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A b s t r a c t - - T h e  problem of predicting features of turbulent flows occurs in many applications 
such as geophysical flows, turbulent mixing, pollution dispersal, and even in the design of artificial 
hearts. One promising approach is large eddy simulation (LES), which seeks to predict local spatial 
averages fi of the fluid's velocity u. In some applications, the LES equations are solved over moderate 
time intervals and the core difficulty is associated with modeling near wall turbulence in complex 
geometries. Thus, one important problem in LES is to find appropriate boundary conditions for the  
flow averages which depend on the behavior of the unknown flow near the wall. Inspired by early 
works of Navier and Maxwell, we develop such boundary conditions of the form 

O . n = 0  and t3(6, Re, IQ. r[) ft. r + 2Re-1 n .  D (fi) • r = O 

on the wall. We derive effective friction coefficients ~3 appropriate for both channel flows and recircu- 
lating flows and study their asymptotic behavior as the averaging radius 5 --* 0 and as the Reynolds 
number Re --~ oe. In the first limit, no-slip conditions are recovered. In the second, free-slip con- 
ditions are recovered. Our goal herein is not to develop new theories of turbulent boundary layers 
but rather to use existing boundary layer theories to improve numerical boundary conditions for flow 
averages. ~) 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - L a r g e  eddy simulation, Near wall models, Turbulence, Boundary layers. 

1. I N T R O D U C T I O N  

In the late 1970s, one author (Layton) had the privilege of hearing a lecture by Professor George 
Fix. At the end of that  lecture, George predicted that the next ten years of numerical anal- 
ysis would be dedicated to computing functionals of solutions of models accurately when it is 
impossible to compute the solution itself accurately. Characteristically, George's prediction was 
scientifically accurate, but optimistic in both the starting point and the completion date. In 
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this paper, we consider a problem which fits within George's vision: approximate averages of 
turbulent flows accurately when the fluid velocity itself cannot be accurately simulated. 

The problem of predicting the behavior of turbulent flows is ubiquitous in engineering appli- 
cations. When only long time statistics are needed, carefully calibrated conventional turbulence 
models are a useful tool. On the other hand, when dynamic features of the flow are needed, large 
eddy simulation (LES) is one of the preferred techniques. For LES, which seeks to predict local, 
spatial flow averages above a preassigned length scale 5, to be useful as an engineering design 
tool, at least two fundamental improvements are needed in current practice. First, for problems 
with delicate energy balance that  must be integrated over long time intervals, better subgrid 
models are necessary. Such problems often occur in geophysical applications. For problems in 
complex geometries in which turbulence is caused by interaction between the flow and the walls, 
better boundary treatments of near wall turbulence are urgently needed. This latter type of 
problem is very common in engineering practice. Further, if LES is to be used as a part  of a 
design process, the boundary treatments used should not require full griding and resolution of 
the turbulent boundary layers. Thus, the core difficulties of applying LES usefully in engineering 
settings include the mathematical question of finding appropriate boundary conditions for flow 
averages to be used in the simulation. We consider exactly this problem herein. 

There is a good deal of computational experience, e.g., [1], and some mathematical  support, [2], 
for the main claim of LES that  it can accurately predict the motion of the large (size > 0(5)) 
eddies in a turbulent flow with computational complexity independent of the Reynolds number 
and depending only on the resolution, 5, sought. For this claim to be true (and within the classical 
approach to LES) two steps must be successfully carried out. First, the Navier-Stokes equations 
are locally averaged and an accurate subgrid scale model of the effects of the unresolved small 
eddies (<< 0(5)) upon the mean flow fi must be constructed. There has been an intense interest 
and development of such models in the LES community, see, e.g., [1,3,4] for examples, and we 
will not consider this question herein. Second, accurate boundary conditions (known as near wall 
models or NWM) for the local flow averages fi of motions _ 0(5) must be found. If the averaging 
radius 5(x) is decreased to zero as x --* 0ft, then fi will posses Re-dependent boundary layers 
and the overall computational complexity must grow with Re, although not as rapidly as for the 
full Navier-Stokes equations; see, e.g., the work of Vasilyev et al. [5]. On the other hand, if 5 is 
fixed (or bounded from below), then fi is, in principle, computable with complexity independent 
of Re. However, with fixed 5, fi on the flow domain's boundary Oft will depend (nonlocally) on 
the unknown flow in a neighborhood of Oft. 

In this report, we develop an improved near wall model for LES along ideas of [6]. Our goal 
is to develop a physically appropriate NWM which is appropriate not only for simple turbulent 
channel flows but also will improve LES's performance in more complex heterogeneous mixtures 
of laminar, transitional, and turbulent flows including recirculation. We shall see in Section 4 
that  recirculation will require nonlinear boundary conditions. 

To develop the ideas, we consider solutions (u, p) of the nondimensionalized incompressible 
Navier-Stokes equations 

u~ - 2Re -1 V • D(u) + (u .  V)u  + Vp = f, in (0, T] × ft, 

u = 0, on [0, T] x Oft, 
(1) 

V .  u = 0, in [0, T] × ft, 

u ( t  = 0)  = u0 .  

