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1. Introduction

The simulation of many processes in nature and industry re-
quires as a subtask the simulation of turbulent incompressible
flows. Incompressible flows are modeled by the incompressible
Navier–Stokes equations, which read in dimensionless form

ut � 2mr �DðuÞ þ ðu � rÞuþrp ¼ f in ð0; TÞ �X;

r � u ¼ 0 in ½0; T� �X;

uð0; xÞ ¼ u0 in X;

ð1Þ

where uðt; xÞ denotes the fluid velocity, DðuÞ ¼ ðruþruTÞ=2 is
the velocity deformation tensor, pðt; xÞ is the fluid pressure, T is
the simulation time, and X � R3 is a spatial domain. The parameter
m > 0 is the kinematic viscosity, and fðt; xÞ represents the external
body force (e.g. gravity). The initial velocity field u0 is assumed to
be divergence-free. The equations (1) have to be closed with appro-
priate boundary conditions.

Turbulent flows are characterized by a wide spectrum of sizes of
the flow structures (scales) ranging from large ones to very small
ones. In general, most of the small scales cannot be even repre-
sented on grids of the underlying discretization of the Navier–
Stokes equations. Consequently, these scales cannot be simulated.
However, they are essential for the turbulent character of the flow
(energy cascade) and neglecting them in the simulations would
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lead to laminar results (which are of course wrong). The difficult
task consists in modeling the influence of these unresolved (small,
fine) scales onto the resolved scales, which is called turbulence
modeling. There are many ideas and approaches for turbulence
modeling, to mention only two popular ones, the k–e model [1]
and the (traditional) Large Eddy Simulation (LES) [2]. A compara-
tively new approach are variational multiscale (VMS) methods
which posses similarities but also fundamental differences to the
traditional LES.

VMS methods are based on general ideas for the simulation of
multiscale phenomena from [3,4]. The first presentation of these
ideas in connection with turbulent flows can be found in [5] and
the first numerical results were published around the same time
in [6,7]. Meanwhile, one can distinguish several classes of VMS
methods. However, they are all based on two fundamental
features:

– VMS methods use a variational form of the underlying equation
which is formulated in appropriate function spaces.

– The scales are defined by projections into subspaces.

These two features distinguish VMS methods from traditional
LES approaches. Traditional LES methods are based on a strong
form of the underlying equation and the large scales are defined
by spatial averaging (filtering). This way of defining the large scales
leads to difficulties in the rigorous mathematical analysis of LES
models for flows in bounded domains since always additional
terms arise from the necessary commutation of the filter operator
and the spatial differential operators. These additional terms are
neglected in practice resulting in so-called commutation errors. It
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has been shown analytically that these errors are not negligible on
the boundary and in a vicinity of the boundary [8–11]. We think
that the definition of scales in the way of VMS methods is more
appropriate, at least from the mathematical point of view. For in-
stance, in [12,13] the commutation between the projection opera-
tor defining the large scales in certain VMS methods and spatial
differential operators has been shown.

Apart from the two fundamental properties given above, the
available proposals of VMS methods are quite different. We will
concentrate here on finite element VMS (FEVMS) methods. VMS
methods based on other discretizations can be found, for instance,
in [6,7,13–16]. The FEVMS method proposed in the pioneering pa-
per [5] is based on a two-scale decomposition of the flow field into
large scales ð�u; �pÞ and small scales ðû; p̂Þ. A finite dimensional space
is used for defining the large scales and consequently, the dimen-
sion of the space for the small scales is infinite. After the decompo-
sition of the flow field, a variational form of the Navier–Stokes
equations (1) can be written as a coupled system of two sets of
equations, one with the test functions from the large scale space
and the other one with the test functions from the small scale
space. The second set consists of infinitely many equations. In
[5], for finite element methods, it was proposed to approximate
the infinite dimensional small scale space with local, higher order
polynomials, so-called bubble functions, which model the so-called
resolved small scales. In addition, the influence of the scales which
are not resolved by the bubble functions is modeled with an eddy
viscosity model. This eddy viscosity model acts directly only on the
bubble functions. To our knowledge, numerical simulations with
this form of a FEVMS method cannot be found so far in the litera-
ture. This method will be studied in the present paper and its
shortcomings will be addressed.

In [17–19], a FEVMS method based on the initial proposal from
[5] was developed and studied. In addition to using bubble func-
tions for the resolved small scale velocity and an eddy viscosity
model which accounts for the influence of the unresolved scales
onto the resolved small scales, the resolved small scale pressure
is modeled by the residual of the large scale continuum equation,
see [20] for a motivation of this modeling in the context of the
Stokes equations. This model leads to a well-known stabilization
term in the large scale equations, the so-called grad–div stabiliza-
tion [21,22]. FEVMS methods of this type are included in the
numerical studies presented in this paper. In Sections 2.2, 2.3 a
derivation of the bubble-based FEVMS methods is presented which
uses the bubble finite element spaces from the beginning. This
way, the bubble-based FEVMS methods are derived on the basis
of a three-scale decomposition of the flow field into large, resolved
small and unresolved scales [23].

There is another class of FEVMS methods in which the scale sep-
aration relies on the polynomial degree of finite element functions
[24,25]. In [24], continuous finite elements were used with a hier-
archical basis whereas in [25] discontinuous finite elements were
applied. In both FEVMS methods, the large scales are defined by
the low order polynomials and the resolved small scales by the
higher order polynomials.

A proposal of a FEVMS method based on a three-scale decompo-
sition of the flow field can be found in [12]. A main feature of this
method is the use of standard finite element spaces for all resolved
scales. The separation of the large scales and the resolved small
scales is achieved with an additional large scale space. An equation
defining the projection into this space is explicitly contained in this
method. This projection-based three-scale FEVMS method adds an
additional viscous term for the resolved small scales to the finite
element momentum equation of the Navier–Stokes equations.
The parameter in this term is generally chosen to be an eddy vis-
cosity model of Smagorinsky-type [12,26,27]. The ideas of this pro-
jection-based VMS method can also be applied in the framework of
finite volume discretizations [13]. Some variants of the projection-
based FEVMS method are considered in the numerical studies, see
Section 2.4.

The philosophy of the three-scale VMS methods resembles the
philosophy of the dynamic Smagorinsky LES model [28,29]. In this
LES model, the parameter in the Smagorinsky eddy viscosity term
is adjusted dynamically to reduce the viscosity of the model in re-
gions were it is not needed. In the three-scale VMS methods, the
reduction of the viscosity is achieved by applying the Smagorinsky
model only to the resolved small scales, whose definition depends
on the current solution.

