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Summary. We analyze nonconforming finite element approximations of stream-
line-diffusion type for solving convection-diffusion problems. Both the theoretical
and numerical investigations show that additional jump terms have to be added in
the nonconforming case in order to get the sameO(hk+1/2) order of convergence
in L2 as in the conforming case for convection dominated problems. A rigorous
error analysis supported by numerical experiments is given.
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1. Introduction

The streamline-diffusion method (SDFEM) for the solution of convection-dif-
fusion problems has been successfully implemented with the use of conforming
finite element spaces. This method was proposed first by Hughes and Brooks
in [8] and applied to different problems. Starting with the fundamental work by
Nävert [14], it was mainly analyzed by C. Johnson and his co-workers [10], [7],
[9]. Nowadays, the convergence properties are well-understood in the conforming
case [15], [18], [21], [22], [24].

For computational fluid dynamics applications, finite element methods of the
nonconforming type are more attractive then those of conforming type since
nonconforming elements more easily fulfill the discrete version of the Babuška-
Brezzi condition. Another advantage of using nonconforming finite elements is
that the unknowns are only concentrated on the faces which results in a cheap
local communication, such that parallel MIMD machines can be used for solving
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the large systems of equations, see e.g. [6], [11]. In order to stabilize these
methods in the case of moderate and higher Reynolds numbers, several upwind
methods (resulting in algebraic systems with M-matrices) have been developed
and analyzed in [19], [20], [17], [5],[4]. However, the main drawback of upwind
methods is the restricted order of convergence. The SDFEM which is known to
combine good stability properties with high accuracy outside interior or boundary
layers therefore seems to be a sensible alternative to such upwind schemes. For
example, [12] studies a nonconforming SDFEM for the solution of the stationary
Navier-Stokes equations but does not pay special attention to the dependency of
the error constants on the Reynolds number. In order to study the behaviour of
nonconforming SDFEM in more detail we first extend some known conforming
convergence results to the nonconforming case. Here, when switching from a
conforming to a nonconforming SDFEM, one looses the Galerkin orthogonality
and has to consider an additional error, called consistency error. For the standard
coercive discrete bilinear form it will be shown that the consistency error is
not of optimal order, uniformly with respect to the perturbation parameterε.
As a consequence, the optimal order of convergence is not achieved for smooth
solutions. The main objective of this paper is to propose several modified optimal
order nonconforming streamline-diffusion finite element discretizations for the
solution of the boundary value problem

− ε∆u + b · ∇u + cu = f in Ω, u = 0 onΓ.(1)

These modifications consist of introducing appropriate jump terms into the bi-
linear form. For these discretizations, theoretical and numerical investigations
demonstrate convergence results identical to those for conforming methods. The
remainder of this paper is organized as following. First, Sect. 2 introduces nec-
essary notations, and formulates three different nonconforming discretizations of
(1). Here, we also describe assumptions on the finite element spaces to be ful-
filled. Next, Sect. 3 examines the coerciveness of the bilinear form related to
the discretizations and studies convergence properties. Finally, Sect. 4 provides
several numerical experiments which corroborate our theory.

2. Notations and preliminaries

Let Ω ⊂ Rd, d = 2, 3, be a bounded domain with polygonal or polyhedral
boundaryΓ. We are interested in nonconforming discretizations of the convection
diffusion problem

− ε∆u + b · ∇u + c u = f in Ω, u = 0 on Γ(2)

under the assumptions thatb, c, f are sufficiently smooth functions, andε is a
small positive perturbation parameter. ForV = H 1

0 (Ω), the standard weak for-
mulation of the problem (2) reads

Find u ∈ V such that for allv ∈ V
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ε(∇u,∇v) + (b · ∇u + c u, v) = (f , v) ,(3)

where (·, ·) denotes the inner product inL2(Ω). Note that under the assumption

c− 1
2

div b ≥ 0(4)

there is a unique solution of (3).

In order to discretize problem (3) a family of triangulationsTh is constructed
which cover the domainΩ̄ with nondegenerated-simplicesK , i.e. triangles if
d = 2 or tetrahedrons ifd = 3. Each triangulation is supposed to be compatible,
that is, every (d−1) dimensional face of a simplex is shared by at most one other
simplex. Let the diameter of a simplexK be given byhK = supx,y∈K |x − y|, let
ρK be the diameter of the largest inscribed ball ofK and let h be defined by
h = maxK hK . It is assumed that the family of triangulations is shape regular,
which means that there exists a positive constantC , independent ofh such that
for all triangulationsTh every simplexK ∈ Th satisfies

hK

ρK
≤ C .

Every (d−1)-dimensional faceE, which separates two neighbouringd-simplices
K1 andK2, is associated with a uniquely oriented normalnE (for definiteness from
K1 to K2). The jump of a functionv ∈ V acrossE, denoted by[|v|]

E
:= v|K1

− v|K2
,

depends on this unique orientation. The inner products inL2(K ) andL2(E) will
be denoted by (·, ·)K and< ·, · >E , respectively. Because this paper focusses on
nonconforming finite element methods we have to consider elementwise defined
norms and seminorms. For instance

‖v‖h :=

(∑
K

|v|21,K
)1/2

.

