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Summary. We analyze nonconforming finite element approximations of stream-
line-diffusion type for solving convection-diffusion problems. Both the theoretical
and numerical investigations show that additional jump terms have to be added in
the nonconforming case in order to get the sad{b**%/2) order of convergence

in L2 as in the conforming case for convection dominated problems. A rigorous
error analysis supported by numerical experiments is given.
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1. Introduction

The streamline-diffusion method (SDFEM) for the solution of convection-dif-
fusion problems has been successfully implemented with the use of conforming
finite element spaces. This method was proposed first by Hughes and Brooks
in [8] and applied to different problems. Starting with the fundamental work by
Navert [14], it was mainly analyzed by C. Johnson and his co-workers [10], [7],
[9]. Nowadays, the convergence properties are well-understood in the conforming
case [15], [18], [21], [22], [24].

For computational fluid dynamics applications, finite element methods of the
nonconforming type are more attractive then those of conforming type since
nonconforming elements more easily fulfill the discrete version of the 8abu
Brezzi condition. Another advantage of using nonconforming finite elements is
that the unknowns are only concentrated on the faces which results in a cheap
local communication, such that parallel MIMD machines can be used for solving
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166 V. John et al.

the large systems of equations, see e.g. [6], [11]. In order to stabilize these
methods in the case of moderate and higher Reynolds numbers, several upwind
methods (resulting in algebraic systems with M-matrices) have been developed
and analyzed in [19], [20], [17], [5],[4]. However, the main drawback of upwind
methods is the restricted order of convergence. The SDFEM which is known to
combine good stability properties with high accuracy outside interior or boundary
layers therefore seems to be a sensible alternative to such upwind schemes. For
example, [12] studies a nonconforming SDFEM for the solution of the stationary
Navier-Stokes equations but does not pay special attention to the dependency of
the error constants on the Reynolds number. In order to study the behaviour of
nonconforming SDFEM in more detail we first extend some known conforming
convergence results to the nonconforming case. Here, when switching from a
conforming to a nonconforming SDFEM, one looses the Galerkin orthogonality
and has to consider an additional error, called consistency error. For the standard
coercive discrete bilinear form it will be shown that the consistency error is
not of optimal order, uniformly with respect to the perturbation parameter

As a consequence, the optimal order of convergence is not achieved for smooth
solutions. The main objective of this paper is to propose several modified optimal
order nonconforming streamline-diffusion finite element discretizations for the
solution of the boundary value problem

Q) —cAu+b-Vu+cu=f in £, u=0 onl.

These modifications consist of introducing appropriate jump terms into the bi-
linear form. For these discretizations, theoretical and numerical investigations
demonstrate convergence results identical to those for conforming methods. The
remainder of this paper is organized as following. First, Sect. 2 introduces nec-
essary notations, and formulates three different nonconforming discretizations of
(2). Here, we also describe assumptions on the finite element spaces to be ful-
filled. Next, Sect. 3 examines the coerciveness of the bilinear form related to
the discretizations and studies convergence properties. Finally, Sect. 4 provides
several numerical experiments which corroborate our theory.

2. Notations and preliminaries

Let 2 c RY d = 2,3, be a bounded domain with polygonal or polyhedral
boundaryl". We are interested in nonconforming discretizations of the convection
diffusion problem

(2) —ecAu+b-Vu+cu=f in £ u=0 on I

under the assumptions thiat ¢, f are sufficiently smooth functions, andis a
small positive perturbation parameter. Fér= H3(£2), the standard weak for-
mulation of the problem (2) reads

Findu € V such that for allb € V
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3) e(Vu,Vu)+(b-Vu+cu,v) =(f,v),

where (, -) denotes the inner product Irf(£2). Note that under the assumption
1.

(4) c— 2d|v b>0

there is a unique solution of (3).