The last VMS method which will be mentioned in some detail
further on in the introduction was proposed quite recently in
[30]. It is based on a two-scale decomposition of the flow field
achieved via a projection operator [31]. By writing a variational
form of the Navier–Stokes equations as a coupled system with test
functions from the large and the small scale subspaces, respec-
tively, it is readily shown that the small scales can be formally rep-
resented as an unknown functional of the residual of the large
scales. To approximate this functional, the small scales are ex-
pressed as a perturbation series where the perturbation parameter
is an appropriate norm of the large scale residual. For the unknown
terms of this perturbation series, a recursive system of equations
can be derived where the left hand side in all equations has the
form of a linearized Navier–Stokes equations. Thus, the solution
of these equations can be formally expressed with an appropriate
Green’s operator, the so-called fine-scale Green’s operator. In
[31], it has been shown that the fine-scale Green’s operator can
be expressed using the classical Green’s operator and the projec-
tion defining the scale separation. To obtain a numerical method,
in [30] it is proposed to truncate the perturbation series after the
first term and to approximate the fine-scale Green’s operator. Alto-
gether, the small scales are modeled in [30] to be proportional to
the residual of the large scales. Inserting this model into the equa-
tions with the large scale test functions, one obtains a generaliza-
tion of the well-known streamline-upwind Petrov–Galerkin
(SUPG) method for the Navier–Stokes equations. Besides the SUPG
term and the grad–div term, additional terms arise which can be
interpreted as the cross stresses and the Reynolds stresses known
from the traditional LES. The two-scale VMS method from [30]
does not use an eddy viscosity model. However, there is some free-
dom in choosing the parameters in the additional terms. This quite
new method is not yet included in the numerical studies presented
in this paper.

This paper will present numerical studies at turbulent channel
flows at Res ¼ 180 and Res ¼ 395. Numerical studies of turbulence
models at academic test examples may have different goals. One
goal might be to use resolutions (grids) which are sufficiently fine
compared with the Reynolds number such that an underresolved
Direct Numerical Simulation (DNS) can be performed and to show
that statistics of the flows are captured better if a turbulence
model is applied. Another goal might be to apply turbulence mod-
els on grids where a DNS blows up in finite time. In this situation,
the use of a turbulence model is necessary in order to perform any
simulations at all. The latter case is more likely in applications
and it will be considered in this paper. Thus, simulations on rather
coarse grids, compared with the Reynolds number, will be pre-
sented, which study and compare bubble-based FEVMS methods
and some variants of the projection-based FEVMS method. To
our best knowledge, a comparison of these methods is so far
not available.

The paper is organized as follows. Section 2 contains a de-
tailed description of all considered FEVMS methods. The numer-
ical tests for the channel flow problems are presented in Section
3. Finally, Section 4 summarizes the conclusions and gives an
outlook.
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2. Finite element variational multiscale methods

This section contains a rather detailed presentation of the stud-
ied methods. It has been shown for turbulent channel flow prob-
lems that even tiny changes in the data or algorithms eventually
lead to large changes in the instantaneous flow fields [32]. The
changes in mean values and statistics are less significant. Never-
theless, in view of the sensitivity of the turbulent channel flow to
small perturbations, it seems important to us to give at least a de-
tailed description of the main algorithms and methods which were
used in the numerical studies.

Throughout this paper, standard notations for Lebesgue and
Sobolev spaces are used, e.g. see [33]. The inner product in
ðL2ðXÞÞd, d 2 N, is denoted by ð�; �Þ.

2.1. Basic discretizations and linearization scheme

For simplicity of presentation, we consider in this section no-
slip boundary conditions u ¼ 0 on ½0; T� � @X. The Crank–Nicolson
discretization of the time derivative of the velocity in the Navier–
Stokes equations (1) is the first step in our discretization approach.
Let tk be the current discrete time and Dtk be the time step from
tk�1 to tk. To compute the solution ðuk; pkÞ :¼ ðuðtkÞ; pðtkÞÞ of the Na-
vier–Stokes equations at tk, the following set of equations has to be
solved

uk þ 0:5Dtk �2mr �DðukÞ þ ðuk � rÞuk½ � þ Dtkrpk

¼ uk�1 � 0:5Dtk �2mr �Dðuk�1Þ þ ðuk�1 � rÞuk�1½ � ð2Þ
þ 0:5Dtkfk�1 þ 0:5Dtkfk in X;

r � uk ¼ 0 inX:

Note that the temporal discretization is only applied to the velocity,
see [8] for a discussion of this issue.

Next, (2) is transformed into a variational form by multiplying
the equations with appropriate test functions and applying inte-
gration by parts. A variational form of (2) reads as follows: Find
ðuk; pkÞ 2 V � Q :¼ ðH1

0ðXÞÞ
3 � L2

0ðXÞ such that

ðuk; vÞ þ 0:5Dtk ð2mDðukÞ; DðvÞÞ þ ððuk � rÞuk; vÞ½ � � Dtkðpk; r � vÞ
¼ ðuk�1; vÞ � 0:5Dtk ð2mDðuk�1Þ; DðvÞÞ þ ððuk�1 � rÞuk�1; vÞ½ �
þ 0:5Dtkðfk�1; vÞ þ 0:5Dtkðfk; vÞ; ð3Þ

0 ¼ ðr � uk; qÞ

for all ðv; qÞ 2 V � Q .
This is a nonlinear problem in the discrete time tk, which is

solved by a fixed point iteration. Given uð0Þk ¼ uk�1, compute
ðuðlÞk ; p

ðlÞ
k Þ 2 V � Q such that

ðuðlÞk ; vÞ þ 0:5Dtk ð2mDðuðlÞk Þ; DðvÞÞ þ ððu
ðl�1Þ
k � rÞuðlÞk ; vÞ

h i
� DtkðpðlÞk ; r � vÞ
¼ ðuk�1; vÞ � 0:5Dtk ð2mDðuk�1Þ; DðvÞÞ þ ððuk�1 � rÞuk�1; vÞ½ �
þ 0:5Dtkðfk�1; vÞ þ 0:5Dtkðfk; vÞ; ð4Þ

0 ¼ ðr � uðlÞk ; qÞ

for all ðv; qÞ 2 V � Q , for l ¼ 1;2; . . .. The linear equations (4) are dis-
cretized in space by an inf–sup stable finite element method with
second order velocity and first order pressure.