Here, ft C R d, d = 2, 3, is a bounded domain, u : [0, T] x ft --+ Rd is the velocity, p : (0, T] x f~ --* 
is the pressure and Re is the Reynolds number. The velocity deformation tensor is given by 

f o r l < i , j < < _ d .  
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Let 
[ 7 .~d/2 [ 2 

g~(x) t,5"2-~r ) exp t,-  -ilxll ) (2) 

be the Gaussian filter, where 7 > 0 is typically chosen to be 7 = 6, and Ilxl12 is the Euclidean 
norm of x E ~d. Having extended all functions outside gt by zero, the "large eddies" are then 
defined by convolution 

f i : = g ~ , u = f  g ~ ( y - x ) u ( x ) d x ,  / ~ : = g ~ , p ,  f : = g ~ , f ,  etc. 
J~ d 

Several other filters are also commonly used; see, e.g., [1,3]. Although the correct NWM must 
ultimately depend on the filter selected, the approach we use can easily be extended to other filters 
and the Gaussian is the most complex case. When the Navier-Stokes equations are convolved 
with g~ and a subgrid scMe model is used to replace the Reynolds stress tensor R := uu  - u u 
with a tensor depending only on fi, a closed system of LES equations results. To solve any such 
system, fi at OFt must be specified. 

The most commonly used boundary condition is fi = 0 on 0Ft. It  is easy to see that  this is 
not consistent; see Figure 1. It  also does not agree with our physical intuition of large eddies: 
hurricanes and tornadoes do slip along the ground and lose energy as they slip! Motivated by 
this example and earlier work of Navier [7] and Maxwell [8], we will construct herein NWMs of 
the form 

f i . n = 0  and ~ f i . ~ - i + 2 R e - l n - D ( f i ) . r i = 0 ,  on0Ft,  (3) 

where n is the outward unit normal, {~'1, • • •, l"d- 1 } is an orthonormal system of tangential vectors, 
and DI is the effective friction coefficient which must be specified. We stress that  the boundary 
condition (3) does not enforce equilibrium: time fluctuations of the normal stress at the wall will 
restllt through (3) in time fluctuations of the slip velocity. 

~ boundary layer 
~-- - 4  in fluid region 

f.1 ~-. / 

b/ 1 bo~d~ 
/ ] 

,//i' exterior 
5 " u = O  

' g x . . . ~ / / / /  

Figure 1. Averaging the  velocity at  the  boundary  does not  give homogeneous  Dirich- 
let conditions.  

Boundary conditions (3) can be implemented easily into a finite-element code; see [9]. In this 
paper, numerical studies of two- and three-dimensionM channel flows across a step are presented 
which study the influence of the friction parameter on the position of the reattachment point and 
the reattachment line, respectively, of the recirculating vortex. 

Condition (3) is a mathematical  expression of no-penetration and slip with resistance. It  is 
often called Navier's slip law [7]. In 1879, Maxwell [8] derived the Navier-Stokes equations from 
the kinetic theory of gases by an averaging process and recovered the boundary condition (3). In 
Maxwell's derivation, the friction coefficient ~ was found to be 

microscopic length scale 
ST~ 

macroscopic length scale' 

which is exceedingly small (O(mean free path)) for molecular viscosity in a gas. This early work 
of Maxwell suggests that  for LES we should expect a friction coefficient/:7 scaling like 

~ ~ R e _  1 L -~, L = diam(Ft). 
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Such a scaling seems very reasonable since the boundary conditions (3) tend to no-slip conditions 
as 5 ~ 0 for fixed Re and to free-slip conditions as Re ~ c~ for fixed 5. For more recent analysis 
including the boundary conditions (3), see [2,10-12]. 

As noted above, the behavior of fi on 0f~ depends on the behavior of u near 0~. Our analysis 
presupposes the accuracy of the description of near wall flows. In Section 2, we consider the 2-D 
laminar case. Since laminar flows can also be underresolved, this case is not without interest and 
can help to optimize parameter selection in the penalty methods of [13]. In the laminar case, the 
friction coefficient/3 is given in (10) and we show 

/3(5, Re) ~ ~ ¢ ( 5 ,  Re), (4) 

where ~ is a function which is uniformly positive and bounded in both 5 and Re. Section 3 
considers the important question of near wall modeling for 3-D turbulent flows. The optimal 
friction coefficient is calculated in (19); its asymptotics are again (4) as 5 ~ 0 for fixed Re and 
Re ~ c~ for fixed 5, Proposition 3.1. This analysis is for a flow over a flat plate (and thus also 
over a smoothly curving surface whose curvature is negligible). 

Section 4 considers recirculating flows. In such flows there can be a wide variation in local 
Reynolds numbers. For example, the recirculating flow downstream of a step is much slower than 
the mean velocity above it. Such flows require a NWM based upon the local Reynolds number, 
giving a nonlinear friction law. This extension is performed in Section 4. 

