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Stabilized finite element methods for convection-dominated problems require the choice of appropriate
stabilization parameters. From numerical analysis, often only their asymptotic values are known. This
paper presents a general framework for optimizing stabilization parameters with respect to the minimi-
zation of a target functional. Exemplarily, this framework is applied to the SUPG finite element method
and the minimization of a residual-based error estimator, an error indicator, and a functional including
the crosswind derivative of the computed solution. Benefits of the basic approach are demonstrated by
means of numerical results.
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1. Introduction

The numerical solution of challenging problems in various engi-
neering applications is in general not possible with standard meth-
ods that are based, e.g., on central finite differences or the Galerkin
finite element method. More sophisticated schemes become neces-
sary that are designed to tackle the special difficulties of the under-
lying problem.

An example, that will be considered in this paper, are scalar
convection-dominated convection–diffusion equations. Solutions
of these equations exhibit very fine structures, so-called layers,
which cannot be resolved on meshes that are not extremely fine,
at least locally. Standard discretizations lead to solutions that are
globally polluted by large spurious oscillations. In practice, stabi-
lized methods are used. These methods introduce artificial diffu-
sion. The difficulty consists now in defining the correct amount
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of diffusion at the correct positions in the correct directions (aniso-
tropic diffusion) such that numerical solutions with sharp layers
and without spurious oscillations are obtained. A method that is
optimal with respect to all criteria does not exist yet. Many pro-
posed stabilized methods include so-called stabilization parame-
ters. Often, the asymptotic choice of these parameters is known,
e.g., that they should be proportional to the local mesh width.
However, in practice, the proportionality factor has to be chosen.
There is the experience that different choices of such factors might
lead to considerably different numerical solutions. Moreover, the
asymptotic choice of the stabilization parameters is based on glo-
bal stability and convergence analysis. Local features of solutions,
like layers, are not taken into account in this analysis.

We would like to mention a second example that demonstrates
the difficulties of choosing parameters in numerical simulations –
Large Eddy Simulation (LES) of turbulent flows. Turbulent flow
simulations require the use of some turbulence model. An often
used, so-called eddy viscosity model, is the Smagorinsky model
[40]. This model is based on some insight into the physics of turbu-
lent flows and it finally introduces a nonlinear viscosity into the
discrete equations. It is rather easy to implement and very well
understood from the point of view of mathematical analysis [32].
The derivation of the Smagorinsky model is based on some propor-
tionality relations such that at the end a proportionality factor oc-
curs. Experience shows that the use of a constant for this factor
does not lead to good results. Instead, this factor has to be adapted
to the local features of the turbulent flow field. An approach in this
direction is the dynamic Smagorinsky model [12,33]. Despite all
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drawbacks, e.g., see [24], the dynamic Smagorinsky model is one of
the most often used and most successful LES models. Nowadays,
there is another approach to control the influence of the Smagorin-
sky model – Variational Multiscale (VMS) methods. These methods
try to select appropriate scales to which this model is applied
[20,15,25,26]. Turbulent flow simulations are a typical example
where principal forms of models are known but the results ob-
tained with these models depend on the correct setting of param-
eters. There are many more numerical methods that require the
choice of parameters and for which an a posteriori choice would
greatly improve the ability to use them in applications. The a pos-
teriori choice of parameters seems to be a widely open and chal-
lenging task in scientific computing.

The idea of choosing parameters in numerical methods a poste-
riori is not new, the dynamic Smagorinsky model was already
mentioned. In essence, this method computes two (or more) dis-
crete solutions in different ways and the parameter choice is based
on comparing them. This idea was recently carried over to scalar
convection–diffusion equations in [1], based on the work from
[35]. In this approach, the different solutions are computed on
coarser mesh(es). On the coarser meshes, information on the
respective stabilization parameters are derived which are used to
update the stabilization parameters on the fine mesh. A severe
drawback of this approach is that the dimension of the parameter
space is not allowed to exceed the dimension of the respective test
function space. Therefore, the approach cannot be applied to the
optimization of stabilization parameters in discretizations with
first order finite elements as considered in this paper. Moreover,
the methodology seems to be only simple for a few globally con-
stant parameters, which is explicitly not the goal of our approach.
Another method which determines the stabilization parameter on
the basis of two solutions was presented in [36]. In this method,
the residuals and their derivatives are used to compute a charac-
teristic length scale which enters the formula for the stabilization
parameter. The computations of the stabilization parameters in
[36] are restricted to convection–diffusion equations in one dimen-
sion and a generalization to more dimensions is not obvious. A
method for hyperbolic conservation laws in one dimension can
be found in [10]. In this paper, the streamline-diffusion stabiliza-
tion parameter and an adaptively refined grid are computed a pos-
teriori. The adaptive algorithm uses the Dual Weighted Residual
(DWR) approach [2,3] with a backward-in-time dual problem. An
iterative procedure based on equilibrating components of the error
estimator is used to compute the stabilization parameters and the
grids. This method was extended to one-dimensional nonlinear
convection–diffusion–reaction equations in [18].