In order to discretize problem (3) a family of triangulatio#sis constructed
which cover the domainf? with nondegeneratd-simplicesK, i.e. triangles if
d = 2 or tetrahedrons ifl = 3. Each triangulation is supposed to be compatible,
that is, everyd — 1) dimensional face of a simplex is shared by at most one other
simplex. Let the diameter of a simplék be given byhx =sup o [X — Y], let
pk be the diameter of the largest inscribed ballkofand leth be defined by
h = max hg. It is assumed that the family of triangulations is shape regular,
which means that there exists a positive cons@nindependent oh such that
for all triangulations 7, every simplexK € .71, satisfies

i <C.
PK

Every d —1)-dimensional fac&, which separates two neighbouridgsimplices
K andKj, is associated with a uniquely oriented normal(for definiteness from
K1 to Kz). The jump of a functiorv € V acrossE, denoted by

[|UHE = U|K1 - U|K2 )

depends on this unique orientation. The inner products’(K) and L2(E) will

be denoted by-(-)x and< -,- >g, respectively. Because this paper focusses on
nonconforming finite element methods we have to consider elementwise defined
norms and seminorms. For instance

1/2
[olln = (Z IvliK> :
K

Each of the studied nonconforming finite element spaéesz V contains a
conforming finite element subspa¥g C V of piecewise polynomials of degree

k > 1. The simplest example of a nonconforming finite element spé&ces

the Crouzeix-Raviart element [3] which consists of piecewise linear functions,
with degrees of freedom associated to the midpoint of the edijes Z) and

the barycentre of the facesl & 3), respectively. A systematic introduction to
new families of arbitrary high order nonconforming elements can be found in
[13]. Note that| - ||n is @ norm on the conforming subspaXg but in general
only a seminorm on the nonconforming spage We suppose that the following
assumptions on the spackgs andV,, are fulfilled:

Numerische Mathematik Electronic Edition
page 167 of Numer. Math. (1997) 78: 165-188



168 V. John et al.

(H1) There is an interpolation operator (see for instance [2]) H2(2) —
Xn C Vp such that ford, with 0 <1 < min(k, 2) the estimates

6) lv—lwhx < CHI ok Yo H™HK), 1<m<k

®) |[v —Invlog < CH™ %ok Yo e H™(K), 1<m <Kk

hold.
(H2) For any @ — 1)-dimensional fac& separating twal-simplicesK;, K,
we have
) / q[ln|]zds=0  forallg € Pk 1, vh € Vi,
E

wherePy_; denotes the space of polynomialsdnvariables of degree
k — 1. Further, for any ¢ — 1)-dimensional faceE belonging to the
boundaryI” one requires

(8) / quynds=0 forallg € Px_1, vh € Vp.
E

Note that (H2), in combination with the homogeneous boundary conditions,
guarantees thdt - || is a norm onV,, for k > 1 using that||vn ||, = 0 implies
that v, is constant per element. The restrictionde= 2 ord = 3 with respect
to the dimension guarantees that due to inclusion theorems, see for instance [1],
Iho for v € H?(2) € C(£2) is well defined in (H1).

With the above conditions in mind we can now formulate different versions
of the nonconforming streamline-diffusion finite element method:

Find u, € V;, such that for all, € V,

(9) a-ri](uha 'Uh) = lh(vh)v i = 17 27 37
where the bilinear formaﬂl, i =1,2,3, and the linear forni,,, respectively, are
given by

NSD1 Convective form
) {s(w, Vo) + (b - VU +cu, o)
(10) (U, 0) =4 +(—eAu+b - Vu+cu,beb - Vo)
+>e ok < [lul]g, [lvf] >e

NSD2 Skew-symmetrized form

S {£(Tu, Vo) + 3i(b - Vu v — (b Vo, u)]
(11) ai(u,v) = +(c— 2div b,uv) + (—cAu+b - Vu+cu,ékb - w)K}
+ZE o < UUHE7 “’U”E >E

NSD3 Fully skew-symmetrized form
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> {5(Vu, Vo) + (—eAu+b - VU, b - Vo)
12 - +1[(@ — co)b - Vu, vk — (1 — cc)b - Vo, u)]
+(c— Ldiv (b + bcsy ), uv)

+2eoe < [ulg, [lvl] >e

and
(13) Ih(v) == (f,«u)+Z(f,6Kb-Vv)K.
K

The size of the positive control parametgr and the nonnegative parameter
o will be determined in the next section. In this section also a discretization error
estimate is provided which shows that the solution of (9) converges to the solution
of (3) for h — 0 under certain conditions fd¥ . As expected, the convergence
rate is influenced by the asymptotic behaviourogf for h — 0. Finally, we
note that the three formulations coincide for conforming finite element spaces
and differ from each other in the nonconforming case.