The Crank–Nicolson scheme, inf–sup stable finite element
methods and the fixed point iteration are also the basic compo-
nents of the FEVMS methods presented below. The motivation
for using these components comes from our own experiences.
Numerical studies, e.g. [34,35], show that one has to use a second
order time-stepping scheme for computing accurate results in
incompressible flow simulations. Similarly, finite element methods
with second order velocity and first order pressure are in general
much more accurate than lower order methods [36,34]. Finally,
numerical studies in [37] have shown that the application of a
fixed point iteration is more efficient than using Newton’s method.

2.2. The bubble-based FEVMS method

This section presents the main ideas and assumptions of a bub-
ble-based FEVMS method. A close connection between the philos-
ophy of VMS methods and the use of residual-free bubble
stabilizations was established in [38]. Under the assumption that
the small scale phenomena exists only in the interior of the mesh
cells, it was shown that both approaches are equivalent. The prin-
cipal idea of using bubble functions for the scale separation in
FEVMS methods for turbulent flows was pointed out in [5]. We will
give a short derivation of the method which starts, in contrast to
[5], with the space of bubble functions and a three-scale decompo-
sition of the flow field.

Let V ¼ V � eV � bV , Q ¼ Q � eQ � bQ be a decomposition of the
spaces V and Q into large scales, resolved small scales and unre-
solved small scales. Accordingly, all functions can be decomposed,
e.g. the velocity uk ¼ �uk þ ~uk þ ûk, v ¼ �v þ ~v þ v̂.

A bubble-based FEVMS method can be derived by first decom-
posing the test functions in (4) and writing (4) as a coupled system
for the large scale, resolved small scale and unresolved scale test
functions. In this step, only the linearity of (4) with respect to
the test functions is important. Then, the following ideas and
assumptions are used, see [39] for more details:

� neglect the equation with the unresolved scale test functions
since these test functions are not available,

� assume that the direct influence of the unresolved scales onto
the large scales can be neglected, i.e. neglect all terms in the
equations for the large scales where unresolved scales occur,

� model the influence of the unresolved scales onto the resolved
small scales by means of a turbulence model, e.g. an eddy viscos-
ity model of Smagorinsky-type.

At the discrete time tk, these assumptions lead to the following
system of coupled equations: Find ð�uk; �pkÞ � ð~uk; ~pkÞ 2 ðV � QÞ�
ðeV � eQ Þ such that a large scale equation

ð�uk; �vÞ þ 0:5Dtk ð2mDð�ukÞ; Dð�vÞÞ þ ðð�uk � rÞ�uk; �vÞ½ � � Dtkð�pk; r � �vÞ
¼ ðuk�1; �vÞ � 0:5Dtk ð2mDðuk�1Þ; Dð�vÞÞ þ ððuk�1 � rÞuk�1; �vÞ½ �
� ð~uk; �vÞ � 0:5Dtk ð2mDð~ukÞ; Dð�vÞÞ þ ððuk � rÞ~uk; �vÞ½
þðð~uk � rÞ�uk; �vÞ� þ Dtkð~pk; r � �vÞ
þ 0:5Dtkðfk�1; �vÞ þ 0:5Dtkðfk; �vÞ; ð5Þ

ðr � �uk; �qÞ ¼ �ðr � ~uk; �qÞ

for all ð�v; �qÞ 2 V � Q and a resolved small scale equation

ð~uk; ~vÞ þ 0:5Dtk ð2mþ mTÞDð~ukÞ; Dð~vÞÞ þ ððuk � rÞ~uk; ~vÞ½ �
� Dtkð~pk; r � ~vÞ
¼ ðuk�1; ~vÞ � 0:5Dtk ð2mDðuk�1Þ; Dð~vÞÞ þ ððuk�1 � rÞuk�1; ~vÞ½ �
� ð�uk; ~vÞ � 0:5Dtk ð2mDð�ukÞ; Dð~vÞÞ þ ððuk � rÞ�uk; ~vÞ½ �
þ Dtkð�pk; r � ~vÞ þ 0:5Dtkðfk�1; ~vÞ þ 0:5Dtkðfk; ~vÞ; ð6Þ

ðr � ~uk; ~qÞ ¼ �ðr � �uk; ~qÞ

for all ð~v; ~qÞ 2 eV � eQ have to be solved.
In (6), the term ðmTDð~ukÞ; Dð~vÞÞ models the influence of the

unresolved scales onto the resolved small scales by means of an
eddy viscosity turbulence model. Possible candidates are Smago-
rinsky-type models [40] of the form

mT ¼ CSh2
K Dð~uÞk kF ; ð7Þ

mT ¼ CSh2
K Dð�uÞk kF ; ð8Þ

mT ¼ CSh2
K Dð�uþ ~uÞk kF : ð9Þ
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Following [6,7], the models in (7)–(9) are called small–small, large–
small and all–small. Here, CS is a user-chosen constant, hK is an
appropriate measure of the mesh cell K and �k kF is the Frobenius
norm of a tensor.

In a bubble-based FEVMS method, standard finite element
spaces are used for the large scales V � Q ¼ Vh � Q h. The finite ele-
ment spaces for the resolved small scales require a higher resolu-
tion than the finite element spaces for the large scales. This can
be achieved in various ways: by using higher order finite elements,
by refining the given grid or by combining these approaches. How-
ever, the result of all approaches is that the solution of the resolved
small scale equations (6) would be much more expensive than
solving the large scale equations (5). This will be circumvented
in a bubble-based FEVMS method by considering (6) in the space
of residual-free bubble functions for the velocity. A bubble function
is a function from H1

0ðXÞ whose support is only one mesh cell and
which vanishes on the faces of this mesh cell. With these functions,
the solution of (6) can be localized. In the space of residual-free
bubbles, a solution is sought which satisfies the strong form of
the underlying partial differential equation in the interior of the
mesh cells. The space of these bubble functions is infinite dimen-
sional and it will be denoted by eV bub. The use of bubble functions
for the stabilization of finite element methods for the Navier–
Stokes equations was proposed already in [41].