The present paper considers the Streamline-Upwind Petrov–
Galerkin (SUPG) finite element method for scalar convection-
dominated convection–diffusion equations introduced in [21,4].
Although a number of other stabilized finite element methods have
been developed in the past decades, the SUPG method is still the
standard approach. In essence, this method adds numerical diffu-
sion in streamline direction. The amount of diffusion depends on
local stabilization parameters. There are different formulae for
these parameters whose asymptotics are the same, see [27] for a
discussion of parameter choices. The properties of solutions ob-
tained with the SUPG method are well known: sharp layers at
the correct positions are computed, but non-negligible spurious
oscillations occur in a vicinity of layers. These oscillations make
the use of the SUPG method in applications difficult as they corre-
spond in general to unphysical situations, like negative concentra-
tions. There have been a large number of attempts to improve the
SUPG method in order to get rid of these oscillations while preserv-
ing its good properties. However, none of these so-called Spurious
Oscillations at Layers Diminishing (SOLD) methods turned out to
be entirely successful [27,28].
To improve the solutions obtained with the SUPG method, the
present paper pursues a different approach than the SOLD meth-
ods. It relies on the optimization of the stabilization parameter,
however, in contrast to [1,10,18,36,35], the parameter optimiza-
tion is formulated as minimization of some functional. This is a
nonlinear constrained optimization problem that has to be solved
iteratively. A key component of this approach consists in the effi-
cient computation of the Fréchet derivative of the functional with
respect to the stabilization parameter. This is achieved by utilizing
an adjoint problem with an appropriate right-hand side. The aim of
the present paper is to provide a new general framework for the
optimization of parameters in stabilized methods for convection–
diffusion equations and to demonstrate exemplarily the benefits
of this approach. A comprehensive discussion of the choice of
appropriate target functionals is postponed to the second part of
this paper.

The paper is organized as follows. Section 2 presents the equa-
tion and the SUPG method. A general approach for computing the
Fréchet derivative of a functional that depends on the numerical
solution with respect to parameters in the numerical method is
presented in Section 3. This approach is applied to the SUPG meth-
od in Section 4. Section 5 contains a proof of concept. It is demon-
strated that errors to known solutions can be reduced by using as
functional the error in some norm. For problems with unknown
solutions, Section 6 illustrates the application of the a posteriori
parameter choice based on the minimization of a residual-based
a posteriori error estimator, an error indicator, and a functional
that includes the crosswind derivative of the computed solution.
The most important conclusions, open problems, and an outlook
are presented in Section 7. Throughout the paper, standard nota-
tions are used for usual function spaces and norms, see, e.g., [6].
The notation (�, �)G with a set G � Rd; d ¼ 1;2;3, is used for the in-
ner product in the space L2(G) or L2(G)d, with (�, �) = (�, �)X.

2. The convection–diffusion problem and its SUPG stabilization

Consider the scalar convection–diffusion problem

�eDuþ b � ruþ cu ¼ f in X; u ¼ ub on CD; e
ou
on
¼ g on CN:

ð1Þ

Here, X � Rd; d ¼ 2;3, is a bounded domain with a polyhedral
Lipschitz–continuous boundary oX and CD, CN are disjoint and
relatively open subsets of oX satisfying measd�1(CD) > 0 and
CD [ CN ¼ oX. Furthermore, n is the outward unit normal vector
to oX, e > 0 is a constant diffusivity, b 2W1,1(X)d is the flow veloc-
ity, c 2 L1(X) is the reaction coefficient, f 2 L2(X) is a given outer
source of the unknown scalar quantity u, and ub 2 H1/2(CD),
g 2 L2(CN) are given functions specifying the boundary conditions.
The usual assumption that

c � 1
2

divb P c0 P 0 ð2Þ

with a constant c0 is made. Moreover, it is assumed that

fx 2 oX; ðb � nÞðxÞ < 0g � CD; ð3Þ

i.e., the inflow boundary is a part of the Dirichlet boundary CD.
This paper studies finite element methods for the numerical

solution of (1). To this end, (1) is transformed into a variational for-
mulation. Let ~ub 2 H1ðXÞ be an extension of ub (i.e., the trace of ~ub

equals ub on CD) and let

V ¼ fv 2 H1ðXÞ; v ¼ 0 on CDg:

Then, a weak formulation of (1) reads: Find u 2 H1(X) such that
u� ~ub 2 V and

aðu;vÞ ¼ ðf ;vÞ þ ðg;vÞCN 8v 2 V ; ð4Þ
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where

aðu;vÞ ¼ eðru;rvÞ þ ðb � ru;vÞ þ ðcu;vÞ:

In view of (2) and (3), the weak formulation (4) has a unique
solution.

Let fT hgh be a family of triangulations of X parameterized by
positive parameters h whose only accumulation point is zero.
The triangulations T h are assumed to consist of a finite number
of open (mapped) polyhedral subsets K of X such that
X ¼

S
K2T h

K and the closures of any two different sets in T h are
either disjoint or possess either a common vertex or a common
edge or (if d = 3) a common face. Further, it is assumed that any
edge (face) of T h which lies on oX is contained either in CD or in
CN .

For each h, a finite element space Wh � H1(X) defined on T h and
approximating the space H1(X) in the usual sense is introduced,
see, e.g., [6]. Furthermore, for each h, let ~ubh 2Wh be a function
whose trace on CD approximates ub. Finally, we set Vh = Wh \ V.
Then, the Galerkin discretization of (1) reads: Find uh 2Wh such
that uh � ~ubh 2 Vh and

aðuh; vhÞ ¼ ðf ;vhÞ þ ðg;vhÞCN 8vh 2 Vh: ð5Þ

Again, this problem is uniquely solvable. As discussed in the intro-
duction, the Galerkin discretization (5) is inappropriate if convec-
tion dominates diffusion since in this case the discrete solution is
usually globally polluted by spurious oscillations. An improvement
can be achieved by adding a stabilization term to the Galerkin dis-
cretization. One of the most efficient procedures of this type is the
SUPG method [21,4] that is frequently used because of its stability
properties, its higher-order accuracy in appropriate norms, and its
easy implementation, see, e.g., [37].

The SUPG stabilization depends on a stabilization parameter
that will be denoted by yh in the following. It is assumed that all
admissible stabilization parameters are contained in a finite-
dimensional space Yh � L1(X). For example, Yh can consist of
piecewise constant functions with respect to the triangulation T h.

The SUPG discretization of (1) reads: Find uh 2Wh such that
uh � ~ubh 2 Vh and

aðuh; vhÞ þ shðyh; uh; vhÞ ¼ ðf ;vhÞ þ ðg; vhÞCN þ rhðyh; vhÞ 8vh 2 Vh;

ð6Þ

where

shðyh; uh; vhÞ ¼ ð�eDhuh þ b � ruh þ cuh; yhb � rvhÞ;
rhðyh; vhÞ ¼ ðf ; yhb � rvhÞ:

The SUPG method requires that the functions from Wh are H2 on
each mesh cell of T h, which is satisfied for common finite element
spaces. The notation Dh denotes the cell-wise defined Laplace
operator.