3. Error estimates

Let us first study the coercivenessajf i = 1,2, 3 onV, from which we get the
unique solvability of the problem (3). To this end, instead of (4), we assume the
slightly stronger assumption

(14) c—;divb200>0

and introduce the mesh-dependent norm

1/2
[[oll| := (Z {elvffx +collvl§x + bk b Vollg }+> - oell [IU]EII5£> ;
E

K

in which the error estimates will be derived. Further, we set
(15) Cmax := SUP|C(X)| Dmax := sup|div (b(x)c(x))|-
XeSN XEN

Due to our assumptions of a shape regular mesh, there are congganis
independent oK and independent of the triangulatiof such that the following
local inverse inequalities hold

(16) ||Avh||o7|< < hK_l ‘Uh|1,K Yop € Vh, VK € .7,

(17) lonlg lloe < po hE_l/2 llvnllok Yon € Vi ,VE C OK.

Remark 1.The proof of the existence of a constamt under the additional
assumption thah/hg is bounded is given in Theorem 17.2 in [16]. However
(17.17) of [16], the scaling properties (17.16) and Theorem 15.2 show that for a

regular family of triangulations the inequality (16) still holds. Similarly, we can
prove (17).
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For each bilinear forna#, i =1 2,3 we assume a corresponding assumption
(Ai) on the control parameter& andog:

[ ¢ hZ ) 345 10113 o
Al 0< ék <min , , OE > [
(A1) = <4Cr%1ax 25:?% - Co he

. Co hg
(AZ) 0 < ék gmm( , > s OE ZO,

20’ 2244

. ¢ hg )
A3 0 < 6k < min , , og > 0.
(A3) « < (szax * :

Lemma 1. Let the finite element spaces satisfy (H1) and (H2) and the control
functionsék ar_1d oe fulfill the assumption (Ai), ie {1,2,3}. Then, the discrete
bilinear form g, is coercive on Y, i.e.,

- 1
(18) a{;(vh,vh) > 2|||Uh|||2 for all vy, € V.

Proof. First we consider the bilinear form} under the assumption (A1). Using
the definition and elementwise integration by parts we obtain

1.
aa(on,mn) = D {elonlix +(c— Sdiv b, i)}

K

1
+22K: <b-n v > +ZK:5KHb'VUhH(2),K

+Y bk (—eAuvn +con, b Vo) + > ok [Jon]] Il e-
K E

Since (14) we get
1
ag(vn,vn) > ||[vn||]?+ ZZK: <b-n,u; >

(19) + g bk (—eAvp + Cop, b - Vop)k,
K
as

‘(—8A1}h +th,5|(b- Vvh)K\ < 5K|| — eAvp, +CUh||o7K . ||b Vun

0,K

1 1
< okl —edun+ conllgk+ S0Klb- Vonllox
which at its turn leads to

1
0Kl —eduvn + conlli < 6ke¥Avnll§k + bk llcunllgk

< ke pg b Plonlf k + 6k Chaxllunlf

€ n Co 2
< Z\Uh|1,|< + 4 lvnllo. -
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Thus, the last term in (19) can be absorbed by the first term. Let us now analyze
the second term in (19). Considering an extensiomobutside off2 by zero,
we can also define jumps over &nwith E C I'. In this way we have

1 1
ZZ < b'n,’Uﬁ >oK = 22 < b'nE7 UvﬁHE ~E,
K E

and therefore

1 1
‘22<b~n,vﬁ>aK‘§22Hb
K

E

0,00,E | UUm]E”O,LE-

Let us denote for a moment the two triangles having the commonHadneK; g
andK; e and the restriction ofy, ontoK; g, i = 1,2, by v ;. In the casee C I
we have for one of th&; g thatwvn; = 0. Then, for arbitraryw > 0

Rl < Iflenllel(onal |+ lonz] D

1
2 lnlle

IN

2, ’ 2y 4
@ (fonal P+ fon2] )

and by integration oveE

1
18 e lore < wlvnal_[B2e +lvnz|_I3oe)+ , Ilvnllelae -
Using the inequality (17) and setting

"= Co he
613]bl

0,00,E
we obtain

2
2 W 2 1 2
| [|Uh |]E||O,l,E > hEOHUh”o,z,KLEuKZE + 2 [ [|Uh ”E”o,z,E

Co 2 3Ug|‘b 0,00,E 2
Uh + OO, Vh
6||b||07007E H ||O,2,K1-,EUK2,E COhE ” U HE”O,Z,E