Each of the studied nonconforming finite element spacesVh 6⊂ V contains a
conforming finite element subspaceXh ⊂ V of piecewise polynomials of degree
k ≥ 1. The simplest example of a nonconforming finite element spaceVh is
the Crouzeix-Raviart element [3] which consists of piecewise linear functions,
with degrees of freedom associated to the midpoint of the edges (d = 2) and
the barycentre of the faces (d = 3), respectively. A systematic introduction to
new families of arbitrary high order nonconforming elements can be found in
[13]. Note that‖ · ‖h is a norm on the conforming subspaceXh but in general
only a seminorm on the nonconforming spaceVh. We suppose that the following
assumptions on the spacesXh andVh are fulfilled:
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(H1) There is an interpolation operator (see for instance [2])Ih : H 2(Ω) →
Xh ⊂ Vh such that forl , with 0≤ l ≤ min(k, 2) the estimates

|v − Ihv|l ,K ≤ C hm+1−l
K |v|m+1,K ∀v ∈ H m+1(K ), 1≤ m ≤ k(5)

‖v − Ihv‖0,E ≤ C hm+1/2
E |v|m+1,K ∀v ∈ H m+1(K ), 1≤ m ≤ k(6)

hold.
(H2) For any (d − 1)-dimensional faceE separating twod-simplicesK1, K2

we have ∫
E

q
[|vh|

]
E

ds = 0 for all q ∈ Pk−1, vh ∈ Vh,(7)

wherePk−1 denotes the space of polynomials ind variables of degree
k − 1. Further, for any (d − 1)-dimensional faceE belonging to the
boundaryΓ one requires∫

E
q vh ds = 0 for all q ∈ Pk−1, vh ∈ Vh.(8)

Note that (H2), in combination with the homogeneous boundary conditions,
guarantees that‖ · ‖h is a norm onVh for k ≥ 1 using that‖vh‖h = 0 implies
that vh is constant per element. The restriction tod = 2 or d = 3 with respect
to the dimension guarantees that due to inclusion theorems, see for instance [1],
Ihv for v ∈ H 2(Ω) ⊂ C(Ω̄) is well defined in (H1).

With the above conditions in mind we can now formulate different versions
of the nonconforming streamline-diffusion finite element method:

Find uh ∈ Vh such that for allvh ∈ Vh

ai
h(uh, vh) = lh(vh), i = 1, 2, 3,(9)

where the bilinear formsai
h, i = 1, 2, 3, and the linear formlh, respectively, are

given by

NSD1 Convective form

a1
h(u, v) :=


∑

K

{
ε(∇u,∇v)K + (b · ∇u + c u, v)K

+(−ε∆u + b · ∇u + c u, δK b · ∇v)K

}
+
∑

E σE <
[|u|]

E
,
[|v|]

E
>E

(10)

NSD2 Skew-symmetrized form

a2
h(u, v) :=


∑

K

{
ε(∇u,∇v)K + 1

2[(b · ∇u, v)K − (b · ∇v, u)K ]

+(c− 1
2div b, uv) + (−ε∆u + b · ∇u + c u, δK b · ∇v)K

}
+
∑

E σE <
[|u|]

E
,
[|v|]

E
>E

(11)

NSD3 Fully skew-symmetrized form
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a3
h(u, v) :=



∑
K

{
ε(∇u,∇v)K + (−ε∆u + b · ∇u, δK b · ∇v)K

+1
2[((1− cδK )b · ∇u, v)K − ((1− cδK )b · ∇v, u)K ]

+(c− 1
2div (b + bcδK ), uv)K

}
+
∑

E σE <
[|u|]

E
,
[|v|]

E
>E

(12)

and
lh(v) := (f , v) +

∑
K

(f , δK b · ∇v)K .(13)

The size of the positive control parameterδK and the nonnegative parameter
σ will be determined in the next section. In this section also a discretization error
estimate is provided which shows that the solution of (9) converges to the solution
of (3) for h → 0 under certain conditions forδK . As expected, the convergence
rate is influenced by the asymptotic behaviour ofσE for h → 0. Finally, we
note that the three formulations coincide for conforming finite element spaces
and differ from each other in the nonconforming case.

3. Error estimates

Let us first study the coerciveness ofai
h, i = 1, 2, 3 on Vh from which we get the

unique solvability of the problem (3). To this end, instead of (4), we assume the
slightly stronger assumption

c− 1
2

div b ≥ c0 > 0(14)

and introduce the mesh-dependent norm

|||v||| :=

(∑
K

{
ε|v|21,K + c0‖v‖2

0,K + δK ‖b · ∇v‖2
0,K

}
+
∑

E

σE‖
[|v|]

E
‖2

0,E

)1/2

,

in which the error estimates will be derived. Further, we set

cmax := sup
x∈Ω

|c(x)| Dmax := sup
x∈Ω

|div (b(x)c(x))|.(15)

Due to our assumptions of a shape regular mesh, there are constantsµ0, µ1

independent ofK and independent of the triangulationTh such that the following
local inverse inequalities hold

‖∆vh‖0,K ≤ µ1 h−1
K |vh|1,K ∀vh ∈ Vh, ∀K ∈ Th,(16)

‖vh|K ‖0,E ≤ µ0 h−1/2
E ‖vh‖0,K ∀vh ∈ Vh , ∀E ⊂ ∂K .(17)

Remark 1.The proof of the existence of a constantµ1 under the additional
assumption thath/hK is bounded is given in Theorem 17.2 in [16]. However
(17.17) of [16], the scaling properties (17.16) and Theorem 15.2 show that for a
regular family of triangulations the inequality (16) still holds. Similarly, we can
prove (17).
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For each bilinear formai
h, i = 1, 2, 3 we assume a corresponding assumption

(Ai) on the control parametersδK andσE :

(A1) 0 < δK ≤ min

(
c0

4c2
max

,
h2

K

2εµ2
1

)
, σE ≥

3µ2
0 ‖b‖2

0,∞,E

c0 hE
,

(A2) 0 < δK ≤ min

(
c0

2c2
max

,
h2

K

2εµ2
1

)
, σE ≥ 0,

(A3) 0 < δK ≤ min

(
c0

2Dmax
,

h2
K

εµ2
1

)
, σE ≥ 0.