Usually, simplifying assumptions are made in the definition of
the resolved small scales. The first method which will be studied
is very close to (5) and (6), with only small modifications. We as-
sume that both �uk and ~uk are discretely divergence-free with re-
spect to the sum of the large scale pressure finite element space
and the bubble pressure space. For reasons of efficiency, the gradi-
ent form of the viscous term is used in the resolved small scale
equations and some right hand side terms in the large scale equa-
tions. For the same reason, a linearized version of the resolved
small scale equations is solved only once in each discrete time,
namely at the beginning using the large scales from the previous
discrete time. This gives the following coupled system: Find
ð�uk; �pkÞ � ð~uk; ~pkÞ 2 ðV � QÞ � ðeV h

bub � eQ h
bubÞ such that

ð�uk; �vÞ þ 0:5Dtk ð2mDð�ukÞ; Dð�vÞÞ þ ðð�uk � rÞ�uk; �vÞ½ � � Dtkð�pk; r � �vÞ
¼ ðuk�1; �vÞ � 0:5Dtk ð2mDðuk�1Þ; Dð�vÞÞ þ ððuk�1 � rÞuk�1; �vÞ½ �

� ð~uð1Þk ; �vÞ � 0:5Dtk ðmr~uð1Þk ; r�vÞ þ ððð�uk�1 þ ~uð1Þk Þ � rÞ~u
ð1Þ
k ; �vÞ

h
þðð~uð1Þk � rÞ�uk�1; �vÞ

i
þ Dtkð~pð1Þk ; r � �vÞ ð10Þ

þ 0:5Dtkðfk�1; �vÞ þ 0:5Dtkðfk; �vÞ;
ðr � �uk; �qÞ ¼ 0

for all ð�v; �qÞ 2 V � Q and

ð~uð1Þk ; ~vÞ þ 0:5Dtk ððmþ mTÞr~uð1Þk ; r~vÞ þ ððuk�1 � rÞ~uð1Þk ; ~vÞ
h i

� Dtkð~pð1Þk ; r � ~vÞ
¼ ðuk�1; ~vÞ � 0:5Dtk ðmruk�1; r~vÞ þ ððuk�1 � rÞuk�1; ~vÞ½ �
� ð�uk�1; ~vÞ � 0:5Dtk ðmr�uk�1; r~vÞ þ ððuk�1 � rÞ�uk�1; ~vÞ½ �
þ Dtkð�pk�1; r � ~vÞ þ 0:5Dtkðfk�1; ~vÞ þ 0:5Dtkðfk; ~vÞ; ð11Þ

ðr � ~uð1Þk ; ~qÞ ¼ 0

for all ð~v; ~qÞ 2 eV h
bub � eQ h

bub. Here, eV h
bub;

~Qh
bub denote finite dimen-

sional approximations of ~Vbub; eQ bub. The resolved small scale pres-
sure has to be projected into L2

0ðKÞ for each mesh cell K. In this
method, the evolution of the resolved small scales is described in
(11). The importance of considering time-dependent subgrid scales
was recently pointed out in [42].

The approach (10) and (11) possesses the disadvantage that the
solution of the resolved small scales has to be stored. The resolved
small scales are defined on a considerably finer grid than the large
scales such that the storage overhead becomes non-negligible.
Therefore, we studied also a reduced bubble FEVMS method which
essentially neglects all terms with the resolved small scales from
the discrete time tk�1. That means, uk�1 on the right hand side of
the equations for the large scales (10) is replace by �uk�1. The re-
solved small scale equations look as follows: Find ð~uð1Þk ; ~pð1Þk Þ 2eV h

bub � ~Qh
bub such that

ð~uð1Þk ; ~vÞ þ Dtk ððmþ mTÞr~uð1Þk ; r~vÞ þ ðð�uk�1 � rÞ~uð1Þk ; ~vÞ
h i

� Dtkð~pð1Þk ; r � ~vÞ
¼ �Dtk ðmr�uk�1; r~vÞ þ ðð�uk�1 � rÞ�uk�1; ~vÞ½
�ð�pk�1; r � ~vÞ � ðfk; ~vÞ�;

ðr � ~uð1Þk ; ~qÞ ¼ 0 ð12Þ

for all ð~v; ~qÞ 2 eV h
bub � eQ h

bub. Neglecting ~uk�1 leads to a right hand side
of the resolved small scale equation which, if fk�1 is in addition re-
placed with fk, has the same form as in a backward Euler scheme.
For this reason, we also chose the left hand side as in this scheme.
The momentum equation for the resolved small scales looks now
like for a backward Euler discretization, where the resolved small
scales are zero in the previous discrete time.

A remarkable feature of the bubble FEVMS methods is that the
left hand side of the large scale Eq. (10) has the same form as for
the Galerkin finite element method and that the influence of the
turbulence model appears only on the right hand side. It will be
shown in Section 3 that this setting still leads to a blow-up of
the simulations in finite time.

There is a principal question in all bubble-based FEVMS ap-
proaches concerning the physics of the modeling of the resolved
small scales. Since these scales are represented by bubble func-
tions, they can move within a mesh cell but they cannot move di-
rectly from one mesh cell to another because of the homogeneous
Dirichlet boundary conditions on the faces of the mesh cells. The
information contained in the resolved small scales can be distrib-
uted to other mesh cells only indirectly by the coupling of all re-
solved scales in the equations for the large scales. This quasi-
stationary modeling of the resolved small scales does not reflect
the physical reality. However, to our best knowledge, there are
no numerical studies available which investigate the impact of this
unphysical modeling.

Recently, there have been first proposals for bubble-like meth-
ods without homogeneous boundary conditions [43,44]. In [43,44],
two-dimensional linear problems without convection were consid-
ered and the nonhomogeneous boundary conditions are defined by
solutions of ordinary differential equations on the edges of the
mesh cells. A straightforward extension of these ideas to three
dimensions requires the solution of two-dimensional partial differ-
ential equations on the faces of the mesh cells, which seems to be
an enormous overhead. In our opinion, the ideas for using bubble-
type functions with nonhomogeneous boundary conditions are not
yet sufficiently developed to be applicable in turbulent flow
simulations.

2.3. The bubble-based FEVMS method with grad–div stabilization

It was shown in [20] for the model problem of the Stokes equa-
tion in two dimensions that the P1=P1 finite element discretization
with residual-free bubble stabilization for both velocity and pres-
sure is equivalent to a residual-based stabilized finite element
method. In particular, the resolved small scale pressure bubbles
lead to a so-called grad–div stabilization term [21]. The observa-
tions from [20] can be used as motivation to model the resolved
small scale pressure in the form

~pk ¼ �sKðr � �ukÞ; ð13Þ
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see also [18,19] for more discussions of this model. This way, the
influence of the resolved small scale pressure onto the large scales
is not directly taken into account but this influence is modeled.
Using (13), ~pk vanishes from the resolved small scale equations
(6). Since the pressure has vanished, the divergence constraint in
(6) is no longer needed and it will be canceled. One obtains a vec-
tor-valued equation for ~uk. Since there is no longer a divergence
constraint for ~uk, it does not make sense to have a term with this
function in the divergence constraint of the large scale equation
(5). The model (13) for the resolved small scale pressure is included
into the large scale equation leading to the grad–div term.