Co 2 OE 2
Uh + vh '
6||b||0,oo,E H ||O,2,K1,EUK2,E ||b||0,oo,E H [| |] E HO}Z,E

N

Summing up over all faces we have

Co 1
> <bene [lofl]e >e| < llonl3o* 5 D oellllonl] e
E

E

thus we can absorb this term also intp- |||> and (18) holds foi = 1.
From the definition of? we get immediately

af(vn, vn) > [[on]|* + ) (—cAvn +Con, bkb - Von)k,
K
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thus, using the same technique as above we have (18H@ without assuming
a lower bound away from zero farg.
For the fully skew-symmetrized forra® we get first

1 .
aﬂ%wmzmeﬁ+%:&¢wam-v%k—22;@ww@mmﬁw
Assuming (A3) we have similarly to above

0 €
|8k (—eAvn, b - Von)| <y [Ib - VonlBx + , lonffx -

Now c
|6k (div (Cb),vﬁ)K| < bk DmaXHUhH%,K < 2 ”UhH%,K )
thus we can absorb both terms iftp- ||| and obtain (18). O
Let the exact solutiom belong toH(£2) N H2(£2) such that

—eAu+b-Vu+cu=f inL%K)

for all elementsK € .74. Multiplying this equation with the test function
vh + 0k b - Vup and integrating it by parts one finds that the exact solution
satisfies . .

(20) an(u, vn) = In(vn) + 1y (U, vn),

with

(21)  riu, )

> <sgz,vh >e

K ECOK

1
ri(u, on) — 22 Z <b-n,uv, >g .

K ECOK

(22)  rf(u, o)

1
(23)  rd(u, ) ré(u,vn) — ZZ Z bk <cb-nuwy >g .

K ECOK

> oe < [lullg, [lvnl]g >e

E

Note that the term

contained inan(u, vn) made no contribution becauses H?(£2) implies [|u]] . =

0 on inner faces and because= 0 atE C I'. The additional term on the
right hand side of (20) emanates from the nonconformity of the methodyi.e.
can have jumps across an faEe Consequently, instead of the usual Galerkin
orthogonality for conforming methods (wheag(u — un, v,) = 0), one here finds

a,(U — Un, vn) = &, (U, vn) — ah(Un, vn) = (U, o)
and we have additionally to estimate the consistency errors

i
Sup rh(ua Uh)

. =123
wmevy  |[[onll]
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Now we formulate a technical lemma which is useful to estimate the con-
sistency error of each method. Definéf : HY(K) — P,(E) to be theL?(E)
projection onto the space of the restrictionBoof all polynomials of degree:.

Lemma 2. For any integer m witltD < m < p, there exists a positive constant
C such that

(24) ‘/ o — AEP)ds| < Ch Yol |9 mek
E
(25) ‘ [oto— e < R olocivlma

for all K with E C 9K, ¢ € HY(K), andy € H™Y(K).

Proof. The first estimate is already verified in Lemma 3 in [3] but for com-
pleteness we repeat the arguments for both estimates which are based on scaling
properties and on the application of the Bramble-Hilbert-Lemma.
Let K be a referencel-simplex of B¢ andE be a @ — 1)-dimensional face of
K. In order to simplify the notation we assume ti&aandE belong to the same
hyperplanexy = 0. Let

F:X — BgxX+bg

denote the standard affine mapping with= F (K), E = F(E) and letBg be the
(d —1) x (d — 1) matrix obtained by crossing out the last row and columBof
For any functionf defined onK andE, respectively, we lef =f o F. Because
of the definition of #£ we have

@ = .//Ig ).
Mapping to the reference element gives
/ o) — . ALp) ds = | det®Be)| / G — AP ds.
E E

There are two different ways of estimating the integral on the right hand side of
the equation, namely

< @log I — 22z

0,E

| 86— agiyes

IN

C l1@llog [%lmesk
or, like in [3],

< C |95|1,|2

b — Ao e

| #6—.agiyes

IN

C |92|1,R |¢|m+1,l2 :

Applying the affine mapping and standard integral transformations the above
estimates result in
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/ detBE) +2
— AL < m .
/E@(w AbED)ds| < detBy) 1Bk 1™ [olek |9]merk s
, det@e) |2
— e < m+1 . )
/Ew(w Abgy)ds| < C ‘det(BK) 1Bk 1™ llllo.g [¥]merk

Using common estimates for dBg), detBx ), ||Bx || and taking into considera-
tion the regularity of the triangulation we finally get the estimates (24) and (25).
(I

Now we formulate our main result.