A detailed discussion of ways that are used in practice for
choosing the stabilization parameter yh in the case of first order fi-
nite elements can be found in [27]. Modifications for higher order
finite elements are discussed, e.g., in [7,9,11]. A common choice is,
for any mesh cell K 2 T h,

yhjK ¼
hK

2pjbj nðPeKÞ with nðaÞ ¼ coth a� 1
a
; PeK ¼

jbjhK

2pe
; ð7Þ

where hK is the cell diameter in the direction of the convection vec-
tor b, p is the polynomial degree of the local finite element space,
and PeK is the local Péclet number which determines whether the
problem is locally (i.e., within a particular mesh cell) convection
dominated or diffusion dominated. Note that, generally, the param-
eters hK, PeK and yhjK are functions of the points x 2 K. The evalua-
tion of the cell diameter in the direction of the convection is
discussed also in [27].
If (2) holds with c0 > 0, a sufficient condition for the ellipticity of
the bilinear form on the left-hand side of (6) in a standard SUPG
norm is

0 6 yhðxÞ 6
1
2

min
ðdiamðKÞÞ2

ec2
inv

;
c0

kck2
0;1;K

( )
; x 2 K; ð8Þ

see [37], where diam(K) denotes the diameter of K, cinv is a constant
from the inverse inequality

kDvhk0;K 6 cinv½diamðKÞ��1jvhj1;K 8vh 2 Vh;

and k�k0,1,K denotes the L1(K) norm. The first term in the minimum
in (8) does not appear for P1 finite elements and for Q1 finite ele-
ments on rectangles since in these cases Dhvh = 0 for all vh 2 Vh.

An important class of convection–diffusion problems possesses
the properties divb = 0, e.g., if b is the velocity field of an incom-
pressible fluid, and c = 0. Hence, (2) holds only with c0 = 0. For this
class of problems, one can prove the ellipticity of the SUPG bilinear
form (in a weaker SUPG norm than for c0 > 0) if

0 6 yhðxÞ 6
ðdiamðKÞÞ2

ec2
inv

; x 2 K: ð9Þ

For the same reason as above, the bound on the right-hand side of
(9) is not needed if P1 finite elements or Q1 finite elements on rect-
angles are used.

In the special case of a constant convection field and a uniform
grid, the stabilization parameter given by (7) is the same in all
mesh cells, independently of local features of the solution, like lay-
ers. This does not seem to be an optimal choice. This paper will
present and study an approach for choosing the values of the sta-
bilization parameter locally, based on the minimization of a func-
tional that measures or estimates the accuracy of the computed
solution.

3. Optimization of parameters in numerical methods with
respect to the minimization of a functional

Let us assume that a numerical method for the solution of (1) is
given and let the method depend on a parameter yh 2 Yh. An exam-
ple is the SUPG method (6). Let Dh � Yh be an open set such that, for
any yh 2 Dh, the considered method has a unique solution uh 2Wh.
To emphasize that uh depends on yh, we shall write uh(yh) instead
of uh in the following. Let Ih : Wh ! R be a functional such that

UhðyhÞ :¼ IhðuhðyhÞÞ

represents a measure of the error of the discrete solution uh(yh) cor-
responding to a given parameter yh. The aim is to compute a param-
eter yh 2 Dh for which Uh attains a minimum on Dh or is near to a
minimum (or the infimum) of Uh on Dh. This nonlinear minimiza-
tion problem has to be solved iteratively. Reasonable iterative
schemes require at least information on how Uh changes if the
parameter yh is changed, i.e., on the Fréchet derivative of Uh. An effi-
cient way to compute this derivative is needed. Such a way will be
explained in this section.

For any yh 2 Dh, it holds uhðyhÞ ¼ ~uhðyhÞ þ ~ubh with ~uh : Dh ! Vh.
Thus, one does not need to consider the space Wh in the optimiza-
tion process but can work with the space Vh, which is more
convenient.

Denote eIhðwhÞ ¼ Ihðwh þ ~ubhÞ for any wh 2 Vh. Then eIh : Vh ! R

and

UhðyhÞ ¼ eIhð~uhðyhÞÞ 8yh 2 Dh:

Let us assume that the mappings eIh ¼ eIhðwhÞ and ~uh ¼ ~uhðyhÞ are
Fréchet–differentiable. The Fréchet derivatives are denoted by
DeIh : Vh ! V 0h and D~uh : Dh ! LðYh;VhÞ. Then, the Fréchet derivative
DUh : Dh ! Y 0h of Uh exists and it is given by



V. John et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2916–2929 2919
DUhðyhÞ ¼ DeIhð~uhðyhÞÞD~uhðyhÞ 8yh 2 Dh: ð10Þ

The naive way of using this formula for computing DUh(yh) is very
inefficient as the computation of D~uhðyhÞ requires the solution of
dim Yh systems of dim Vh algebraic equations.

The problem of efficiently evaluating a derivative of form (10) is
well known, e.g., from optimal control of partial differential equa-
tions. There is a way for obtaining this derivative that is based on
an appropriate adjoint problem, e.g., see [42]. This way will be ap-
plied to the situation considered in this paper. The minimization of
Uh occurs under the condition that uh(yh) should fulfill the discret-
ized partial differential equation (6), i.e., for a residual operator
Rh : Vh � Yh ! V 0h holds

Rhð~uhðyhÞ; yhÞ ¼ 0 8yh 2 Dh: ð11Þ

For the SUPG method (6), the operator Rh is given by

hRhðwh; yhÞ;vhi ¼ aðwh þ ~ubh; vhÞ þ shðyh; wh þ ~ubh;vhÞ
� ðf ; vhÞ � ðg;vhÞCN � rhðyh; vhÞ
8vh;wh 2 Vh; yh 2 Yh:

Differentiating (11) with respect to yh leads to

@wRhð~uhðyhÞ; yhÞD~uhðyhÞ þ @yRhð~uhðyhÞ; yhÞ ¼ 0 8yh 2 Dh; ð12Þ

provided that the mapping Rh = Rh(wh,yh) is Fréchet–differentiable.
Note that @wRh : Vh � Yh ! L Vh;V

0
h

� �
and @yRh : Vh � Yh !