As in the bubble FEVMS method, some simplifying assumptions
for the resolved small scales are made and we consider a variant
with time-dependent resolved small scales and a variant with qua-
si-static resolved small scales. The bubble-based FEVMS with
grad–div stabilization and time-dependent resolved small scales
reads as follows: Find ð�uk; �pkÞ � ~uk 2 ðV � QÞ � eV h

bub such that

ð�uk; �vÞ þ 0:5Dtk ð2mDð�ukÞ; Dð�vÞÞ þ ðð�uk � rÞ�uk; �vÞ½ � � Dtkð�pk; r � �vÞ
þ Dtk

X
K2Th

ðsKr � �uk;r � �vÞ

¼ ðuk�1; �vÞ � 0:5Dtk ð2mDðuk�1Þ; Dð�vÞÞ þ ððuk�1 � rÞuk�1; �vÞ½ �

� ð~uð1Þk ; �vÞ � 0:5Dtk ðmr~uð1Þk ; r�vÞ þ ððð�uk�1 þ ~uð1Þk Þ � rÞ~u
ð1Þ
k ; �vÞ

h
þðð~uð1Þk � rÞ�uk�1; �vÞ

i
þ 0:5Dtkðfk�1; �vÞ þ 0:5Dtkðfk; �vÞ; ð14Þ

ðr � �uk; �qÞ ¼ 0

for all ð�v; �qÞ 2 V � Q and

ð~uð1Þk ; ~vÞ þ 0:5Dtk ððmþ mTÞr~uð1Þk ; r~vÞ þ ððuk�1 � rÞ~uð1Þk ; ~vÞ
h i

¼ ðuk�1; ~vÞ � 0:5Dtk ðmruk�1; r~vÞ þ ððuk�1 � rÞuk�1; ~vÞ½ �
� ð�uk�1; ~vÞ � 0:5Dtk ðmr�uk�1; r~vÞ þ ððuk�1 � rÞ�uk�1; ~vÞ½ �
þ Dtkð�pk�1; r � ~vÞ þ 0:5Dtkðfk�1; ~vÞ þ 0:5Dtkðfk; ~vÞ; ð15Þ

for all ~v 2 eV h
bub.

For the steady-state bubbles, uk�1 on the right hand side of (14)
is replaced by �uk�1 and the resolved small scale equation looks as
follows: Find ~uk 2 eV h

bub such that

ð~uð1Þk ; ~vÞ þ Dtk ððmþ mTÞr~uð1Þk ; r~vÞ þ ððuk�1 � rÞ~uð1Þk ; ~vÞ
h i

¼ �Dtk ðmruk�1; r~vÞ þ ðð�uk�1 � rÞ�uk�1; ~vÞ½ �ð�pk�1; r � ~vÞ
þ ðsKðr � �uk�1Þ;r � ~vÞ � ðfk; ~vÞ�; ð16Þ

for all ~v 2 eV h
bub. Note that (16) is a decoupled system of three equa-

tions of convection–diffusion type. There is a slight difference in the
resolved small scale Eq. (16) in comparison to [18,19]. The term
�DtkðsKðr � �uk�1Þ;r � ~vÞ with the model of the resolved small scale
pressure is neglected in [18,19].

The crucial issue for the term
P

K2Th ðsKr � �uk;r � �vÞ in (14), the
grad–div stabilization term, consists in choosing the parameter sK

appropriately. This stabilization term appears also in the two-scale
VMS method proposed recently in [30].

2.4. Projection-based FEVMS methods based on a three-scale
decomposition of the flow field

This section presents a FEVMS method which contains the pro-
jection into the large scale space explicitly as additional equation.
With the help of the projection, the resolved scales are decom-
posed into large and small scales. Together with the unresolved
scales, a three-scale decomposition of the flow field is given.

Let Vh � Q h be a pair of inf–sup stable, conforming finite ele-
ment spaces for the velocity and pressure. In addition, let LH be a
finite dimensional space of symmetric d� d tensor-valued func-
tions representing a coarse or large scale space, and a non-negative
function mT representing the turbulent viscosity. The semi-discrete
projection-based FEVMS method seeks uh : ½0; T� ! Vh, ph : ð0; T� !
Qh, and GH : ½0; T� ! LH such that

ðuh
t ;v

hÞ þ ð2mDðuhÞ;DðvhÞÞ þ ððuh � rÞuh;vhÞ

� ðph;r � vhÞ þ ðmTðDðuhÞ �GHÞ;DðvhÞÞ ¼ ðf;vhÞ 8vh 2 Vh;

ðqh;r � uhÞ ¼ 0 8qh 2 Q h;

ðDðuhÞ �GH;LHÞ ¼ 0 8LH 2 LH: ð17Þ

The tensor GH represents the large scales of DðuhÞ. These scales are
defined by the L2-projection of DðuhÞ into the large scale space LH ,
the third equation in (17). The difference DðuhÞ �GH represents
the resolved small scales. Besides this additional projection, the
projection-based FEVMS method introduces a viscous term into
the momentum equation, the last term on the left hand side. It
can be seen clearly in this term that the turbulent viscosity mT acts
directly only on the resolved small scales.

Besides the explicit appearance of the projection operator, there
is another principal difference between the projection-based ap-
proach and the bubble-based FEVMS method. In the latter, the
large scales are given in standard finite element spaces and one
needs an additional higher resolution finite element space for the
resolved small scales. In contrast, in the projection-based FEVMS
method, all resolved scales belong to standard finite element
spaces and an additional large scale space is needed. Since all re-
solved scales are contained in the standard finite element spaces,
whose functions are not restricted to single mesh cells, the projec-
tion-based FEVMS method does not introduce scales which cannot
move freely.

The projection terms in (17) can be treated explicitly or implic-
itly in time, see [27]. We will restrict here to the implicit treatment,
see the end of this section for comments on the explicit approach.
The fully implicit projection-based FEVMS method, discretized by
the Crank–Nicolson scheme, has the form: Find ðuh

k ; p
h
kÞ 2 Vh � Qh

such that

ðuh
k ;v

hÞ þ 0:5Dtk ð2Re�1
Dðuh

kÞ;DðvhÞÞ þ ððuh
k � rÞuh

k ;v
hÞ

h
þ mT;kðDðuh

kÞ �GH
k Þ;DðvhÞ

� ��
� ðpk;r � vhÞ

¼ ðuh
k�1;v

hÞ � 0:5Dtk ð2Re�1
Dðuh

k�1Þ;DðvhÞÞ
h

þ ððuh
k�1 � rÞuh

k�1;v
hÞ ð18Þ

þ mT;k�1ðDðuh
k�1Þ �GH

k�1Þ;DðvhÞ
� ��
þ 0:5Dtkðfk�1;vhÞ þ 0:5Dtkðfk;vhÞ 8vh 2 Vh;