Theorem 1. Let the assumptions of Lemma 1 be fulfilled. Moreover, let the exact
solution u belong to Ki(£2) N H¥*1(£2). Then, for the NSD1-method the error
estimate

1/2
llu—unl[| < CHh <ZAK|UI§+1,K)
K

1/2
(26) +C hk+l/2 (Z AE |U|E+1,K1,EUK2,E> :
E

holds. For the NSD2- and the NSD3-method we have

1/2
llu—unl|]] < ChK (Z)‘KU|E+1,K>
K

1/2
(27) +C hk_l/z (Z )\E U|E+1,K1,EUK2,E> .
E
In both cases\x and \g are defined by
(28) A i=e+hZ + 6 +6MhE
(29) AE:=min<1,hE,l>.
O € hE

Proof. Putwy := Ipu — uy. From Lemma 1 we get

1 . )
(30) 2||||hU—Uh|||2§aﬁ('hU—U,whHaﬂ](U—Umwh%

The first term on the right hand side of (30) will be estimated by considering
each term ofy(Inu — u, wn) separately. Setting := Ih,u —u € C({2), we begin
with al, its first term is given by

IN

e (Vw, Vun)
K

e IVwllok - [IVwnllox
K

IN

1/2
Cet? (Z hl%k|uE+l,K> [wnll] -
K
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The second term is estimated by using first an elementwise integration by parts

(b-Vw+cw,wp)k = (¢c—divb,wwnk — (b Vwp, w)k
(31) + > <b-nwuw >e.
ECoK

The sum over the first term in (31) gives

> (¢ — div b, wwn)k
K

< C ) llwlox llwnllox
K

1/2
K42, 12
< C <z:h|<+ |Uk+1,|<> [wnlll,
K

and the sum over the second term can be handled in the following way

IN

0,K

> (b Vun, w)k
K

>~ el - Vun ok 8w
K

IN

1/2
@ (26;1h£k+2u|ﬁ+1,K> | |wnl|| -
K

The sum over the third term of (31) gives (as= 0 onI")

Z Z <b~n,wwh>E

K ECOK

Z < b-nE,wahHE >E
E

—1/2 1/2
C > o V¥ |wllog o2l [lwnl] ¢ llog
E

IA

IA

1/2
—1p2k 2
C (Z JE hE +1|u|k+l,K1,EUK2,E> |Hwh|||'

E

Alternatively, we could estimate this term in the following way (using the first
estimate in Lemma 2 )

Z Z <b-n,wwh>E

K ECOK

k+1/2 1/2
(32) <C Z hEJr / |u|k+l,K1,EUK2,E hE/ |wh|1,K1,EUK2,E )
E

and estimating the sum ovéry|1x by

lwnly < e Y2[[[wn|l| or Jwnlik < C M Hwnllok < C hglwnllox-

Taking the minimum over these three different possibilities we obtain
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Z Z <b-nwwy >e

K ECOK

1/2
1 hg 1
(33) < C <z mln < ’ h ) hék+1|u|i+1,K17EUK2YE> |||wh||| .

The third term ofa}(w, wy) is bounded by

w+b-Vw+cw, kb Vwn)k

< 3 6% [ell Awllox +C hEJulke] 16520 - Vunllox
K

1/2
< C(Z(ﬁéK)hﬁklulﬁu,K) [[[wnll] -
K

For the last inequality we used the propery < consth? (compare (Al)—
(A3)). Finally, for al(w,ws) the sum over the jump terms is identical to zero
since [|w|] = [|lnu — u|]z = 0. Summarizing the estimates for all terms of

at(w,wn) we get
&) (Inu — u, wp)|

1/2
< <Z<s+hK+6K+61hK>hku|k+1K> el

1 he 1 V2
E
(34) +C <Z mln < ) 9 hE > hék+1u|E+l,K1)EUK2,E> |Hwh‘|‘

fori = 1. In the same way we can estimate also the different ternag(@af, wn)
anda3(w, wp). Thus, (34) holds foi = 1,2, 3.