L Yh;V
0
h

� �
. Assume that there is a mapping wh: Dh ? Vh such that

hDUhðyhÞ; ~yhi ¼ �hð@yRhÞð~uhðyhÞ; yhÞ~yh;whðyhÞi 8yh 2 Dh; ~yh 2 Yh:

ð13Þ

Then, according to (12), one obtains

hDUhðyhÞ; ~yhi ¼ hð@wRhÞð~uhðyhÞ; yhÞD~uhðyhÞ~yh;whðyhÞi
¼ hð@wRhÞ0ð~uhðyhÞ; yhÞwhðyhÞ;D~uhðyhÞ~yhi
8yh 2 Dh; ~yh 2 Yh;

where the adjoint operator is defined by

hð@wRhÞ0ðwh; yhÞvh; ~vhi ¼ hð@wRhÞðwh; yhÞ~vh;vhi
8vh; ~vh;wh 2 Vh; yh 2 Yh:

On the other hand, from (10) follows that

hDUhðyhÞ; ~yhi ¼ hDeIhð~uhðyhÞÞD~uhðyhÞ; ~yhi

¼ hDeIhð~uhðyhÞÞ;D~uhðyhÞ~yhi 8yh 2 Dh; ~yh 2 Yh:

The two representations of DUh(yh) suggest to define wh(yh) as the
solution of the adjoint problem, cf., e.g., [13,38],

ð@wRhÞ0ð~uhðyhÞ; yhÞwhðyhÞ ¼ DeIhð~uhðyhÞÞ 8yh 2 Dh: ð14Þ

Then wh(yh) satisfies (13) and hence the Fréchet derivative of Uh is
given by

DUhðyhÞ ¼ �ð@yRhÞ0ð~uhðyhÞ; yhÞwhðyhÞ 8yh 2 Dh: ð15Þ

The adjoint operator is defined by

hð@yRhÞ0ðwh; yhÞvh; ~yhi ¼ hð@yRhÞðwh; yhÞ~yh;vhi
8vh;wh 2 Vh; yh; ~yh 2 Yh:

To clarify the approach, we would like to give its algebraic version.
All operators and functionals are defined using finite-dimensional
spaces, such that their Fréchet derivatives can be represented
by matrices and vectors. Let yh 2 Dh be given and denote by
DUh 2 R1�dimYh and DeIh 2 R1�dimVh the vectors representing the deri-
vatives DUh(yh) and DeIhð~uhðyhÞÞ, respectively. Furthermore, let
D~uh 2 RdimVh�dimYh , @wRh 2 RdimVh�dimVh , and @yRh 2 RdimVh�dimYh be
the matrices representing the derivatives D~uhðyhÞ, @wRhð~uhðyhÞ; yhÞ,
and @yRhð~uhðyhÞ; yhÞ, respectively. Then, equation (10) holds true if
and only if

DUhy ¼ DeIhD~uhy 8 y 2 RdimYh : ð16Þ

Relation (12) is equivalent to

vT@wRhD~uhy ¼ �vT@yRhy 8 v 2 RdimVh : ð17Þ

The goal of the adjoint approach consists in reformulating the right-
hand side of (16). To this end, choose v in (17) such that
vT@wRh ¼ DeIh, i.e.,

w :¼ v ¼ ð@wRhÞ�T DeIT
h ;

which is the algebraic version of (14). Inserting w into (16) and
using (17) gives

DUhy ¼ wT@wRhD~uhy ¼ �wT@yRhy 8 y 2 RdimYh :

This is equivalent to

DUh ¼ �wT@yRh;

that is the algebraic version of (15).

4. Application to the SUPG method

For the SUPG method (6), there are

hð@wRhÞðwh; yhÞ~vh; vhi ¼ að~vh; vhÞ þ shðyh; ~vh;vhÞ;
hð@yRhÞðwh; yhÞ~yh; vhi ¼ shð~yh; wh þ ~ubh; vhÞ � rhð~yh; vhÞ

for any yh; ~yh 2 Yh and vh; ~vh;wh 2 Vh. Thus, for any yh 2 Dh, the aux-
iliary function wh(yh) 2 Vh is the solution of

aðvh;whðyhÞÞ þ shðyh; vh;whðyhÞÞ ¼ hDeIhð~uhðyhÞÞ;vhi 8vh 2 Vh

ð18Þ

and the Fréchet derivative of Uh is given by

hDUhðyhÞ; ~yhi ¼ �shð~yh; uhðyhÞ;whðyhÞÞ þ rhð~yh; whðyhÞÞ 8~yh 2 Yh:

We define Yh as the space of piecewise constant functions. After
having solved (18) for a given stabilization parameter yh, the Fré-
chet derivative of Uh at yh with respect to the stabilization param-
eter is available.

The most popular [34] quasi-Newton method for solving a non-
linear minimization problem is the BFGS (Broyden, Fletcher, Gold-
farb, Shanno) method [5,8,14,39]. This method requires only the
gradient of the functional with respect to the stabilization param-
eter. By measuring the changes of the gradients, it constructs a
model for the functional that delivers information to obtain super-
linear convergence. The cost consists in the storage of the gradi-
ents, which are piecewise constant finite element functions. For
practical reasons, this can be done only for a limited number of
gradients. The resulting algorithm is called limited memory BFGS
or L-BFGS, see Algorithm 7.5 in [34]. This algorithm is used in the
simulations presented below. We could observe a dramatic improve-
ment of efficiency compared with the application of the steepest
descent method which was used in preliminary numerical studies.