ðqh;r � uh
kÞ ¼ 0 8qh 2 Q h;

GH
k �Dðuh

kÞ; LH� �
¼ 0 8LH 2 LH:

The efficient implementation of this method was studied in [12].
The main features of the fully implicit approach are:

� it is only efficient if LH is a discontinuous finite element space on
the finest grid and the basis of LH is chosen to be L2-orthogonal,

� seven sparse matrices whose dimensions depend on Vh and LH

are needed,
� four of these matrices have to be assembled only once at the ini-

tial time,
� the three other matrices have to be assembled at each discrete

time in each step of the iteration for solving the nonlinearity,
since they depend on mT and mT depends on the current finite ele-
ment solution,

� sparse matrix–matrix products have to be computed at each dis-
crete time in each step of the iteration for solving the
nonlinearity.
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For the turbulent viscosity, eddy viscosity models of Smagorin-
sky-type will be used

mT ¼ CSd
2kDðuhÞkF ; ð19Þ

mT ¼ CSd
2kDðuhÞ �GHkF : ð20Þ

The model (19) uses all resolved scales in the turbulent viscosity
whereas (20) uses only the resolved small scales.

Remark. In [27], the differences between the explicit and implicit
treatment of the projection terms, i.e. the additional viscous term
and the additional equation in (17), were studied. Using the eddy
viscosity model (19), the results obtained with both approaches
were very similar. The explicit approach saved 5–10% of computing
time. For the resolved small scale eddy viscosity (20), the results
obtained with both approaches were quite different. In particular,
rather bad results were obtained with the explicit approach. Since
the resolved small scales show strong fluctuations, it makes a
difference whether in (20) the resolved small scales from the
present or the previous discrete time were used.
Table 1
Information on the spatial discretizations used in the simulations.

Level Cells Ny Vel. d.o.f. Press. d.o.f. yþmin

2 1024 16 25,344 4096 1.7293
3 8112 32 199,680 32,768 0.4386
3. Numerical studies

We studied the different types of FEVMS methods at the bench-
mark problems of the turbulent channel flows at Res ¼ 180 and
Res ¼ 395. The setup of the problems and the reference values have
been taken from [45].

3.1. The setup of the numerical studies

The turbulent channel flow at Res ¼ 180 is given in
X ¼ ð�2p; 2pÞ � ð0; 2Þ � ð�2p=3; 2p=3Þ. The domain of the turbu-
lent channel flow at Res ¼ 395 is X ¼ ð�p;pÞ � ð0;2Þ�
ð�p=2;p=2Þ. The parameter in the Navier–Stokes equations (1) is
set to be m ¼ 1=180 or m ¼ 1=395, respectively. No-slip boundary
conditions are described at y ¼ 0 and y ¼ 2. On all other bound-
aries, periodic conditions are applied.

The flows are driven by a pressure gradient in x-direction, i.e.
the right hand side of the Navier–Stokes equations has the form
f ¼ ðf1;0;0ÞT . In our computations, the value of f1 was adjusted
dynamically (around the value 1) such that the bulk velocity of
the flow is kept close to a prescribed value, Ubulk ¼ 15:6803 for
Res ¼ 180 and Ubulk ¼ 17:5452 for Res ¼ 395. These values have
been computed using the reference mean velocities from [45].
The dynamic adjustment of the right hand side was found to be
necessary in [26] because the velocity finite element functions
are only discretely divergence-free. Thus, the finite element meth-
ods preserve mass only approximately. Without a dynamic adjust-
ment of the right hand side, considerable losses or gains of mass
could be observed in long time computations. Note that this unfa-
vorable property of finite element methods is of high importance
in the turbulent channel flow examples because of the non-physi-
cal periodic boundary conditions. These boundary conditions mod-
el an infinitely long channel. In applications, the flow domain is
generally finite and the approximate conservation of mass will ef-
fect the computational results much less. For details on the dy-
namic adjustment procedure, we refer to [26].

The Navier–Stokes equations (1) have been discretized in time
by the Crank–Nicolson scheme with an equidistant time step of
Dt ¼ 0:004 for Res ¼ 180 and Dt ¼ 0:002 for Res ¼ 395. Let
Dtþ :¼ usResDt. This gives, for the statistically steady state us ¼ 1,
Dtþ ¼ 0:72 for Res ¼ 180 and Dtþ ¼ 0:79 for Res ¼ 395. These time
steps are smaller than the Kolmogorov time scale and they are in
the range proposed in [46].

The computations were performed in three stages. In the first
stage, we started with an initial condition where the mean velocity
field from [45] for a given Reynolds number was superimposed
with random noise, see [26] for details. The computations used a
projection-based FEVMS method and they were performed 20 s
(seconds). (tþ 2 ½0; 3600� for Res ¼ 180, tþ 2 ½0;7900� for Res ¼
395). The resulting flow field was used as initial condition for all
simulations of the second stage. In the second stage, the flow field
was allowed another 10 s. to develop with the considered FEVMS
method. Afterwards, in the third stage, the statistics were com-
puted over a period of 20 s.

The velocity was discretized with the Q2 finite element and the
pressure with the discontinuous Pdisc

1 finite element on hexahedral
grids. This pair of inf–sup stable finite element spaces is among the
best performing ones for the incompressible Navier–Stokes equa-
tions [47,36,34]. The grids were uniformly refined in streamwise
and spanwise direction. In wall-normal direction, they became fi-
ner towards the walls. We will present results for a grid for which
the positions of the grid points in wall-normal direction are given
by

yi ¼ 1� cos
ip
Ny

� �
; i ¼ 0; . . . ;Ny:

Here, Ny is the number of mesh cell layers in wall-normal direction.
We also performed simulations with different grids (Grids 2 and 3
from [27]), which led to the same qualitative results and conclu-
sions as given below. The grids originate from the refinement of
coarse grids (Level 0), see Table 1 for information on the grids. Level
2 is sufficiently coarse such that simulations with the Galerkin finite
element discretization blow up in finite times. In the case
Res ¼ 395, the Galerkin finite element method blows up in finite
time also on Level 3. In all situations studied in this paper, the
use of a turbulence model is necessary to perform any simulations
at all.