It remains to estimate the consistency errors for which we will apply Lemma
2. Using the assumption (H2) we get figf(u, wn)

Sy <5gﬁ,wh >e

K EC8K

Z <5 |whH >E
ng’

k—1 OU
doe< anE . lanE’ [lwnl]e >E -

ra(u, wp)

Now, applying the estimate (24) of Lemma 2 with < hx we see that

1/2
[ra(u, wn)| < C M2 (Z hﬁ"lﬁu,x) [[wnll].
K
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This gives for NSD1 by applying the triangle inequality

[[lu = unl[|

< wnll] +{[Ju = Thulf|
1/2

1/2
< C hk (Z /\K |uﬁ+1,K> +C hk+l/2 (Z /\E u|§+l,K1,EUK2,E> ’
K E

with A\ and \e defined by (28) and (29), respectively. In order to estimgte
we start with the identity

1
ré(u,wn) — riu,wp) = - E E <b-n,uwy >
K ECOK

1
—22 < b-nEu, “wh”E >E
E
—;Z <b-ngu— . 2o -neu), [wnl]z >e -
E

Now applying (24) or (25) we obtain

1/2
IF2(U, wn)| < |ri(u, wy)| + C hk—%/2 <Z AEu|ﬁ+1,K1,EUK2_,E> [|[wn]l].
E

For rd(u,wn) — r2(u,ws), we find the same estimate by replacibg ng by
ok ¢ b- ng. Using the triangle inequality again gives (27

Remark 2.Note that in the convection dominated cas& h, Theorem 1 indi-
cates the choicéx ~ hx and

. het for NSD1
. he? for NSD2 and NSD3

in order to get an 'optimal’ error estimate in th&-norm. Here, the choice ofe

for NSD1 results from the coerciveness result (Lemma 1) and for NSD2, NSD3
from the estimation of the consistency error. For these choices the convergence
result of conforming SDFEM on general meshes

lu = tnflo < € N*Y2[ufis
is recovered, see [24].

Remark 3.A careful study of the convergence proof shows that in case of setting
og = 0 an analogous result cannot be obtained. The crucial step is to bound

Z <b-l’lEU, “wh”E >E
E

in terms of|||wp]||, wheno = 0.
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4. Numerical results

In this section we demonstrate the numerical behaviour of the proposed dis-
cretization methods for some test examples. The boundary value problem (1) is
solved on the unit squar® = (0,1) x (0,1) using a finite element discretiza-
tion with nonconforming P1 elements, thus we h&ve 1. The method NSD3

is well-suited for an application of the parallel finite element method [11] and
it produces similar results as NSD2. The streamline diffusion paramgtés

chosen to be
S = 0 if e>hk
K71 e if e<hg

The error will be measured in tHe?-norm || - ||o, the element-wise defingd *-
semi-norm|| - || and the streamline-diffusion norih- ||s, which latter is given

by

1/2
— 2 2 2
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Fig. 1. Various structured and unstructured coarse grids
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We solve the discrete problems on a sequence of uniformly refined meshes
starting with a coarse grid (level 0). The test calculations have been performed
for different types of grids as indicated in Fig. 1. The accuracy of the discetiza-
tions has been influenced by the used grid however the rates of convergence in
Il llos || - lIn, @and]| - ||s have been almost independent of the type of the coarse
grid. Therefore, we present only the results for Example 1 and 2 using the coarse
grid in the upper left corner and for Example 3 using the grid in the upper right
corner of Fig. 1. The iterative solver is stopped as soon as the residual of the
discrete problem measured in the Euclidean norm is less thaf 10

Example 1. Smooth polynomial solution.
Let b = (3,2) andc = 2. The right hand side and the boundary conditions are
chosen such that

u(x,y) = 100(1- x)*x?y(1 - 2y)(1 —y)

is the exact solution of (1), see Fig. 2.

First we show that for the nonconforming SDFEM without jump terms, i.e.
oe = 0, the convergence rates decrease whdands to zero. For the numeri-
cal tests we have chosen level 6 as the finest level. The convergence rates are
computed using the errors on level 5 and 6.