Lemma 1. Let the finite element spaces satisfy (H1) and (H2) and the control
functionsδK andσE fulfill the assumption (Ai), i∈ {1, 2, 3}. Then, the discrete
bilinear form ai

h is coercive on Vh, i.e.,

ai
h(vh, vh) ≥ 1

2
|||vh|||2 for all vh ∈ Vh.(18)

Proof. First we consider the bilinear forma1
h under the assumption (A1). Using

the definition and elementwise integration by parts we obtain

a1
h(vh, vh) =

∑
K

{ε|vh|21,K + (c− 1
2

div b, v2
h)K }

+
1
2

∑
K

< b · n, v2
h >∂K +

∑
K

δK ‖b · ∇vh‖2
0,K

+
∑

K

δK (−ε∆vh + c vh, b · ∇vh)K +
∑

E

σE‖
[|vh|

]
E
‖2

0,E .

Since (14) we get

a1
h(vh, vh) ≥ |||vh|||2 +

1
2

∑
K

< b · n, v2
h >∂K

+
∑

K

δK (−ε∆vh + c vh, b · ∇vh)K ,(19)

as

|(−ε∆vh + c vh, δK b · ∇vh)K | ≤ δK ‖ − ε∆vh + c vh‖0,K · ‖b · ∇vh‖0,K

≤ 1
2
δK ‖ − ε∆vh + c vh‖2

0,K +
1
2
δK ‖b · ∇vh‖2

0,K

which at its turn leads to

1
2
δK ‖ − ε∆vh + c vh‖2

0,K ≤ δK ε
2‖∆vh‖2

0,K + δK ‖c vh‖2
0,K

≤ δK ε
2µ2

1 h−2
K |vh|21,K + δK c2

max‖vh‖2
0,K

≤ ε

2
|vh|21,K +

c0

4
‖vh‖2

0,K .
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Thus, the last term in (19) can be absorbed by the first term. Let us now analyze
the second term in (19). Considering an extension ofvh outside ofΩ by zero,
we can also define jumps over anE with E ⊂ Γ . In this way we have

1
2

∑
K

< b · n, v2
h >∂K =

1
2

∑
E

< b · nE ,
[|v2

h|
]

E
>E ,

and therefore∣∣∣1
2

∑
K

< b · n, v2
h >∂K

∣∣∣ ≤ 1
2

∑
E

‖b‖0,∞,E ‖
[|v2

h|
]

E
‖0,1,E .

Let us denote for a moment the two triangles having the common faceE by K1,E

andK2,E and the restriction ofvh onto Ki ,E , i = 1, 2, by vh,i . In the caseE ⊂ Γ
we have for one of theKi ,E that vh,i = 0. Then, for arbitraryω > 0

|[|v2
h|
]

E
| ≤ |[|vh|

]
E
| (|vh,1

∣∣∣
E
| + |vh,2

∣∣∣
E
|)

≤ ω (|vh,1

∣∣∣
E
|2 + |vh,2

∣∣∣
E
|2) +

1
2ω

[|vh|
]2

E

and by integration overE

‖[|v2
h|
]

E
‖0,1,E ≤ ω (‖vh,1

∣∣∣
E
‖2

0,2,E + ‖vh,2

∣∣∣
E
‖2

0,2,E) +
1

2ω
‖[|vh|

]
E
‖2

0,2,E .

Using the inequality (17) and setting

ω =
c0 hE

6µ2
0‖b‖0,∞,E

we obtain

‖[|v2
h|
]

E
‖0,1,E ≤ ωµ2

0

hE
‖vh‖2

0,2,K1,E∪K2,E
+

1
2ω
‖[|vh|

]
E
‖2

0,2,E

≤ c0

6‖b‖0,∞,E
‖vh‖2

0,2,K1,E∪K2,E
+

3µ2
0‖b‖0,∞,E

c0 hE
‖[|vh|

]
E
‖2

0,2,E

≤ c0

6‖b‖0,∞,E
‖vh‖2

0,2,K1,E∪K2,E
+

σE

‖b‖0,∞,E
‖[|vh|

]
E
‖2

0,2,E .

Summing up over all faces we have∣∣∣∣∣∑
E

< b · nE ,
[|v2

h|
]

E
>E

∣∣∣∣∣ ≤ c0

4
‖vh‖2

0,2 +
1
2

∑
E

σE‖
[|vh|

]
E
‖2

0,2,E ,

thus we can absorb this term also into||| · |||2 and (18) holds fori = 1.
From the definition ofa2

h we get immediately

a2
h(vh, vh) ≥ |||vh|||2 +

∑
K

(−ε∆vh + c vh, δK b · ∇vh)K ,
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thus, using the same technique as above we have (18) fori = 2 without assuming
a lower bound away from zero forσE .