Numerical tests on a 2-D flow across a step are presented in Section 5. Using a simple LES 
model, the Smagorinsky model [14], the evolution of the reattachment point is studied for an 
underresolved flow for which the boundary condition (3) is applied. An improvement of the 
numerical results using (3) instead of the no-slip boundary condition can be observed. 

Some formulas used in Sections 2-4 are collected in the Appendix. 
It is important to understand the built-in limitations of any model, and our near wall models 

are no exception. First, we are replacing an essentially nonlocal condition by a local condition (3) 
for ft. Very little is known about well-posedness of nonlocal boundary conditions for the Navier- 
Stokes equations, so a reduction to a local boundary condition seems necessary. Next, our 
derivation of the friction coefficient/3 depends on some knowledge of u near the walls. Herein 
we presuppose the accuracy (in the mean) of boundary layer theory. There are situations where 
simple boundary layer theory should be modified and thus/3 recalculated. These include flows 
against a pressure gradient, geometries for which the curvature K of 0f~ is nonnegligible, and 
near stagnation points. Another possibility is to calculate/3 by postprocessing DNS data or via a 
calculation of the Navier-Stokes equations near Off, coupled to an LES model away from F, see, 

e.g., [15]. 

2. A L A M I N A R  B O U N D A R Y  L A Y E R  

W I T H  U N I F O R M  S U C T I O N  I N  2 - D  

Near wall models are useful in underresolved laminar as well as turbulent flows. Further, the 
laminar case provides a convenient first validation step and industrial flows often begin laminar 
and become turbulent through interaction with boundaries. Thus, it is useful to tabulate the 
friction coefficient in the laminar ease, which we do next. 

We consider the model situation that fl C ~2 is the half plane 

= {(x, y), y > 0}. 

The wall law of a laminar boundary layer on a flat plate is given by 

u = U ~ ( 1 - e x p ( - I V o I R e y ) ) ,  for y > 0, 
(5) 

v = V 0 ,  f o r y > 0 ,  

see [16, (14.6)], where Uoo is the free stream velocity and V0 is a negative constant. 
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Our aim is to compute the friction coefficient 13(6, Re) for the boundary layer model (5). To 
this end, u is extended by zero into the lower half plane {y < 0} and v is extended by Vo. Since v 
is a constant function in the whole space, its convolution ~ is constant, too. The outward pointing 
normal vector on 0~ = {y = 0} is n = (0 , -1)  and we choose the tangential vector r = (1,0). 
Hence, 

04 
f i . r  = 4  and n T ( 2 R e - l D ( f i ) ) . r  = - R e  -1 O---y' 

and the friction coefficient can be computed by 

a~fx 0~ O y  ~, ' s 

/9(6, Re) : Re -1 fi(x,0) " (6) 

We start by computing fi(x, 0). Inserting (5), we obtain 

y) = • u(z,  y) 

= U~ ~-5-~ ooexp ( - - ~ ( x - -  x') 2) dx' 

X [ ~  0 exp ' V __ __ c~ (_~(y y,)2) dy' ~o~eXp (-(~(y y,)2 + ,Vo, Rey')) dyJ. 

This integral can be evaluated using (27), (28), and (31) (see the Appendix) leading to 

~(x,y) = % { [l +erf (--~-y) ] 
(7) 

( V02 Re2 62 ,Vo, Re y ) [ 1  - erf ( 'V0-j Re 6 ~ y ) ] }  
- exp \ 4~/ \ 2v/_ ~ . 

In particular, we have 

fi(x, 0) % { 1  ( ,V02 Re2 ][ ( 

The numerator in (6) can be computed directly from (7) using (29). We obtain 

"-~y(X,y)=% exp (_  ~ y 2 )  [6v  
+'Vo' Reexp {V°2 Re2 62 - 'Vol Rey) [1- erf ( 'V~ Re6 ? Y ) ]  

which gives 

2vz~ ( V°2 Re2 62 ]Vo[ Rey)  exp ( -  exp \ 

0fi = _ ~  iV0l Re exp ) 
~yy (x,0) { V°2 Re2 62 

The friction coefficient for the laminar boundary layer 

2v~ Y , 

( 
[ I - e f t \  2x/~ ) ] .  

wall law is, using (8) and (9), 

{ 1 } 
/9(6, Re) = IV01 1 - exp (V02 Re 2 62/(4"y)) [1 - erf (IV01Re6/(2v/ ))] - 1 . 

Note that/3(6, Re)/IWol depends only on [Vo[ Re 6/(2V~ ). 