The important parameter in the bubble-based FEVMS method
with grad–div stabilization (14) and (16) is sK , which is introduced
from the model (13) for the resolved small scale pressure. In the
turbulent channel flows presented below, inf–sup stable finite ele-
ments on anisotropic grids are used. For this combination, an
appropriate choice of sK is not yet known. We tested a choice
which is advised for inf–sup stable finite elements on isotropic
meshes, [22],

sK ¼ C ¼ 1
2
; ð21Þ

and a choice similar to that which was used for equal-order finite
element spaces in [18,19] and which was originally proposed in [48]

sK ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ C2hKkuhk2

C1

� �2
s

ð22Þ

with the constants C1 ¼ 2, C2 ¼ 1 and hK twice the minimal length
of an edge of the mesh cell K. In the recently proposed two-scale
VMS method [30], another choice for sK was proposed which also
takes the length of the time step into account. For hexahedral mesh
cells, the formula from [30] shows similarities to (22) if the term
containing the length of the time step is neglected.

The local systems in the bubble-based FEVMS methods for
approximating the solution of (11), (12), (15) and (16) were solved
on grids with 3� 3� 3 or 5� 5� 5 small mesh cells, similar to
[18,19] where for instance 4� 4� 4 mesh cells were used. For
(11) and (12), the Q 2=Q 1 pair of finite elements was used and for
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(15) and (16) the Q 1 finite element discretization. There is a diffi-
culty in the application of the bubble method to the Q2 finite ele-
ment since this finite element has one basis function which is a
bubble function, such that there is no direct sum decomposition
of the spaces. In this case, one should project the right hand side
of (11) and (12) into an appropriate subspace. We could not how-
ever find in the literature any hints on how to implement a bubble
finite element method for higher order finite elements, not even for
scalar equations. Since the bubble Eqs. (11) and (12) are for the
bubble-based FEVMS methods only an auxiliary problem, the issue
of the projection was just neglected. We do not think that the
blow-up in finite time of the bubble-based FEVMS method (10),
(11) and (10), (12) could be prevented with the application of a
projection in the bubble equations since the instability of this ap-
proach arises in our opinion from the Galerkin finite element ma-
trix in the large scale equation.

The following eddy viscosity models were used for the bubble-
based FEVMS methods:

– the all-small Smagorinsky model (9) with uk�1 and CS ¼ 1 for the
methods (10), (11) and (14), (15) with time-dependent resolved
small scales,

– the large-small Smagorinsky model (8) with �uk�1 and
CS 2 f0:5;1g for the methods (10), (12) and (14), (16) with
steady resolved small scales.

For more standard values of the constant, like CS 2 f0:01;0:1g, the
coupled systems of equations blew up in finite time. We think that
a reason for the need of large constants CS is the use of very coarse
grids for the resolved small scales. The local problems to be solved
on these grids are similarly convection-dominated like the global
problem and a lot of additional viscosity is necessary in order to
stabilize them. For the projection-based FEVMS method (18), both
variants (19) and (20) of the eddy viscosity model were tested. The
parameter d was chosen to be twice the smallest length of an edge
of the mesh cells. This is the same choice as in [26,27].

In our opinion, a potential advantage of many VMS methods is
that simple models for the influence of the unresolved scales can
be applied since these models act directly only on a part of the re-
solved scales and the importance of the model is reduced in this
way. The use of the constant Smagorinsky model is common in
VMS methods [6,7,13–15,49]. Several studies found that the appli-
cation of the dynamic Smagorinsky model in VMS methods does
not improve the results compared with the constant Smagorinsky
model, [13,49,15], sometimes the results were even worse with the
dynamic model [13,49]. In view of these experiences, the applica-
tion of the dynamic Smagorinsky model does not seem to be essen-
tial for studying the potential of VMS methods.

The following abbreviations are used below:

� RFBn_td – residual-free bubble-based FEVMS method (14) and
(15) with time-dependent resolved small scales, grad–div stabil-
ization and with n� n� n meshes for approximating the local
solutions,

� RFBn_red – reduced residual-free bubble-based FEVMS method
(14) and (16) with grad–div stabilization and with n� n� n
meshes for approximating the local solutions,

� tau_c – constant sK defined in (21),
� tau_nc – non-constant sK defined in (22),
� VMSn – projection-based VMS with LH ¼ P0 if n ¼ 0 and

LH ¼ Pdisc
1 if n ¼ 1,

� ALL – all-small model (19),
� SMALL – small–small model (20).

The values of interest which have been studied are (the differ-
ence to) the mean velocity profile, the rms turbulence intensity
uh;	
rms, and the off-diagonal Reynolds stress component R

h;	
12 . For

the definition of these quantities and their computation, see [26].
The simulations were performed with the code MooNMD [50].

3.2. Simulations for the turbulent channel flow at Res ¼ 180

Numerical studies for turbulent channel flows at Res ¼ 180 with
projection-based FEVMS methods can be found in [26,27]. An
observation in [26] was that the fully implicit projection-based
FEVMS method gave better results than the traditional Smagorin-
sky LES with van Driest damping. For this reason, we do not in-
clude any comparison with the latter method into the present
paper. Another observation in [26,27] was that (the absolute values
of) second order statistics were overpredicted. We are not aware of
any turbulent channel flow computations with bubble-based
FEVMS methods. All computations for Res ¼ 180 presented in this
section were performed on Level 2.

The computations with the bubble-based FEVMS methods (10),
(11) and (10), (12) with time-dependent resolved small scales blew
up after around 0.2–0.25 s. Removing the influence of the resolved
small scales onto the large scales, we found that for the all-small
Smagorinsky model with CS ¼ 1 the blow-up of the simulations
is not caused directly by a blow-up of the simulations of the equa-
tions for the resolved small scales because then the simulations
blew up considerably later. The reason of the blow-up is in our
opinion that the matrix of the equations for the large scales is
the same matrix as in the Galerkin finite element method. In addi-
tion, the blow-ups suggest that in these simulations the use of the
pressure bubbles is not equivalent to the inclusion of a grad–div
stabilization term as for the Stokes equations. This might have sev-
eral reasons, for instance the dominating convection in turbulent
flows or the use of anisotropic mesh cells in turbulent channel flow
simulations.

Fig. 1 shows results obtained with the reduced bubble-based
FEVMS with grad–div term and with time-dependent and steady
resolved small scales (14), (15) and (14), (16). It can be seen that
the use of time-dependent resolved small scales leads to some
oscillations in the mean velocity profile and to an overprediction
of Uh

mean near the walls. In comparison with other schemes, the
use of time-dependent resolved small scales seems to introduce
less viscosity. Another hint in this direction is that it was much
harder to solve the equations for the large scales with this ap-
proach. Considering the computational costs and the obtained re-
sults, we think that the use of time-dependent resolved small
scales in the way studied in this paper does not pay off.