For the fully skew-symmetrized forma3
h we get first

a3
h(vh, vh) ≥ |||vh|||2 +

∑
K

δK (−ε∆vh, b · ∇vh)K − 1
2

∑
K

δK (div (cb), v2
h)K .

Assuming (A3) we have similarly to above

|δK (−ε∆vh, b · ∇vh)K | ≤ δK

2
‖b · ∇vh‖2

0,K +
ε

2
|vh|21,K .

Now
|δK (div (cb), v2

h)K | ≤ δK Dmax‖vh‖2
0,K ≤ c0

2
‖vh‖2

0,K ,

thus we can absorb both terms into||| · ||| and obtain (18). �

Let the exact solutionu belong toH 1
0 (Ω) ∩ H 2(Ω) such that

−ε∆u + b · ∇u + c u = f in L2(K )

for all elementsK ∈ Th. Multiplying this equation with the test function
vh + δK b · ∇vh and integrating it by parts one finds that the exact solutionu
satisfies

ai
h(u, vh) = lh(vh) + r i

h(u, vh),(20)

with

r 1
h (u, vh) :=

∑
K

∑
E⊂∂K

< ε
∂u
∂n

, vh >E ,(21)

r 2
h (u, vh) := r 1

h (u, vh)− 1
2

∑
K

∑
E⊂∂K

< b · n, uvh >E ,(22)

r 3
h (u, vh) := r 2

h (u, vh)− 1
2

∑
K

∑
E⊂∂K

δK < c b · n, u vh >E .(23)

Note that the term ∑
E

σE <
[|u|]

E
,
[|vh|

]
E
>E

contained inah(u, vh) made no contribution becauseu ∈ H 2(Ω) implies
[|u|]

E
=

0 on inner faces and becauseu = 0 at E ⊂ Γ . The additional term on the
right hand side of (20) emanates from the nonconformity of the method, i.e.vh

can have jumps across an faceE. Consequently, instead of the usual Galerkin
orthogonality for conforming methods (whereah(u−uh, vh) = 0), one here finds

ai
h(u − uh, vh) = ai

h(u, vh)− ai
h(uh, vh) = r i

h(u, vh)

and we have additionally to estimate the consistency errors

sup
vh∈Vh

r i
h(u, vh)
|||vh||| , i = 1, 2, 3.
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Now we formulate a technical lemma which is useful to estimate the con-
sistency error of each method. DefineMµ

E : H 1(K ) → Pµ(E) to be theL2(E)
projection onto the space of the restriction toE of all polynomials of degreeµ.

Lemma 2. For any integer m with0 ≤ m ≤ µ, there exists a positive constant
C such that ∣∣∣∣∫

E
ϕ(ψ −Mµ

Eψ) ds

∣∣∣∣ ≤ C hm+1
E |ϕ|1,K |ψ|m+1,K(24) ∣∣∣∣∫

E
ϕ(ψ −Mµ

Eψ) ds

∣∣∣∣ ≤ C hm+1/2
E ‖ϕ‖0,E |ψ|m+1,K(25)

for all K with E ⊂ ∂K , ϕ ∈ H 1(K ), andψ ∈ H m+1(K ).

Proof. The first estimate is already verified in Lemma 3 in [3] but for com-
pleteness we repeat the arguments for both estimates which are based on scaling
properties and on the application of the Bramble-Hilbert-Lemma.
Let K̂ be a referenced-simplex ofRd and Ê be a (d − 1)-dimensional face of
K̂ . In order to simplify the notation we assume thatE andÊ belong to the same
hyperplanexd = 0. Let

F : x̂ → BK x̂ + bK

denote the standard affine mapping withK = F (K̂ ), E = F (Ê) and letBE be the
(d−1)× (d−1) matrix obtained by crossing out the last row and column ofBK .
For any functionf defined onK andE, respectively, we let̂f = f ◦ F . Because
of the definition ofMµ

E we have

\Mµ
Eψ = Mµ

Ê
ψ̂ .

Mapping to the reference element gives∫
E
ϕ(ψ −Mµ

Eψ) ds = | det(BE)|
∫

Ê
ϕ̂(ψ̂ −Mµ

Ê
ψ̂) ds .

There are two different ways of estimating the integral on the right hand side of
the equation, namely∣∣∣∣∫

Ê
ϕ̂(ψ̂ −Mµ

Ê
ψ̂) ds

∣∣∣∣ ≤ ‖ϕ̂‖0,Ê ‖ψ̂ −Mµ

Ê
ψ̂‖0,Ê

≤ C ‖ϕ̂‖0,Ê |ψ̂|m+1,K̂

or, like in [3],∣∣∣∣∫
Ê
ϕ̂(ψ̂ −Mµ

Ê
ψ̂) ds

∣∣∣∣ ≤ C |ϕ̂|1,K̂ ‖ψ̂ −Mµ

Ê
ψ̂‖0,Ê

≤ C |ϕ̂|1,K̂ |ψ̂|m+1,K̂ .

Applying the affine mapping and standard integral transformations the above
estimates result in
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174 V. John et al.∣∣∣∣∫
E
ϕ(ψ −Mµ

Eψ) ds

∣∣∣∣ ≤ C

∣∣∣∣det(BE)
det(BK )

∣∣∣∣ ‖BK ‖m+2 |ϕ|1,K |ψ|m+1,K ,∣∣∣∣∫
E
ϕ(ψ −Mµ

Eψ) ds

∣∣∣∣ ≤ C

∣∣∣∣det(BE)
det(BK )

∣∣∣∣1/2

‖BK ‖m+1 ‖ϕ‖0,E |ψ|m+1,K .