(9) 

(10) 
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PROPOSITION 2.1. Let fl(5, Re) be given as in (10). For fixed Reynolds number Re, we have 

lira 5/3(5, Re) = v ~ x / ~  
5--.o Re ' 

consequent ly  lira 0 t3( 5, R e )  = 0o ,  (11) 

and for fixed filter width 5, 

lim Re/3(5, Re) - 2x/~ consequently lira 3(5, Re) = 0. (12) 
R e - ~  5V/-~ ' R~-,o~ 

PROOF. Since 

l imexp(V~Re252)  [ ( ] V o [ R e S ) ]  
~--.0 47 1 - erf = 1, \ 2v~ 

the denominator  in the first te rm in (10) tends to zero. To prove (11), multiply/~(5, Re) by 5 and 
write the product  as one fraction. Then,  (11) follows by an applicat ion of the  rule of Bernoulli- 
l 'Hospital.  

To prove (12), we first note tha t  an application of the rule of Bernoull i- l 'Hospital  gives 

lim exp (x 2) [1 - erf  (x)] = 0, (13) 
X--~OO 

1 
l i m  x exp (x 2) [1 - erf (x)] - V/- ~.  (14) 

First, mult iply fl(5, Re) by Re ~ / ( 2 v ~  ) and write the product  as one fraction. Using (13) with x = 
IV0[ Re 5/(2v/-~) , one obtains tha t  the denominator  of this fraction tends to one. The  numera tor  
has such a form tha t  (14) can be applied. I 

The asymptot ic  behaviors are il lustrated in Figure 2. 

10 4 

10 ~ 

10 ~ 

101 

10 0 
10 -3 

{ friction coefficient for fixed Re I 

10 "2 10 "1 10 ° 
5 

(a). Behavior  of ~(5, Re) wi th  respect  to 5 for cons tan t  R e ( =  1), ~ = 6, V0 = - 1 .  

F igure  2. Lamina r  b o u n d a r y  layer, behavior  of ~(5, Re) wi th  respect  to Re for con- 
s t an t  5(= 1), "y ---- 6, V0 = - 1 .  
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10 .2 . . . . . . .  i . . . . . . .  

10 ° 101 10 2 
Re 

(b). Behavior of/3(5, Re) with respect to Re for constant 5(=  1), ~' =- 6, V0 = -1. 

Figure 2. (cont.) 

REMARK 2.1. The friction laws we derive herein and in the following section are linear and 
thus not appropriate  for recirculating flows. Nevertheless, they are necessary steps to deriving in 
Section 4 the nonlinear friction laws for recirculating flows. 

Formulas (11) and (12) agree with the formula/3 ,-~ Re -1 L / 5  of Maxwell. Further, they give 
important  insight into parameter  selection in penalty methods for imposing the no-slip condition 
weakly. Formula (11) suggests tha t  the penalty parameter  ~ in the methods of, e.g., [13,17] should 
be 

where h is the local mesh width near 0fL 

3. T H E  1/c~ th P O W E R  L A W  IN 3-D 

Next we consider the case of a turbulent boundary  layer. There are various theories of turbulent  
boundary  layer, e.g., [3,16,18]. Although the calculation can be done for other descriptions, we 
perfbrm it herein for power law layers (which is in accord with current views in the subject [18]). 

Consider the flat plane {(x, y, z) : x _> 0, y = 0} C ]R 3. The velocity u = (u, v, w) obeys the 
1 /~  th power law, a > 1, see [16, (21.4)], provided (time or ensemble averages of) the velocity is 
given by 

Uoo 0 < Y < U ,  
u =  ' - - v = w = O, f o r 0 _ y ,  

Uoo,  U < Y ,  

where the boundary  layer thickness ff = ~(x) is, see [16, (21.8)], 

U(x) =- 0.37x ( U o c x  Re) -1/5 , z ~ 0, 

and Uc¢ is the free stream velocity. One of the most  common laws is given by a = 7. 
We consider the model si tuation of a reference plate of nondimensional length one. Let ft C R 3 

be the half space 
a = { ( x , y , z )  e R 3, y > 0 } .  
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Thus, 0gt is the plane {y = 0}. In order to handle this situation, we have to eliminate the 
x-dependence in ~/by averaging in the x-direction. Since the problem is nondimensionalized, the 
x-length is thus one. Define an averaged boundary layer thickness by 

fro 37 Re)_1/5 0 = ~(x) dx = ~6(Uoo 

Now, we define an x-averaged velocity by 

{ Uoo , 0_<y_<~,  

uoo, ~<y ,  

= % Re -1/~ . (15) 

v = w = O ,  for 0 < y. 