The L-BFGS method proposes a search direction for updating the
stabilization parameter in the kth iteration, k P 0. In addition, a
step length a(k) is needed. In our implementation of the method,
the step length is determined such that the decrease of the func-
tional Ih is locally maximized. To this end, the initial guess for each
step length a(k) is a value aini. If the application of aini leads to a
reduction of the target functional, the step length will be doubled.
This step is repeated as long as the target functional decreases. If
the application of aini does not lead to a reduction of the value of
the target functional, aini will be divided by 2. The reduction of aini



Fig. 1. Types of triangulations used in the computations (left to right): Grid 1, Grid 2, and Grid 3 (level 1).

Fig. 2. Example 5.1, L2(X) errors for different finite elements, comparison of
standard parameter choice (7) and the a posteriori choice based on minimizing the
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will be stopped if either a step length is found that leads to a de-
crease of Ih or if a minimal value amin for the step length is ob-
tained. The iteration stops either after reaching a prescribed
maximal number of iterations kmax or if the decrease of the target
functional becomes too slow. The concrete test for the last stopping
criterion is

Uh yðk�10Þ
h

� �
�Uh yðkÞh

� �
Uh yðk�10Þ

h

� � 6 dmin; k P 10:

If the computation of a search direction with L-BFGS is not success-
ful or if the proposed step length becomes smaller than amin, L-BFGS
is restarted.

Of course, before the solution with a proposed stabilization
parameter yðkþ1Þ

h is computed, the stabilization parameter is always
restricted to admissible values according to (8) and (9). The values
from [17] are used for cinv in (8) and (9).

In our numerical tests, the initial step length parameter was set
similarly to a proposal from [34]

að0Þini ¼ 10�6;

aðkÞini ¼max min 1;
DUhðyðk�1Þ

h ÞTDyðk�1Þ
h

DUhðyðkÞh Þ
TDyðkÞh

( )
;10�6

( )
; k P 1;

where DyðkÞh is the search direction proposed by the L-BFGS method
in the kth step. The minimal step length parameter was set to be
amin = 10�12, the maximal number of iterations was prescribed with
kmax = 10000 (which was never reached), at most 100 gradients in
the L-BFGS method were stored, and the parameter in the stopping
criterion was set to be dmin = 10�4. The stabilization parameter was
initialized with the standard choice (7). Most of the computations
were performed and double-checked with two codes, one of them
MooNMD [29].

5. Proof of concept: parameter optimization with respect to
errors

A common approach for supporting error estimates consists in
prescribing a solution of (1), that defines also the right-hand side
and the boundary conditions of (1), and measuring errors of the
numerical solution in certain norms. If errors can be measured, it
should be possible with the proposed methodology to compute a
SUPG stabilization parameter such that these errors are reduced
compared with the standard choice of the SUPG parameter (7). This
section studies this topic.

Numerical studies with respect to the error in the L2(X) norm
and the H1(X) semi norm were performed. For shortness, the de-
tailed presentation will be restricted to the error in the L2(X) norm

IhðwhÞ ¼ ku�whk2
0;X:

Then, the right-hand side of the adjoint problem (18) becomes

hDeIhð~uhðyhÞÞ; vhi ¼ �2ðu� uhðyhÞ;vhÞ: ð19Þ
At the end of this section, some remarks will be given on the error in
the H1(X) semi norm.

A difficulty consists in finding or defining examples that, on the
one hand, have a known solution and, on the other hand, possess
typical features of solutions of convection-dominated problems,
in particular layers. Below, results obtained with two examples de-
fined in [30] will be presented. The solutions of these examples de-
pend on the diffusion coefficient e, and so the right-hand sides do.
As already noticed in [31], high order quadrature rules are neces-
sary to keep the quadrature error for the right-hand side small in
the case of small e. For this reason, the diffusion coefficient was
chosen only three or four orders of magnitude smaller than the
convection in these examples.

Both examples are defined on the unit square. In the computa-
tions, triangular grids (Grid 1 in Fig. 1) with P1, P2, P3 finite ele-
ments and square grids (Grid 3) with Q1, Q2, Q3 finite elements
were used. Level 0 of Grid 1 consists of two triangles and level 0
of Grid 3 of one square. The grids were regularly refined using
so-called red refinement. A quadrature rule that is exact for poly-
nomials of degree 19 was used on triangles and a Gaussian quad-
rature rule that is exact for polynomials of degree 17 on squares.

Example 5.1 (Example with interior layer). This example is given
by X = (0,1)2, CD = oX, e = 10�4, b = (2,3)T, c = 2. The right-hand
side f and the Dirichlet boundary condition ub are prescribed such
that

uðx; yÞ ¼ 16xð1� xÞyð1� yÞ

� 1
2
þ arctan½2e�1=2ð0:252 � ðx� 0:5Þ2 � ðy� 0:5Þ2Þ�

p

 !
L (X) error.



Fig. 3. Example 5.1, a posteriori defined stabilization parameters; top left: P1, standard parameter yh = 1.294391e � 3; top right: Q1, standard parameter yh = 1.294391e � 3;
bottom left: P2, standard parameter yh = 6.433494e � 4; bottom right: Q2, standard parameter yh = 6.433494e � 4; all level 7 (visualization by projection to P1 or Q1 finite
element).

Fig. 4. Example 5.2, L2(X) errors for different finite elements, comparison of
standard parameter choice (7) and the a posteriori choice based on minimizing the
L2(X) error.
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is the solution of (1). The solution has the form of a circular hump in
the center of the domain.