Using common estimates for det(BE), det(BK ), ‖BK ‖ and taking into considera-
tion the regularity of the triangulation we finally get the estimates (24) and (25).

�

Now we formulate our main result.

Theorem 1. Let the assumptions of Lemma 1 be fulfilled. Moreover, let the exact
solution u belong to H10 (Ω) ∩ H k+1(Ω). Then, for the NSD1-method the error
estimate

|||u − uh||| ≤ C hk

(∑
K

λK |u|2k+1,K

)1/2

+C hk+1/2

(∑
E

λE |u|2k+1,K1,E∪K2,E

)1/2

.(26)

holds. For the NSD2- and the NSD3-method we have

|||u − uh||| ≤ C hk

(∑
K

λK |u|2k+1,K

)1/2

+C hk−1/2

(∑
E

λE |u|2k+1,K1,E∪K2,E

)1/2

.(27)

In both casesλK andλE are defined by

λK := ε + h2
K + δK + δ−1

K h2
K ,(28)

λE := min

(
1
σE

,
hE

ε
,

1
hE

)
.(29)

Proof. Putwh := Ihu − uh. From Lemma 1 we get

1
2
|||Ihu − uh|||2 ≤ ai

h(Ihu − u, wh) + ai
h(u − uh, wh) .(30)

The first term on the right hand side of (30) will be estimated by considering
each term ofai

h(Ihu− u, wh) separately. Settingw := Ihu− u ∈ C(Ω̄), we begin
with a1

h , its first term is given by∣∣∣∣∣ε∑
K

(∇w,∇wh)K

∣∣∣∣∣ ≤ ε
∑

K

‖∇w‖0,K · ‖∇wh‖0,K

≤ C ε1/2

(∑
K

h2k
K |u|2k+1,K

)1/2

|||wh||| .
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The second term is estimated by using first an elementwise integration by parts

(b · ∇w + cw,wh)K = (c− div b, w wh)K − (b · ∇wh, w)K

+
∑

E⊂∂K

< b · nw,wh >E .(31)

The sum over the first term in (31) gives∣∣∣∣∣∑
K

(c− div b, w wh)K

∣∣∣∣∣ ≤ C
∑

K

‖w‖0,K ‖wh‖0,K

≤ C

(∑
K

h2k+2
K |u|2k+1,K

)1/2

|||wh||| ,

and the sum over the second term can be handled in the following way∣∣∣∣∣∑
K

(b · ∇wh, w)K

∣∣∣∣∣ ≤
∑

K

δ
1/2
K ‖b · ∇wh‖0,K δ

−1/2
K ‖w‖0,K

≤ C

(∑
K

δ−1
K h2k+2

K |u|2k+1,K

)1/2

|||wh||| .

The sum over the third term of (31) gives (asw = 0 onΓ )∣∣∣∣∣∑
K

∑
E⊂∂K

< b · n, w wh >E

∣∣∣∣∣ =

∣∣∣∣∣∑
E

< b · nE , w
[|wh|

]
E
>E

∣∣∣∣∣
≤ C

∑
E

σ
−1/2
E ‖w‖0,E σ

1/2
E ‖[|wh|

]
E
‖0,E

≤ C

(∑
E

σ−1
E h2k+1

E |u|2k+1,K1,E∪K2,E

)1/2

|||wh|||.

Alternatively, we could estimate this term in the following way (using the first
estimate in Lemma 2 )∣∣∣∣∣∑

K

∑
E⊂∂K

< b · n, w wh >E

∣∣∣∣∣
≤ C

∑
E

hk+1/2
E |u|k+1,K1,E∪K2,E h1/2

E |wh|1,K1,E∪K2,E ,(32)

and estimating the sum over|wh|1,K by

|wh|1 ≤ ε−1/2|||wh||| or |wh|1,K ≤ C h−1
K ‖wh‖0,K ≤ C h−1

E ‖wh‖0,K .

Taking the minimum over these three different possibilities we obtain
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K

∑
E⊂∂K

< b · n, w wh >E

∣∣∣∣∣
≤ C

(∑
E

min

(
1
σE

,
hE

ε
,

1
hE

)
h2k+1

E |u|2k+1,K1,E∪K2,E

)1/2

|||wh||| .(33)

The third term ofa1
h(w,wh) is bounded by∣∣∣∣∣∑

K

(−ε∆w + b · ∇w + cw, δK b · ∇wh)K

∣∣∣∣∣
≤

∑
K

δ
1/2
K

[
ε‖∆w‖0,K + C hk

K |u|k+1,K
] ‖δ1/2

K b · ∇wh‖0,K

≤ C

(∑
K

(ε + δK ) h2k
K |u|2k+1,K

)1/2

|||wh||| .