Table 1. Convergence rates for Example 1 angl = 0

e=1 e=h e=h? ge=h*

NSD1 |-flo 1.998 1.751 1.002 0.996
Il-Iln 0999 1178 0.032 -0.043

|-lls 0999 1.693 1.467 1.158

NSD3 |-Jlo 1.998 1.678 0.056 0.374
Il-ln 0999 0.122 -0932 -0.695

l-lls 0.999 0.839 0.059 0.189

In order to get an insight in the convergence rates for the range=0< h
we have chosen as a given function oh. In correspondence with Theorem 1
we see that the convergence rate in fhe|s-norm for NSD1 reduces for = h
to 1.5 and fore = h? to 1. The reduction for NSD3 is much more dramatic, for
¢ = h? it reduces to Qagain as it can be expected from (27). Compared with the
well known result for the conforming streamline diffusion method, which gives
an error estimate of order3 here we have an additional gap of ordeb @nd
1.0, respectively.

Next we demonstrate the improvements which can be achieved by adding the
jump terms to the standard nonconforming SDFEM. In Table 2 and 3 the con-
vergence rates are presented and in Table 4 and 5 the errors. These results reflect
the theory given in Sect. 3. Tests with a different direction of the streamlines and
a smooth solution gave similar results. Note that for NSD1 the coerciveness of
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Fig. 2. Exact solution and contour-lines of Example 1

the corresponding bilinear form has been only provenstor> C /h. However

the numerical experiments shown in Table 2 and 4 indicate that the method also
works for anh independente. Further, it can be seen that the order of con-
vergence in the&.2-norm is greater than the order in the ||s-norm. This effect

of super-convergence has been already reported and studied for the conforming
SDFEM in [24]. Moreover, the reduction of convergence rates for NSD3 is one
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half less as it could be expected from Theorem 1. However, the absolute error
for NSD3 andog = 1 is much larger than the error for NSD1.

Table 2. Convergence rates of NSD1 for Example 1

e=h e=h? e¢=h*

oe=1 ||-]o 1751 2002 1.978
ll-lln 1.188 0.946 0.986

Il-lls 1.696 1.502 1.500

oe=1/h | -llo 1752 1987 1.945
ll-lln 1.086 0.973 0.986

I|l-lls 1653 1.478 1.477

Table 3. Convergence rates of NSD3 for Example 1

e=h e=h? e=h?

oe=1 ||-llo 1692 0914 1.002
Il-ln 0.144 -0.070 0.024

l-ls ©0.905 0975 1.041

ce=1/h |-llo 1752 2022 1971
Il-Iln 1074 0979 0.983

l-lls 1.646 1.477 1.475

Table 4. Errors for Example 1 and NSD1

e=h e=h? e¢=h?

og=1 ||-lo 192 .70-4 .76-4
[-lh 391 411 421

I-lls .10-1 772 772

oe=1/h |-llo .19-2 .88-4 .93-4
|-l .47-1 451  .45-1

I-ls .11-1 .842 842

Table 5. Errors for Example 1 and NSD3
e=h e=h? e=h*
oe=1 ||-llo .20-2 282 .30-2
Il-lln 2040 .14+1  .15+1
l-lls .26-1 .21-1  .14-1
oe=1/h | -llo 192 .90-4 .94-4
l-lln .49-1 481  .48-1
l-lls .11-1 .852 .84-2

Now we will discuss two examples of solutions with layers.

Example 2. Circular internal layer.

Let b = (2,3) andc = 2. The right hand side and the boundary conditions are
chosen such that

u(x,y) = 16x(1 = x)y(L - y) {; , arctan[200(; - (X; X0)> = (y — ¥0)°)] }
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Fig. 3. Exact solution and contour-lines of Example 2

with Xo = yp = 0.5 andrg = 0.25 is the exact solution of (1), shown in Fig. 3.

Table 6 shows the convergence ratesor 10~4 using NSD1 and NSD2
with cg = 1 which are predicted by the theory. The order of convergence is
calculated by using the errors of the last two levels. Analogous to Example 1
the convergence rates and the errors of the method NSD1 asing are much
better than for NSD2, compare Table 6 with Tables 2-5. This coincides with the
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Fig. 4. Error usingog = 0 (upper) andrg = 1/h (lower), Example 2

theoretical results of Theorem 1. As in Example 1, the cheicel/h leads to

the nearly the same results for both methods, compare Table 7 with Tables 2-5.
For solving the corresponding linear equations we applied a multi—grid

method.L?—projections have been used for restriction and prolongation and an

ILU g—smoother has been chosen, see e.g. [23]. With this smoother also the sys-
tems on the coarse grid has been solved. In Table 8 we present the number
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Table 6. Convergence behaviour of Example 2 for NSD1 (left), NSD2 (right) aad= 1

