diffu-
sion-dominated regime.
6. Summary

A residual-based a posteriori error estimator for the SUPG
approximation of the solution of convection-dominated convec-
tion–diffusion-reaction equations was proposed. The error in the
natural SUPG norm is estimated robustly if certain hypotheses
are fulfilled that connect the interpolation error in different norms
and the error in the SUPG norm. It was discussed that these
hypotheses are justified in some standard situation and this state-
ment was supported by numerical results. A numerical analysis
without hypotheses and extra terms of the form as in (35) and with
weaker assumptions on the regularity of the solution is an open
question.

The proposed error estimator possesses different weights than
other residual-based estimators for convection–diffusion-reaction
equations. These weights cause a deep refinement of the subre-
gion with the strongest singularity before a refinement of subre-
gions with weaker singularities starts. Thus, the proposed
estimator can be used for the adaptive grid refinement if the
solution possesses only one kind of singularity. It was demon-
strated that otherwise the residual-based error estimator (39)
for the L2ðXÞ error should be preferred. But independently of
the used error estimator for constructing the adaptive grid, one
can expect to obtain with the proposed error estimator a robust
estimate of the error in the SUPG norm in the standard situation
described in Remark 1.
the hypotheses (14)–(16) for the Q1 finite element (right).
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