For the last inequality we used the propertyεδK ≤ consth2
K (compare (A1)–

(A3)). Finally, for a1
h(w,wh) the sum over the jump terms is identical to zero

since
[ |w|]

E
=
[ |Ihu − u|]

E
= 0. Summarizing the estimates for all terms of

a1
h(w,wh) we get

|ai
h(Ihu − u, wh)|

≤ C

(∑
K

(ε + h2
K + δK + δ−1

K h2
K )h2k

K |u|2k+1,K

)1/2

|||wh|||

+C

(∑
E

min

(
1
σE

,
hE

ε
,

1
hE

)
h2k+1

E |u|2k+1,K1,E∪K2,E

)1/2

|||wh|||(34)

for i = 1. In the same way we can estimate also the different terms ofa2
h(w,wh)

anda3
h(w,wh). Thus, (34) holds fori = 1, 2, 3.

It remains to estimate the consistency errors for which we will apply Lemma
2. Using the assumption (H2) we get forr 1

h (u, wh)

r 1
h (u, wh) =

∑
K

∑
E⊂∂K

< ε
∂u
∂n

, wh >E

=
∑

E

< ε
∂u
∂nE

,
[|wh|

]
E
>E

=
∑

E

ε <
∂u
∂nE

−Mk−1
E

∂u
∂nE

,
[|wh|

]
E
>E .

Now, applying the estimate (24) of Lemma 2 withhE ≤ hK we see that

|r 1
h (u, wh)| ≤ C ε1/2

(∑
K

h2k
K |u|2k+1,K

)1/2

|||wh|||.
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This gives for NSD1 by applying the triangle inequality

|||u − uh|||
≤ |||wh||| + |||u − Ihu|||

≤ C hk

(∑
K

λK |u|2k+1,K

)1/2

+ C hk+1/2

(∑
E

λE |u|2k+1,K1,E∪K2,E

)1/2

,

with λK andλE defined by (28) and (29), respectively. In order to estimater 2
h

we start with the identity

r 2
h (u, wh)− r 1

h (u, wh) = −1
2

∑
K

∑
E⊂∂K

< b · n, uwh >E

= −1
2

∑
E

< b · nE u,
[|wh|

]
E
>E

= −1
2

∑
E

< b · nE u −Mk−1
E (b · nE u),

[|wh|
]

E
>E .

Now applying (24) or (25) we obtain

|r 2
h (u, wh)| ≤ |r 1

h (u, wh)| + C hk−1/2

(∑
E

λE |u|2k+1,K1,E∪K2,E

)1/2

|||wh|||.

For r 3
h (u, wh) − r 2

h (u, wh), we find the same estimate by replacingb · nE by
δK c b · nE . Using the triangle inequality again gives (27).�

Remark 2.Note that in the convection dominated caseε ≤ h, Theorem 1 indi-
cates the choiceδK ∼ hK and

σE ∼
{

h−1
E for NSD1

h−2
E for NSD2 and NSD3

in order to get an ’optimal’ error estimate in theL2-norm. Here, the choice ofσE

for NSD1 results from the coerciveness result (Lemma 1) and for NSD2, NSD3
from the estimation of the consistency error. For these choices the convergence
result of conforming SDFEM on general meshes

‖u − uh‖0 ≤ C hk+1/2|u|k+1

is recovered, see [24].

Remark 3.A careful study of the convergence proof shows that in case of setting
σE = 0 an analogous result cannot be obtained. The crucial step is to bound∑

E

< b · nE u ,
[|wh|

]
E
>E

in terms of|||wh|||, whenσ = 0.
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4. Numerical results

In this section we demonstrate the numerical behaviour of the proposed dis-
cretization methods for some test examples. The boundary value problem (1) is
solved on the unit squareΩ = (0, 1)× (0, 1) using a finite element discretiza-
tion with nonconforming P1 elements, thus we havek = 1. The method NSD3
is well-suited for an application of the parallel finite element method [11] and
it produces similar results as NSD2. The streamline diffusion parameterδK is
chosen to be

δK =

{
0 if ε > hK

hK if ε ≤ hK
.

The error will be measured in theL2-norm ‖ · ‖0, the element-wise definedH 1-
semi-norm‖ · ‖h and the streamline-diffusion norm‖ · ‖S, which latter is given
by

‖v‖S =

(
ε‖v‖2

h + c0‖v‖2
0 +
∑

K

δK ‖b · ∇v‖2
0,K

)1/2

.

Fig. 1. Various structured and unstructured coarse grids
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We solve the discrete problems on a sequence of uniformly refined meshes
starting with a coarse grid (level 0). The test calculations have been performed
for different types of grids as indicated in Fig. 1. The accuracy of the discetiza-
tions has been influenced by the used grid however the rates of convergence in
‖ · ‖0, ‖ · ‖h, and‖ · ‖S have been almost independent of the type of the coarse
grid. Therefore, we present only the results for Example 1 and 2 using the coarse
grid in the upper left corner and for Example 3 using the grid in the upper right
corner of Fig. 1. The iterative solver is stopped as soon as the residual of the
discrete problem measured in the Euclidean norm is less than 10−8.

Example 1. Smooth polynomial solution.
Let b = (3, 2) andc = 2. The right hand side and the boundary conditions are
chosen such that

u(x, y) = 100(1− x)2x2y(1− 2y)(1− y)

is the exact solution of (1), see Fig. 2.

First we show that for the nonconforming SDFEM without jump terms, i.e.
σE = 0, the convergence rates decrease whenε tends to zero. For the numeri-
cal tests we have chosen level 6 as the finest level. The convergence rates are
computed using the errors on level 5 and 6.