level  [[-llo II-llh N-lls N-llo  [-llnN-lls
2 .108+0 .314+1 .138+1 .108+0 .299+1 .137+1
3 .717-1 .369+1 .108+1 .809-1 .329+1 .108+1
4 .307-1  .249+1 .466+0 .421-1 .341+1 .472+0
5 .983-2 .124+1 .202+0 .192-1 .241+1 .208+0
6 .283-2 577+0 .754-1 .978-2 .197+1 .833-1
7 773-3 .259+0 .271-1 .521-2 .179+1 .368-1

order 1.872 1.156 1.476 .909 .138 1.179

Table 7. Convergence behaviour of Example 2 for NSD1 (left), NSD2 (right) @ad= 1/h

level  [l-flo [I-lln M-lls  M-llo N-lln II-lls
2 .923-1 .216+1 .140+1 .936-1 .217+1 .140+1
3 .605-1 .263+1 .111+1 .613-1 .265+1 .111+1
4 .307-1 .176+1 .506+0 .310-1 .177+1 .507+0
5 145-1  .127+1  .247+0 .146-1 .127+1 .247+0
6 .687-2 .815+0 .113+0 .691-2 .816+0 .113+0
7 .266-2 .448+0 .493-1 .268-2 .449+0 .493-1

order  1.369 .863 1.197 1.366 .862 1.197

Table 8. Number of multi-grid V—cycles and convergence rates. Example 2 for NSDband1
(left), NSD1 andog = 1/h (right)

level cycles rate cycles rate
19 34 14 22
19 35 36 .58
24 45 117 85
24 A7 277 94
20 43 587 .97
17 40 1101 .99

~No o~ wdN

Table 9. Convergence behaviour outside the layers of Example 3 using NSB10~%, o =0
(left) andog = 1 (right)

level [l-flo[I-lln[l-lls ll-flo[I-llnII-lls
3 .799-3 6351 .212-2 .151-3 .9432 .216-2
4  .358-3 .605-1 .454-3 .303-4 .349-2 .443-3
5 2924 8622 .262-3 .920-5 .231-2 .267-3
6  .2185 .880-3 .536-4 .197-5 .858-3 .541-4
7 6636 .705-3 .327-4 .574-6 .575-3 .333-4
order 2730 1806 1.501 2.001 1003 1.502

of multi—grid V—cycles and the convergence rates for solving Example 2 using
NSD1 andog = 1 andog = 1/h, respectively. The results suggest that for
oe = 1/h the condition number of the system matrix is very bad and strongly
depends orh. Thus, one should use: = 1 for computations.

In Fig. 4 errors of computed solutions, plotted as nonconforming func-
tions, are presented. The different solution quality of the method NSD1 without
(ce = 0) and with gg = 1/h) the jump terms can be seen evidently (note the
different scaling of the z-axes of the plots). Applying the nonconforming SDFEM
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Fig. 5. Exact solution and contour-lines of Example 3

with jump terms the heavy oscillations of the result without the jump terms are
considerably damped.

Example 3.Layers at the outflow part of the boundary.

Let b = (2,3), c =1 the boundary conditions and the right hand side such that
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Fig. 6. Errors on level 5 of Example 3 using= = 0 (upper) andrg = 1 (lower)

u(x,y,e) = xy?—y? exp(z(xg_ 1)) - xexp<3(y€_ 1))

+exp(2(x —1)+3( — 1))

€

is the exact solution of (1). This function has the typical boundary layers=at
andy = 1, see Fig. 5.

In Table 9 we present the numerical results of the method NSD4 %0106,
6 = 0.25h, andog = 0 andog = 1, respectively. The nonconforming SDFEM
combines good stability with high accuracy outside the layers. The errors in
Table 9 are computed in the subdomaircX,y < 0.9. The convergence rates
using the errors on two consecutive grid levels oscillate. For that reason, in
Table 9 average convergence rates between level 5 and 7 are given. From Table 9
we see that outside the layers the method without jump terms needs a more
refined mesh to achieve the same accuracy as the method with jump terms. An
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impression of the errors of the computed solutions inside the layers gives Fig. 6.
Similar to Example 2 the error oscillates heavily if the method without jump
terms is applied.
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