Let n = ( 0 , - 1 , 0 )  be the outward pointing normal vector with respect to f~ on {y = 0} 
and 7"1 = (1, 0, 0), ~'2 = (0, 0, 1) be an orthonormal  system of tangential  vectors. All velocity 
components are extended by zero outside f~. We have obviously ~ = ~ = 0 and the slip with 
friction boundary  condition (3) thus simplifies to 

~3(5, Re)fi - Re -1 ~ = 0, on {y = 0}, 
u y  

thus, 

0 k  z ~(x,  0, ) (16) 
t3(5, Re) = Re -1 fi(x,O,z) " 

We obtain, using (26), (27), and (34), 

~(z ,  o, z) = (g~ • u)(x,  o, z) 

× exp ( - ~ ( )  dy ' / -oo exp ( - ~ 2  (x') 2) dx' 

• f ° ~  exp ( - ~ 2 ( z ' )  2) dz' 
, / - - o o  

oo ~ ( ~ (x')2h dx' + exp -- ( y , )2  dy' exp \-~-~ ] 
OG OO 

+ [ 1 - e r f ( ~ - - ~ ) ]  } • 

exp 

(17) 

To compute the numerator  in (16), we note first tha t  differentiation and convolution commute 
because the functions have been extended off the flow domain so as to retain one weak L 2 
derivative, i.e., 

0~ Ou 
Oy g~ * -~y" 
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A straightforward computation using (26), (27), and (34) gives 

O~t Ou 
~ ( x , O , z )  = g~ • ~ ( x , O , z )  

= U~ \527r) 

[~o~ 1 (~/1/a ~ f~ x 

x _ o o e x p ( - ~ ( z ' ) 2 )  dz' 

, ,  - r  . 

The slip coefficient fl(6, Re) given in (16) can now be computed by (17) and (18) 

fl(5, Re) = Re- 1 --~- x r - r  G '  

\ ~ ]  \ - - ~ a  ( x / ~ 6 ) ) 1  + T r l / 2 ( - ~ / ~ / a [ 1 - e r f ( - - ~ ) l  } 

(18) 

PROPOSITION 3.1. Let fl(6, Re) be given as in (19). I f  Re is constant, then 

lira 6fl(5, Re) = x/~ r (1/(2~)) 
~--.0 a Re F ((a + 1)/(2a)) '  

I f  6 is constant, then 

lim Re fl(5, Re) - 2x/~ R~-~ 5V/-~' 

consequently ] ~  Z(5, Re) = oo. (20) 

consequently lim fl(6, Re) = O. 
Re ---* c<) 

PROOF. From (33) and by the definition of the Gamma function follows 

~0 x lim (r(a) - r(a,  z)) = lim exp( - t ) t  a-1 dt = O, 
x---*0 x---*0 

// lim (F(a) - F(a, x)) = lim exp(- t ) t  ~-1 dt = F(a). 

(22) 

(23) 

Let Re be fixed and consider the last factor in (19). The application of (23) gives that the 
numerator tends to F(1/(2a)) as 5 --* 0 and the first term of the denominator tends to F((c~ + 
1)/(2a)). Applying three times the rule of Bernoulli-l'Hospital proves 

lim I - erf = 0, 
x---*0 

a > 0 .  

Thus, the second term in the denominator tends to zero and hence the last factor in (19) tends 
to r (1 / (2a ) ) / r ( (a  + 1)/(2a)). This proves (20). 

(21) 

REMARK 3.1. Considering the 1/Oz th power law in 2-D under the same geometric situation as in 
Section 2 gives the same results as in 3-D, i.e., fi(x, 0) is equal to expression (17) and at is 
equal to expression (18). 

(19) 
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Also, (21) can be proved by the rule of Bernoulli-l'Hospital. The differentiation of the Gamma 
and the incomplete Gamma function uses (33) and the rule for differentiating integrals with 
respect to the upper boundary. The derivative of the error function is obtained by (29). If 
the numerator and the denominator of the fraction, which is obtained as result of the rule of 
Bernoulli-l'Hospital, are multiplied with an appropriate power of Re, (21) follows by collecting 
terms. | 

The asymptotic behaviors in the case a = 7 are illustrated in Figure 3. 

REMARK 3.2. It is interesting that the limiting forms of the optimal linear friction coefficient 
are similar in the 3-D turbulent case to the ones in the 2-D laminar case. In some sense, this 
dimension independence indicates that the slip with friction condition (3) is the appropriate one 
and 6 and Re are the correct variables for the analysis. 

4. A N E A R  WALL M O D E L  
F O R  R E C I R C U L A T I N G  F L O W S  

The previous sections derived linear near wall models (i.e., friction coefficients/~) based upon 
a global Reynolds number. In recirculating flows, there are usually large differences between 
reference velocities in the free stream and in the recirculation regions. Thus, a linear NWM will 
tend to overpredict the friction in attached eddies and underpredict it away from attached eddies. 
The solution of this difficulty is to base the NWM upon the local Reynolds number as follows. 

The derivations in Sections 2 and 3 reveal that the predicted local slip velocity, fi - "~, is a 
monotone function of Re. Thus, the relationship can be inverted and inserted into the appropriate 
place in the derivation of the NWM to give a ~3 which depends on the local slip speed, 3 = 

3(,~, I a '  ÷l)- 
To carry out this program, we suppose the 1/7 TM power law holds. The calculations in Section 3 

reveal that the tangential velocity (17) can be written in the form 

with 

One finds 

a "0- I Uc~ { ~  (1)  1/2 (~) :/7 [r (¢) _ r (¢,~2)] + [1_ erf(~)]} (24) 

= g(~) 

_ > o .  
6 6 Re 1/5 

d~ - g ' ( ~ ) -  14v/-ff F - F  ,~2 <0 .  