A comparison of the L2(X) errors obtained with the standard
parameter choice (7) and the a posteriori choice based on the ad-
joint problem with right-hand side (19) is presented in Fig. 2. It
can be observed that the a posteriori parameter choice leads in fact
to solutions with smaller L2(X) error. Naturally, on finer grids,
where the stabilization looses importance, the error reduction be-
comes smaller. Since the convection is constant, the standard
parameter (7) is constant on a uniform grid, too. Fig. 3 shows the
distribution of the stabilization parameter for different finite ele-
ments on certain grid levels. The corresponding standard parame-
ters are given in the caption. It can be seen that the a posteriori
methodology changes the parameter in the layer, which is not sur-
prising since the stabilization is needed in the layer. On many mesh
cells at the layer, the parameter is increased considerably. A large
stabilization parameter can be observed at the front and at the back
(with respect to the direction of the convection) of the hump. Note,
in few mesh cells at the layer, a reduction of the stabilization
parameter is proposed. This reduction is in general much smaller
than the increase of the parameter in other mesh cells and therefore
it is only visible in the picture for the Q1 finite element. In summary,
the main mechanism to reduce the L2(X) error was always a signif-
icant increase of the stabilization parameter within the layer.

Example 5.2 (Example with boundary layer). This example is
defined by X = (0,1)2, CD = oX, e = 10�3, b = (2,3)T, and c = 1. The
prescribed solution

uðx; yÞ ¼ xy2 � y2 exp
2ðx� 1Þ

e

� �
� x exp

3ðy� 1Þ
e

� �
þ exp

2ðx� 1Þ þ 3ðy� 1Þ
e

� �
defines the right-hand side f and the Dirichlet boundary condition
ub. It possesses boundary layers at x = 1 and y = 1, see Fig. 7.
Fig. 4 presents comparisons of the L2(X) errors obtained with
the standard and the a posteriori parameter choices. Clearly, the
a posteriori parameter choice leads always to a reduction of the
L2(X) errors. However, a higher order of convergence cannot be
observed. A posteriori computed parameters are presented in
Fig. 5. It can be noticed that the optimization of the L2(X) error re-
duces the stabilization parameters in the layers.

Concerning the a posteriori parameter choice based on the error
in the H1(X) semi norm, we could observe essentially the same
behavior as for the L2(X) norm: the H1(X) semi norm error be-
comes always smaller than for the solution with the standard
parameter (7). However, sometimes the error reduction is very



Fig. 5. Example 5.2, a posteriori defined stabilization parameters; left: Q1, standard parameter yh = 1.225160e � 3; right: Q2, standard parameter yh = 5.741186e � 4; both
level 7 (visualization by projection to Q1 finite element).

Fig. 6. Left: Example 5.1, Q1 finite element and L2(X) error; right: Example 5.2, P1 finite element and H1(X) semi norm error; comparison of the different parameter choices.
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small. Because of the unresolved layers, in particular in Example
5.2, the error in the H1(X) semi norm, computed with the above
mentioned quadrature rules, even grows on coarse grids, compare
Fig. 6.

Considering all three parameter choices (standard, a posteriori
based on L2(X) error, a posteriori based on H1(X) semi norm er-
ror), one can observe that the optimization with respect to the er-
ror in one norm might reduce the error in the other norm, too,
compared with the standard parameter choice. But the other error
might also increase, see Fig. 6. Fig. 7 shows stabilization parame-
ters and corresponding solutions with respect to the optimization
of errors in different norms. Whereas the optimization of the
L2(X) error reduces the parameter in the boundary layers, the
optimization with respect to the error in the H1(X) semi norm in-
creases the parameter in the layer at x = 1. The different effects on
the computed solutions are clearly visible. In the L2(X) error opti-
mized solution, considerable spurious oscillations can be observed
in the layers. They are even larger than in the solution computed
with the standard parameter (7). The solution with H1(X) semi
norm error optimization looks much better. This comparison
demonstrates already the importance of using an appropriate
measure upon which the a posteriori selection of the parameter
is based.

Altogether, the results presented in this section demonstrate
that the proposed methodology is able to compute a stabilization
parameter in the SUPG method in an a posteriori way such that
solutions with reduced errors are obtained.
6. Parameter optimization with respect to functionals which
are candidates for describing the quality of computed solutions

Generally, the evaluation of errors is not possible as the solution
of (1) is not known. In this situation, other functionals are neces-
sary to measure or estimate the quality of computed solutions.

On the first glance, a posteriori error estimators might be an
appropriate choice. The construction of reliable error estimators
with respect to global norms for convection-dominated problems
is difficult. As demonstrated, e.g., in [23], the application of stan-
dard estimators for elliptic problems does not lead to reliable error
predictions. The numerical studies presented below will consider a
residual-based error estimator from [43]

IhðwhÞ ¼
X
K2T h

a2
Kk � eDwh þ b � rwh þ cwh � fk2

0;K

þ
X
E�@K

e�1=2aEkREðwhÞk2
0;E 8wh 2Wh ð20Þ

with

REðwhÞ ¼
�½jenE � rwhj�E; if E å @X;

g � enE � rwh; if E � CN;

0; if E � CD;

8><>:
and

aK ¼min diamðKÞe�1=2; c�1=2
0

n o
; aE ¼min diamðEÞe�1=2; c�1=2

0

n o
:



Fig. 7. Example 5.2, a posteriori defined stabilization parameters and computed solutions with the P1 finite element; top: optimization with respect to the L2(X) error;
bottom: optimization with respect to the H1(X) semi norm error; both at level 7 (parameter: visualization by projection to P1 finite element).
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Here, diam(K) and diam(E) denote the diameters of the mesh cell K
and the face E, respectively, nE is a unit normal on E, and c0 is de-
fined in (2). The jump of a function across the face E is denoted
by [j�j]E. This error estimator is robust in a norm that is a sum of
the standard energy norm and a dual norm of the convective deriv-
ative, see [43].