Table 1. Convergence rates for Example 1 andσE = 0

ε = 1 ε = h ε = h2 ε = h4

NSD1 ‖ · ‖0 1.998 1.751 1.002 0.996
‖ · ‖h 0.999 1.178 0.032 -0.043
‖ · ‖S 0.999 1.693 1.467 1.158

NSD3 ‖ · ‖0 1.998 1.678 0.056 0.374
‖ · ‖h 0.999 0.122 -0.932 -0.695
‖ · ‖S 0.999 0.839 0.059 0.189

In order to get an insight in the convergence rates for the range 0< ε ≤ h
we have chosenε as a given function ofh. In correspondence with Theorem 1
we see that the convergence rate in the‖ · ‖S-norm for NSD1 reduces forε = h
to 1.5 and forε = h2 to 1. The reduction for NSD3 is much more dramatic, for
ε = h2 it reduces to 0, again as it can be expected from (27). Compared with the
well known result for the conforming streamline diffusion method, which gives
an error estimate of order 1.5, here we have an additional gap of order 0.5 and
1.0, respectively.

Next we demonstrate the improvements which can be achieved by adding the
jump terms to the standard nonconforming SDFEM. In Table 2 and 3 the con-
vergence rates are presented and in Table 4 and 5 the errors. These results reflect
the theory given in Sect. 3. Tests with a different direction of the streamlines and
a smooth solution gave similar results. Note that for NSD1 the coerciveness of
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Fig. 2. Exact solution and contour-lines of Example 1

the corresponding bilinear form has been only proven forσE ≥ C/h. However
the numerical experiments shown in Table 2 and 4 indicate that the method also
works for anh independentσE . Further, it can be seen that the order of con-
vergence in theL2-norm is greater than the order in the‖ · ‖S-norm. This effect
of super-convergence has been already reported and studied for the conforming
SDFEM in [24]. Moreover, the reduction of convergence rates for NSD3 is one
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half less as it could be expected from Theorem 1. However, the absolute error
for NSD3 andσE = 1 is much larger than the error for NSD1.

Table 2. Convergence rates of NSD1 for Example 1

ε = h ε = h2 ε = h4

σE = 1 ‖ · ‖0 1.751 2.002 1.978
‖ · ‖h 1.188 0.946 0.986
‖ · ‖S 1.696 1.502 1.500

σE = 1/h ‖ · ‖0 1.752 1.987 1.945
‖ · ‖h 1.086 0.973 0.986
‖ · ‖S 1.653 1.478 1.477

Table 3. Convergence rates of NSD3 for Example 1

ε = h ε = h2 ε = h4

σE = 1 ‖ · ‖0 1.692 0.914 1.002
‖ · ‖h 0.144 -0.070 0.024
‖ · ‖S 0.905 0.975 1.041

σE = 1/h ‖ · ‖0 1.752 2.022 1.971
‖ · ‖h 1.074 0.979 0.983
‖ · ‖S 1.646 1.477 1.475

Table 4. Errors for Example 1 and NSD1

ε = h ε = h2 ε = h4

σE = 1 ‖ · ‖0 .19-2 .70-4 .76-4
‖ · ‖h .39-1 .41-1 .42-1
‖ · ‖S .10-1 .77-2 .77-2

σE = 1/h ‖ · ‖0 .19-2 .88-4 .93-4
‖ · ‖h .47-1 .45-1 .45-1
‖ · ‖S .11-1 .84-2 .84-2

Table 5. Errors for Example 1 and NSD3
ε = h ε = h2 ε = h4

σE = 1 ‖ · ‖0 .20-2 .28-2 .30-2
‖ · ‖h .20+0 .14+1 .15+1
‖ · ‖S .26-1 .21-1 .14-1

σE = 1/h ‖ · ‖0 .19-2 .90-4 .94-4
‖ · ‖h .49-1 .48-1 .48-1
‖ · ‖S .11-1 .85-2 .84-2

Now we will discuss two examples of solutions with layers.

Example 2. Circular internal layer.
Let b = (2, 3) andc = 2. The right hand side and the boundary conditions are
chosen such that

u(x, y) = 16x(1− x)y(1− y)

{
1
2

+
arctan[200(r 2

0 − (x − x0)2 − (y − y0)2)]
π

}
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Fig. 3. Exact solution and contour-lines of Example 2

with x0 = y0 = 0.5 andr0 = 0.25 is the exact solution of (1), shown in Fig. 3.

Table 6 shows the convergence rates forε = 10−4 using NSD1 and NSD2
with σE = 1 which are predicted by the theory. The order of convergence is
calculated by using the errors of the last two levels. Analogous to Example 1
the convergence rates and the errors of the method NSD1 usingσ = 1 are much
better than for NSD2, compare Table 6 with Tables 2–5. This coincides with the
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Fig. 4. Error usingσE = 0 (upper) andσE = 1/h (lower), Example 2

theoretical results of Theorem 1. As in Example 1, the choiceσ = 1/h leads to
the nearly the same results for both methods, compare Table 7 with Tables 2–5.