This proves the following lemma. 

LEMMA 4.1. Let ft. r l  be given by (24). Then, ft. r: is a strictly monotone decreasing function 
of ~, hence a strictly monotone increasing of Re. Thus, an inverse function ~ = g-X([fi. ~h[) 
exists. 

An ideal NWM can thus be obtained by inverting this inverse function for Re in (19): ~ -- 
3(6,g-1([fi • "~[)). However, this is not easily used in practical calculations. Thus, we shall 
develop an accurate and simple approximate inverse to g(~) which still captures the correct 
double asymptotics. The idea to obtain a usable nonlinear friction coefficient consists in finding 
an approximation ~(~) of g(~) which can be easily inverted and replace ~ and Re in (19) by 
~-:(a.~). 

A careful examination of g(~) reveals that an appropriate approximation over 0 < ~ < oc is of 

the form 
Uo~ 

fi- T: ~ - 7  exp (-a~b) , a, b > 0. 
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(a). Behavior of/3(~, Re) with respect to ~ for constant Re(= 1), ~/(= 1), 3' = 6. 
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friction coefficient for fixed 5 1 
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10 2 10 4 10 6 
Re 

(b). Behavior of fl(~, Re) with respect of Re for constant 6(= 1), cn = 1, 3' ---- 6. 

Figure 3. 1/7 TM power law boundary layer. 

T h i s  gives 

¢ =  - In ( f i ' T 1 ) ) )  , R e = k ,  

T h e  cons t an t s  a and  b have  to  be chosen such t h a t  t he  a p p r o x i m a t i o n  of  (24) is t h e  bes t  in least  
squares  sense: find a, b > 0 such t h a t  
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~2" 1/2 (~)1/7 ( F ( 7 ) _ F ( ~ , ~ 2 ) )  + [ l _ e r f ( ~ ) ] _ e x p ( _ a ~ b  ) d ~ - * m i n .  (25) 

The left boundary ~z and the right boundary ~r of the integral have to be specified on the data 
of the given problem. If they are given, the optimal parameters can be approximated numerically. 
Such an approximation can be obtained in the following way. The interval [~l, ~r] is divided into N 
equal distance subintervals [~i, ~i+1] with ~0 - ~l and ~ = ~r. Then, (25) is replaced by: find 
a, b > 0 such that 

i=O 

The necessary condition for a minimum, that the derivatives with respect to a and b vanish, leads 
to a nonlinear system of two equations. This can be solved iteratively, e.g., by Newton's method. 
We give some examples for optimal parameters for some intervals in Table 1. These parameters 
were computed with N = 50000 using Newton's method. An illustration of the approximation is 
presented in Figure 4. 

Table 1. Opt imal  parameters  in (25) for different intervals [~l, ~r]. 

~l 5~ a b 
0 0.1 

0 1 

0 10 

0 100 

0 1000 

0 106 

1 10 

0.142864 1.00312 

0.137149 0.961851 

0.154585 0.497275 

0.238036 0.268180 

0.342360 0.174579 

0.689473 0.0812879 

0.170289 0.444825 

~ .  I tangentia! velocity ] . -] 

0.98 

0.96 

0.94 

0.92 

0.9 

0.88 

0 0.2 0.4 0.6 0.8 1 

(a) 
Figure 4. Funct ion (24) and its exponential  approximat ion according to Table 1, 
[~l, ~r] = [O, 1] (a), [~z, ~ ]  = [0,100] (b), U ~  -- 2. 
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(b) 

00 

Figure 4. (cont.) 

5. A N U M E R I C A L  I L L U S T R A T I O N  

It is known that  in flows with potential body forces and laminar initial conditions all vorticity 
is generated at the boundary. Thus, practical turbulent flow simulations only need to replicate 
three effects: 

(1) generation of eddies at walls, 
(2) interaction of eddies, and 
(3) decay of eddies. 

Obviously, the wall model used has the most critical role in the first. Thus, we study herein 
a simple, underresolved flow with recirculation caused by flow-boundary interaction: the flow 
across a step. The most distinctive feature of this flow is a recirculating vortex behind the step, 
see Figures 8 and 9 for illustrations. 

We will study the evolution of the position of the reattachment point of the recirculating 
eddy using a simple LES model-- the  Smagorinsky model. The only difference between the 
Navier-Stokes equations (NSE) and the Smagorinsky model (NSE + SMA) is in the viscous 
term. Whereas this term is ~7 • (2 Re -1 D(u)) in the Navier-Stokes equations (1), it has the form 

V .  ((2 Re -1 + c 9  IlD(u)lIF) D(u)) 

in the Smagorinsky model. Here, c s  is a positive constant (usually c s  ~ 0.01, see [1]) and I1" lip 
denotes the Frobenius norm of a tensor. We used c s  = 0.01 in the computations presented in this 
section. Although the Smagorinsky model is widely used, it has some drawbacks. These are well 
documented in the literature, e.g.~ see [19]. For instance, the Smagorinsky model constant c s  is an 
a p r i o r i  input and this single constant is not capable of representing correctly various turbulent 
flows. Another drawback of this model is that it introduces too much diffusion into the flow, 
e.g., see [20] or Figures 8 and 9. However, keeping the closure model fixed and testing various 
NWMs leads to valid conclusions while varying both would lead to a lot of data  with no clean 
comparison. 