The right-hand side of the adjoint problem for the functional
(20) is given by

hDeIhð~uhðyhÞÞ; vhi ¼
X
K2T h

2a2
Kð�eDuhðyhÞ þ b � ruhðyhÞ

þ cuhðyhÞ � f ;�eDvh þ b � rvh þ cvhÞK
þ
X
E�@K

2e�1=2aEðREðuhðyhÞÞ; eREðvhÞÞE;

where eREðvhÞ is RE(vh) with g = 0.
Applying the estimator (20) as functional for the parameter

optimization, it turns out that the global errors are dominated by
the local contributions from the mesh cells in layers at the Dirichlet
boundary. This effect comes from the nature of the underlying
problem. For a local error estimate to be small, in particular the
strong residual on a mesh cell (first term in (20)) has to be small.
This cannot be achieved in mesh cells with boundary layers since
the layers are not resolved. Even a nodally exact numerical solution
leads to a large residual in those mesh cells. Thus, a significant
reduction of the residual in such mesh cells is not possible. As
the optimization algorithm concentrates on the reduction of the
dominating errors, consequently, the errors in mesh cells away
from the Dirichlet boundary are also not reduced notably. For this
reason, an error indicator that excludes the mesh cells at the
Dirichlet boundary will be considered, too. Furthermore, we could
observe that the influence of the residuals on the edges in (20) is
negligible. One obtains practically the same results with and with-
out using these terms. Thus, besides (20), the error indicator

IhðwhÞ ¼
X

K2T h ;K\CD¼;

a2
Kk � eDwh þ b � rwh þ cwh � fk2

0;K 8wh 2Wh

ð21Þ

will be considered. Note, the mesh cells at the Dirichlet boundary do
not contribute to the error indicator, but the stabilization parameter
in these cells is still included into the optimization process.

The most serious drawback of using the SUPG method are the
spurious oscillations that might appear in a vicinity of the layers.
An optimization of the stabilization parameter should try above
all to reduce them. These oscillations are connected to large deriv-
atives of the computed solutions in crosswind direction. For this
reason, a third functional that contains, besides the residual, also
a control of the crosswind derivative will be included into the
studies

IhðwhÞ ¼
X

K2T h ;K\CD¼;

k � eDwh þ b � rwh þ cwh � fk2
0;K

�
þ k/ðjb? � rwhjÞk0;1;K

�
8wh 2Wh; ð22Þ

where

b?ðxÞ ¼
ðb2ðxÞ;�b1ðxÞÞ

jbðxÞj ; if bðxÞ – 0;

0; if bðxÞ ¼ 0;

(
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and

/ðxÞ ¼
ffiffiffi
x
p

; if x P 1;
0:5ð5x2 � 3x3Þ; if x < 1:

(

Fig. 8. Example 6.1: P1, level 5 (1089 d.o.f.), solution with standard parameter (7), minim
bottom.

Fig. 9. Example 6.1: P1, level 5 (1089 d.o.f.), stabilization parameter (standard paramete
and minimization of (22), left to right (visualization by projection to P1 finite element).

Fig. 10. Example 6.1: Q1, level 5 (1089 d.o.f.), solution with standard parameter (7
The special choice of /(x) ensures that this functional is Fréchet dif-
ferentiable. Its derivative can be computed in the usual way.

The numerical studies will consider a standard example,
defined on the unit square, that is often used for the evaluation
ization of (20), minimization of (21), and minimization of (22), left to right, top to

r (7) yh = 0.018042), minimization of (20) (logarithmic scale), minimization of (21),

), minimization of (21), and minimization of (22), left to right, top to bottom.
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of stabilized methods, and an example in a more complicated
domain that attracted some attention in the past years. Both exam-
ples have the properties divb = 0, c = 0, such that the upper bound
(9) for the stabilization parameter applies.
Fig. 11. Example 6.1: P2, level 5 (4225 d.o.f.), solution with standard parameter (7), mini
by projection to P1 finite element).

Fig. 12. Example 6.1: P3, level 5 (9409 d.o.f.), solution with standard parameter (7), mini
by projection to P1 finite element).

Fig. 13. Solution and initia
Example 6.1 (Example with interior and exponential boundary
layers). This example was proposed in [22]. It is given by X =
(0,1)2, CD = @X, with the data e = 10�8, b = (cos (�p/3), sin(�p/3))T,
c = 0, f = 0, and
mization of (21), and minimization of (22), left to right, top to bottom (visualization

mization of (21), and minimization of (22), left to right, top to bottom (visualization

l grid for Example 6.2.
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ubðx; yÞ ¼
0; for x ¼ 1 or y 6 0:7;
1; else:

	
The simulations were performed on Grid 2 and Grid 3 from
Fig. 1. For shortness of presentation, only results on a rather coarse
mesh are shown in Figs. 8–12. We could observe that the principal
behavior for Pk and Qk finite elements, with the same k, was always
similar.

As already mentioned above, the minimization of (20) does not
lead to useful results. This is demonstrated exemplarily for the P1

finite element in Fig. 8. It can be seen that the spurious oscillations
are removed but the layers are extremely smeared. The plot of the
stabilization parameter in Fig. 9 shows that this is caused by very
large values of this parameter (note the logarithmic scale in this
picture). Minimizing (21) instead of (20) leads to a considerable
improvement with respect to the extreme smearing. However, a
notable smearing of the interior layer can still be observed. The
Fig. 14. Example 6.2: Q1, level 4 (47 664 d.o.f.), standard parameter (7), minimization of
by projection to Q1 finite element).

Fig. 15. Example 6.2: Q1, level 4 (47 664 d.o.f.), details of the stabilization parameter, min
to Q1 finite element).
reason is the prediction of a rather large stabilization parameter
in this layer, see Fig. 9. Nearly perfect solutions are obtained with
the parameter choice based on minimizing (22). The spurious oscil-
lations are almost removed, only around 2% are left. A large stabil-
ization parameter is proposed in all layers, but its maximal value is
smaller than the maximal value of the parameter computed with
minimizing (21). Only the interior layer in the solution with the
P3 finite element is somewhat smeared. We think, the reason is
the use of a piecewise constant stabilization parameter in this case.
This polynomial degree of the parameter might not be sufficiently
flexible for the changes of the finite element solution within a
mesh cell that occur for higher order finite elements.