For solving the corresponding linear equations we applied a multi–grid
method.L2–projections have been used for restriction and prolongation and an
ILUβ–smoother has been chosen, see e.g. [23]. With this smoother also the sys-
tems on the coarse grid has been solved. In Table 8 we present the number

Numerische Mathematik Electronic Edition
page 183 of Numer. Math. (1997) 78: 165–188



184 V. John et al.

Table 6. Convergence behaviour of Example 2 for NSD1 (left), NSD2 (right) andσE = 1

level ‖ · ‖0 ‖ · ‖h ‖ · ‖S ‖ · ‖0 ‖ · ‖h ‖ · ‖S

2 .108+0 .314+1 .138+1 .108+0 .299+1 .137+1
3 .717-1 .369+1 .108+1 .809-1 .329+1 .108+1
4 .307-1 .249+1 .466+0 .421-1 .341+1 .472+0
5 .983-2 .124+1 .202+0 .192-1 .241+1 .208+0
6 .283-2 .577+0 .754-1 .978-2 .197+1 .833-1
7 .773-3 .259+0 .271-1 .521-2 .179+1 .368-1

order 1.872 1.156 1.476 .909 .138 1.179

Table 7. Convergence behaviour of Example 2 for NSD1 (left), NSD2 (right) andσE = 1/h

level ‖ · ‖0 ‖ · ‖h ‖ · ‖S ‖ · ‖0 ‖ · ‖h ‖ · ‖S

2 .923-1 .216+1 .140+1 .936-1 .217+1 .140+1
3 .605-1 .263+1 .111+1 .613-1 .265+1 .111+1
4 .307-1 .176+1 .506+0 .310-1 .177+1 .507+0
5 .145-1 .127+1 .247+0 .146-1 .127+1 .247+0
6 .687-2 .815+0 .113+0 .691-2 .816+0 .113+0
7 .266-2 .448+0 .493-1 .268-2 .449+0 .493-1

order 1.369 .863 1.197 1.366 .862 1.197

Table 8. Number of multi–grid V–cycles and convergence rates. Example 2 for NSD1 andσE = 1
(left), NSD1 andσE = 1/h (right)

level cycles rate cycles rate
2 19 .34 14 .22
3 19 .35 36 .58
4 24 .45 117 .85
5 24 .47 277 .94
6 20 .43 587 .97
7 17 .40 1101 .99

Table 9. Convergence behaviour outside the layers of Example 3 using NSD1,ε = 10−6, σE = 0
(left) andσE = 1 (right)

level ‖ · ‖0 ‖ · ‖h ‖ · ‖S ‖ · ‖0 ‖ · ‖h ‖ · ‖S

3 .799-3 .635-1 .212-2 .151-3 .943-2 .216-2
4 .358-3 .605-1 .454-3 .303-4 .349-2 .443-3
5 .292-4 .862-2 .262-3 .920-5 .231-2 .267-3
6 .218-5 .880-3 .536-4 .197-5 .858-3 .541-4
7 .663-6 .705-3 .327-4 .574-6 .575-3 .333-4

order 2.730 1.806 1.501 2.001 1.003 1.502

of multi–grid V–cycles and the convergence rates for solving Example 2 using
NSD1 andσE = 1 andσE = 1/h, respectively. The results suggest that for
σE = 1/h the condition number of the system matrix is very bad and strongly
depends onh. Thus, one should useσE = 1 for computations.

In Fig. 4 errors of computed solutions, plotted as nonconforming func-
tions, are presented. The different solution quality of the method NSD1 without
(σE = 0) and with (σE = 1/h) the jump terms can be seen evidently (note the
different scaling of the z-axes of the plots). Applying the nonconforming SDFEM
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Fig. 5. Exact solution and contour-lines of Example 3

with jump terms the heavy oscillations of the result without the jump terms are
considerably damped.
Example 3. Layers at the outflow part of the boundary.
Let b = (2, 3), c = 1 the boundary conditions and the right hand side such that

Numerische Mathematik Electronic Edition
page 185 of Numer. Math. (1997) 78: 165–188



186 V. John et al.

0

0.5

1 0

0.5

1

-40

-20

0

20

40

0

0.5

1 0

0.5

1
-0.5

0

0.5

1

1.5

Fig. 6. Errors on level 5 of Example 3 usingσE = 0 (upper) andσE = 1 (lower)

u(x, y, ε) = xy2 − y2 exp

(
2(x − 1)

ε

)
− x exp

(
3(y − 1)

ε

)
+ exp

(
2(x − 1) + 3(y − 1)

ε

)
is the exact solution of (1). This function has the typical boundary layers atx = 1
andy = 1, see Fig. 5.

In Table 9 we present the numerical results of the method NSD1 forε = 10−6,
δ = 0.25 h, andσE = 0 andσE = 1, respectively. The nonconforming SDFEM
combines good stability with high accuracy outside the layers. The errors in
Table 9 are computed in the subdomain 0≤ x, y ≤ 0.9. The convergence rates
using the errors on two consecutive grid levels oscillate. For that reason, in
Table 9 average convergence rates between level 5 and 7 are given. From Table 9
we see that outside the layers the method without jump terms needs a more
refined mesh to achieve the same accuracy as the method with jump terms. An
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impression of the errors of the computed solutions inside the layers gives Fig. 6.
Similar to Example 2 the error oscillates heavily if the method without jump
terms is applied.

Acknowledgements.The authors like to thank the German Research Association (DFG, Grant
To143/3-1), the Department of Mathematics and Statistics of the University of Pittsburgh, and the
Faculty of Mathematics of the Otto-von-Guericke-University Magdeburg for supporting the research
presented in this paper.

References

1. Adams, R.A. (1975): Sobolev Spaces. Academic Press, New York San Francisco London
2. Clément, P. (1975): Approximation by finite element functions using local regularization. RAIRO
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