The domain of the two-dimensional flow across a step is presented in Figure 5. Here we present 
results for a parabolic inflow profile, which is given by u = (u, v) T , with u -- y(10 - y)/25, v = 0. 
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4O 

inflow 10 outflow 

1 

5 [ - ] 1  

(0.0) 

Figure 5. Domain of two-dimensional channel with a step. 

Boundary condition (3) is prescribed on the top and bot tom boundary as well as on the step. 
The flow leaves the domain by an outflow boundary condition on the right side of the channel. 
The reattachment point is defined by the change of the sign of the tangential velocity on the 
bot tom boundary. The Smagorinsky model was applied with no-slip boundary conditions (NSE 
+ SMA + NOSLIP) and with boundary condition (3) (NSE + SMA + SWF). 

The computations were performed on various grids. For instance, for the fully resolved NSE + 
NOSLIP simulation, which is our "truth" solution, we used a fine grid whereas a much coarser 
grid has been used for NSE + SMA + SWF, NSE + SMA + NOSLIP, and NSE + SWF. The 
point is obviously to compare the performance of the various options in underresolved simulations 
by comparison against a "truth"/fully-resolved solution. 

The computations were performed with the code MooNMD; see [21,22] for descriptions of its 
basic components. The Navier-Stokes equations and the Smagorinsky model were discretized in 
time with the fractional-step P-scheme (an implicit scheme of second order) and in space with 
the Q 2 / P  disc finite-element method, i.e., the velocity is approximated by continuous piecewise 
biquadratics and the pressure by discontinuous piecewise linears. The coarse grid which was used 
in the computations (level 1) is given in Figure 6. The number of degrees of freedom on this grid 
is 2202 for the velocity and 768 for the pressure. The fine grid computations were performed on 
the grid which is obtained from the coarse grid after two uniform refinement steps (level 3). On 
this grid, there are 33,378 velocity degrees of freedom and 12,288 pressure degrees of freedom. 

Figure 6. Two-dimensional channel with a step, coarsest mesh (level 1). 

The results pictured in Figure 7 give strong, although admittedly very preliminary, support 
for the general form of the NWM. Indeed, the NSE + SMA + SWF test replicates exactly the 
reattachment length until the true eddy separates (just before t = 10) and the Smagorinsky eddy 
remains attached. Most remarkably, the underresolved NSE + SWF simulation produces over 
time a more accurate description of the reattachment length than the NSE + SMA + NOSLIP 
simulation. 

Clearly, the Smagorinsky model is too stabilizing: eddies which should separate and evolve re- 
main attached and attain steady state. However, regarding the main point of study, the NWM (3), 
it is also clear that  this NWM improved the estimate of the reattachment length in all simulations. 
Further studies and tests of this approach are thus well merited! 

A P P E N D I X  

The Appendix provides a collection of some formulas which have been used in the derivation 
and the analysis of the friction coefficients. 
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F i g u r e  8. T w o - d i m e n s i o n a l  c h a n n e l  w i t h  a s t e p ,  t h e  s t r e a m l i n e s  o f  t h e  s o l u t i o n  for  
N S E  + N O S L I P  o n  t h e  f ines t  m e s h  (a)  a n d  N S E  + S M A  + N O S L I P  o n  t h e  c o a r s e s t  
m e s h  (b)  a t  t i m e  t = 40,  R e  = 600.  
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F i g u r e  9. T w o - d i m e n s i o n a l  c h a n n e l  w i t h  a s tep ,  t he  s t r e a m l i n e s  of t h e  s o l u t i o n  for 
N S E  + S W F  on t he  coa r ses t  m e s h  (left) and  N S E  + S M A  + S W F  on  t h e  coa r se s t  
m e s h  ( r ight )  a t  t i m e  t = 40, Re  = 600. 

fob 1 f~- f , exp ( -ax  2) dx = ~ V a  er (bx/-a) 

where erf (.) denotes the error function. Recall that 

and 

a > 0 ,  

/o exp ( -ax ' )  dx --- -~ , F exp ( - a x  2) dx = 
oo 

]o exp(-a(x-b) ~) dx= ~ ( l + e r f 0 ~ ) )  

The derivative of the error function is easily calculated from (26) to be 

d 2a 
~ erf (ax + b) = ~ e x p  ( - (ax  + b)2). 