Example 6.2 (The Hemker example). This example was defined
in [19]. The simulations were performed with X = {(�3,8) �
(�3,3)}n{(x,y);x2 + y2

6 1}, e = 10�6, b = (1,0)T, and c = f = 0. At
(21), and minimization of (22), top to bottom (stabilization parameter visualization

imization of (21), and minimization of (22), left to right (visualization by projection



Fig. 16. Example 6.2: Q3, level 4 (425 616 d.o.f.), standard parameter (7), minimization of (21), and minimization of (22), top to bottom (visualization by projection to Q1 finite
element).

V. John et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2916–2929 2927
the inlet x = �3, a homogeneous Dirichlet boundary condition is
prescribed, at the circle there is u = 1, and on all other parts of @X,
homogeneous Neumann boundary conditions are given.

This example attracted recently some interest [16,41] since it is
considered to be closer to situations arising in applications than
many usual test examples. It can be interpreted as a model of heat
transfer from a hot column in the direction of the convection.

Results of numerical simulations are presented for the Q1, Q2,
and Q3 finite elements in Figs. 14–17. The initial grid (level 0) is
shown in Fig. 13. Isoparametric finite elements were used to
approximate the curved boundary. It can be seen that the most dif-
ficult regions for computing a correct solution are the starting
points of the interior layers on top and on bottom of the circle.
The SUPG method was applied with the standard parameter choice
(7). Considerable negative spurious oscillations at the starting
points of the interior layers can be observed for the solutions com-
puted with this choice. Note that the values of the standard param-
eter are rather small in the vicinity of the circle due to small
diameters of mesh cells in this region. Solutions obtained with
the minimization of the error estimator (20) are not shown. Simi-
larly as in the previous example, the layers are smeared very much,
in particular the layer in front of the circle. For the Q1 finite ele-
ment, the minimization of the functional (21) reduces the negative
spurious oscillations considerably, compared with the solution ob-
tained with the standard parameter choice, see also Fig. 17. How-
ever, the solutions which are based on the minimization of this
functional possess the wrong feature that the interior layers start
somewhat before the top and bottom of the circle. This feature
was reduced or even removed by minimizing (22) for the determi-
nation of the stabilization parameter. It can be observed that both,
the minimization of (21) and the minimization of (22), lead to an
increase of the parameter in the region of the interior layers, in
particular at the starting points of the interior layers, cf. Fig. 15.
Since the large undershoots are a distinguished bad feature of
the standard SUPG approach, Fig. 17 shows the size of the under-
shoots obtained in the simulations. For the Q1 finite element, the
parameter choices based on the minimization of (21) and (22) re-
duce these undershoots on all levels considerably. The situation is
different for the Q2 and Q3 finite element, where only the minimi-
zation of (22) leads to smaller undershoots on most levels. A reason
for not observing this on all levels might be the insufficient flexibil-
ity of using a piecewise constant stabilization parameter for a
higher order finite element, see the discussion at the end of
Example 6.1. The overshoots are much less pronounced than the
undershoots. They are similar for all simulations, between 0.05
and 0.15.

Altogether, the parameter choice based on the minimization of
(22) gave the best results among the considered approaches. How-
ever, these results are not yet optimal.

In the optimization process, always a fast decrease of the func-
tionals within the first steps could be observed. To fulfill the stop-
ping criterion formulated in Section 4, in general some dozens to a
few hundred L-BFGS steps were necessary. As could be seen in the
presented examples, the values of the stabilization parameter have
very little effect on the solution in smooth regions and hence vary-
ing them has also little influence on the target functional. This
observation offers a way for a possible improvement of the effi-
ciency of the algorithm by identifying in the first few steps the val-
ues of the stabilization parameter which are important for the
decrease of the functional and then restricting the optimization
process to those values.

7. Summary and outlook

This paper presented a general framework for optimizing param-
eters in stabilized finite element methods for convection–diffusion



Fig. 17. Example 6.2: Undershoots of the computed solutions, Q1 finite element, Q2 finite element, and Q3 finite element, left to right, top to bottom.

2928 V. John et al. / Comput. Methods Appl. Mech. Engrg. 200 (2011) 2916–2929
problems. The optimization is based on minimizing a target
functional that indicates the quality of the computed solution. The
L-BFGS method is used to solve the arising constrained optimization
problem. Key of the algorithm is the efficient evaluation of the
derivative of the target functional with respect to the stabilization
parameter that utilizes the solution of an appropriate adjoint prob-
lem. Benefits and difficulties of this basic approach were studied
exemplarily at the SUPG finite element method and three different
functionals. A main observation is that a straightforward choice, a
residual-based a posteriori error estimator, is not appropriate for
measuring the quality of computed solutions. A better functional
could be found, (22), but the results obtained with this functional
are not yet optimal.

Important next steps in the exploration and improvement of the
parameter optimization are as follows:

� A very important goal consists in identifying better functionals
than used in this manuscript. The chosen functional is the main
component of the algorithm that determines the quality of the
computed solutions.
� It is known that the introduction of diffusion in streamline

direction only, as in the SUPG method, is often not sufficient
to obtain satisfactory numerical solutions. Some diffusion
orthogonal to the streamlines (in crosswind direction) might
be necessary, as it is done by SOLD methods [27]. A new aspect
in the application of the general framework to SOLD methods
consists in the optimization of two stabilization parameters.
� Algorithmic improvements are possible. These include, e.g., the

restriction of the optimization to important values of the stabil-
ization parameter as discussed at the end of Section 6.
� The considerable decrease of the functionals within the first few

optimization steps suggest that the improvement of the solu-
tions occurs mainly also within these steps. This effect will be
studied in detail, leading hopefully to an efficient method for
just improving (but not optimizing) standard SUPG solutions.
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