A second useful type of integral is 

e x p ( - ( a x  2 + b x + c ) )  d x = ~  e x p \  4a ] 1 - e r f  ~ , 

with a > O, see [23, Chapter 7.4]. It follows that 

oc = 1  7r 
fO exp ( -  (a(x - c)2 +bx) ) dx ~ f ~ e x P ( 4 b - ~ - b c ) [ 1 - e r f ( ~ - ~ - v ~ c ) ] .  

The third type of integral which will be needed has the form 

~0 b exp ( -ax  2) dx, a, > O, c > - X c with b 1. 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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The substitution t = ax  2 yields 

fO b 1 lab2 - a  -(~+1)/2 ] e x p ( - t ) t  (c+1)/2-1 dr. (32) exp ( - a x  2) x ~ dx  = 2 Jo 

This integral can be evaluated by the Gamma function F(d) and the incomplete Gamma function 
F(d, x). By the definition of the incomplete Gamma function, see [23, Chapter 6.5], we have 

~0 x F(d, x) = F(d) - exp(- t ) t  d-1 dr, d > 0. (33) 

Combining (32) and (33) gives 

b _= l a _ ( c + l ) / 2  [ F ( c 2 _ _ . _ ~ I ) _ i , ( ~ . . ~  a b 2 ) ]  fo eXp x (34) 

R E F E R E N C E S  
1. P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer-Verlag, Berlin, (2001). 
2. V. John and W.J. Layton, Analysis of numerical errors in large eddy simulation, SIAM J. Numer. Anal. 40, 

995-1020, (2002). 
3. S.B. Pope, Turbulent Flows, Cambridge University Press, (2000). 
4. J.S. Baggett, F. Nicaud, T. Bewley, J. Gullbrand and O. Botella, Suboptimal control based wall models for 

LES--Including transpiration velocity, In Proc. 2000 Summer Program, pp. 331-342, Center Turbul. Res., 
,Stanford University, CA, (2000). 

5. O.V. Vasilyev, T.S. Lund and P. Moin, A general class of commutative filters for LES in complex geometries, 
Journal of Computational Physics 146, 82-104, (1998). 

6. G.P. Galdi and W.J. Layton, Approximation of the larger eddies in fluid motion II: A model for space filtered 
flow, Math. Models and Meth. in Appl. Sciences 10 (3), 343-350, (2000). 

7. C.L.M.H. Navier, Mdmoire sur les lois du mouvement des fluiales, Mdm. Acad. Royal Society 6, 389-440, 
(1823). 

8..J.C. Maxwell, Phil. Trans. Royal Society, (1879). 
9. V. John, Slip with friction and penetration with resistance boundary conditions for the Navier-Stokes 

equations--Numerical tests and aspects of the implementation, J. Comp. Appl. Math. 147, 287-300, (2002). 
10. T. Iliescu, V. John and W.J. Layton, Convergence of finite element approximations of large eddy motion, 

Num. Meth. Part. Diff. Equ. 18, 689-710, (2002). 
11. T. Clopeau, A. Mikelic and R. Robert, On the vanishing viscosity limit for the 2d incompressible Navier-Stokes 

equations with the friction type boundary conditions, Nonlinearity 11, 1625-1636, (1998). 
12. C. Pards, Approximation de la solution des equations d'un modele de turbulence par une methode de 

Lagrange-Galerkin, Rev. Mat. Apl. 15, 63-124, (1994). 
13. A. Liakos, Weak imposition of boundary conditions in the Stokes and Navier-Stokes equation, Ph.D. Thesis, 

'Univ. of Pittsburgh, (1999). 
14. J.S. Smagorinsky, General circulation experiments with the primitive equations, Mon. Weather Review 91, 

99-164, (1963). 
15. T. Knopp, Finite-element simulation of buoyancy-driven turbulent flows, Ph.D. Thesis, Univ. of G5ttingen, 

Germany, (2003). 
16. H. Schlichting, Boundary-Layer Theory, McGraw-Hill, New York, (1979). 
17. W.J. Layton, Weak imposition of "no-slip" conditions in finite element methods, Computers Math. Applic. 

38, 129-142, (1999). 
18. G.I. Barenblatt  and A.J. Chorin, New perspectives in turbulence: Scaling laws, asymptotics, and intermit- 

tency, SIAM Review 40 (2), 265-291, (1998). 
19. Y. Zang, R.L. Street and J.R. Koseff, A dynamics mixed subgrid-scale model and its application to turbulent 

recirculating flows, Phys. Fluids A 5, 3186-3196, (1993). 
20. T. Iliescu, V. John, W.J. Layton, G. Matthies and L. Tobiska, A numerical study of a class of LES models, 

7nt. J. Comput. Fluid Dyn. 17, 75-85, (2003). 
21. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for 

a Class of LES Models, Volume 34 of Lecture Notes in Computational Science and Engineering, Springer- 
Verlag, Berlin, (2003). 

22. V. John and C. Matthies, MooNMD--A program package based on mapped finite element methods, Comput. 
Visual. Sci. 6, 163-170, (2004). 

23. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Math- 
ematical Tables, 9 TM edition, Dover, New York, (1965). 