The results with the reduced bubble-based FEVMS method (14)
and (16) were often improved by solving the local problems on
5� 5� 5 meshes in comparison with 3� 3� 3 meshes, see
Fig. 2. Only uh;	

rms is oscillatory in the center of the channel for
RFB5. The computational costs for local 3� 3� 3 meshes were less
than the costs of one multigrid cycle for the large scale equations
whereas the costs of using 5� 5� 5 meshes were about the costs
of four multigrid cycles. Since different resolved small scales were
obtained in both cases, their effect in the large scale equations is
different and the solver of these equations behaves differently. In
fact, we could observe that the solver often needed fewer iterations
if the resolved small scales were computed on the finer local mesh.
Thus, the total computing times of both approaches were in gen-
eral comparable.

Fig. 3 compares results obtained with the reduced bubble-based
FEVMS methods with grad–div stabilization (14) and (16) for dif-
ferent values of CS. In addition, in order to see the influence of
the resolved small scale terms in the large scale Eq. (14), results
for simulations which neglect these terms are included, i.e. the
grad–div stabilization is the only model (nobubble). It can be seen
that this simple approach led, in comparison with some of the



Fig. 1. Turbulent channel flow at Res ¼ 180, bubble-based FEVMS methods with grad–div stabilization, time-dependent and steady resolved small scales, CS ¼ 1 in (9) and
(8).

Fig. 2. Turbulent channel flow at Res ¼ 180, reduced bubble-based FEVMS method with grad–div stabilization, different sizes of the local grids, CS ¼ 1 in (8).
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other approaches, to reasonable results. Using also the resolved
small scale terms, in addition to the grad–div term, improves in
general the results. But there is no combination of the parameters
sK and CS which proved to be best in all respects.
Fig. 3. Turbulent channel flow at Res ¼ 180, reduced bubble-based FEVMS method
In our opinion, the definition (22) of sK gave often slightly bet-
ter results than (21). One computation which used (22), 5� 5� 5
local grids and CS ¼ 1 is compared with projection-based FEVMS
methods in Fig. 4. It can be seen that this method RFB5 gives the
with grad–div stabilization, Smagorinsky model (8) with different values of CS .
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best results for uh;	
rms, apart from the center of the channel. With re-

spect to Rh;	
12 , the method VMS0 gives the best results near the walls

and RFB5 in the center of the channel. RFB5 and VMS1 give similar
mean velocity profiles. Altogether, the best bubble-based FEVMS
method leads to slightly better results than the projection-based
FEVMS methods.
3.3. Simulations for the turbulent channel flow at Res ¼ 395

Neither for the bubble-based FEVMS methods nor for the pro-
jection-based FEVMS methods simulations for this example can
be found in the literature so far. Here, results computed on Level
2 and on Level 3 will be presented. We could observe that for the
projection-based FEVMS methods the results for CS ¼ 0:01 in (19)
and (20) were in general better than for CS ¼ 0:005. This agrees
with the observations for Res ¼ 180 in [26,27]. For brevity, only
the results for CS ¼ 0:01 will be presented. For the bubble-based
FEVMS method (14) and (16), we present results for CS ¼ 1. With
CS ¼ 0:5, often rather bad results were obtained.

The second order statistics were often considerably overpre-
dicted on Level 2, see Fig. 5 These statistics measure in some sense
the turbulent character of the simulated flow. Obviously, the
FEVMS methods do not introduce sufficient viscosity on these
coarse grids. The less viscosity is introduced, the larger the over-
predictions are, for instance, the overpredictions are larger for
VMS1 than for VMS0. The results of VMS0 and RFB5_red_tau_nc
are often comparable. Only concerning the mean velocity profile,
Fig. 4. Turbulent channel flow at Res ¼ 18
the bubble-based FEVMS methods gave better results near the wall
and VMS0 in the center of the channel.

Considering only the projection-based FEVMS methods, one can
observe that the results obtained with VMS0 are better than those
computed with VMS1. There are only slight differences between
both variants (19) and (20) of the Smagorinsky model. In general,
the curves obtained with using all scales (19) are somewhat closer
to the reference curves. The results show that the definition of the
large scale space LH is more important than the actual form of the
Smagorinsky model.

It can be seen in Fig. 6 that the differences to all reference
curves are much smaller on Level 3 than on Level 2. The bubble-
based FEVMS method RFB5_red_tau_nc is closest to the reference
curves for Uh

mean and Rh;	
12 whereas the projection-based FEVMS

methods approximate uh;	
rms in the center of the channel somewhat

better.

Remark. Concerning the computational costs, we could observe
that in general:

– simulations with VMS0 were somewhat faster than with VMS1,
– computations of the projection-based methods with (19) were a

little faster than with (20),
– bubble-based FEVMS methods with grad–div stabilization were

considerably faster with CS ¼ 1 in (8) than with CS ¼ 0:5,
– bubble-based FEVMS methods with grad–div stabilization and

CS ¼ 1 were faster than VMS0, bubble-based FEVMS methods
with CS ¼ 0:5 were somewhat slower than VMS0.
0, comparison of the FEVMS methods.



Fig. 5. Turbulent channel flow at Res ¼ 395, Level 2, comparison of the FEVMS methods.
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3.4. Discussion of the results

All FEVMS methods showed in general an overprediction of (the
absolute values) of the second order statistics. Based on results
from the literature and on our own experiences, there are two rea-
sons in our opinion. Compared with spectral methods, which are
often used in turbulent channel flow simulations, a rather low-or-
der spatial discretization (second order) was used. One can find
large overpredictions of second order statistics also in other simu-
lations with second order spatial discretizations, [13,51]. Our moti-
vation for using finite element methods is that they can be also
used in more complicated domains, which will be the general case
in applications. The second reason for the large overprediction of
the second order statistics are the coarse meshes, see the introduc-
tion for the motivation of using them. Moreover, it was seen in Sec-
tion 3.3 that the overpredictions became considerably smaller if
the meshes are refined.

The numerical studies of the bubble-based FEVMS methods
show that the very coarse meshes which are used for solving the
local problems led to difficulties. Since the local problems are sim-
ilarly convection-dominated as the global problem, it turned out
that a lot of viscosity had to be introduced in order to stabilize
the local systems, i.e. the Smagorinsky constant had to be chosen
rather large. It was demonstrated that the choice of this constant
has a considerable influence on the solutions. In this respect, also
the question arises how useful are the computed resolved small
scales if the equations are dominated by the viscosity model on
the affordable coarse local grids. It is remarkable that removing
the resolved small scale terms from the large scale equation and
using only the grad–div stabilization gave still reasonable results.
The grad–div term seems to us to be the more important model,
which is also supported by the blow-up of the bubble-based
FEVMS without grad–div term. We think that it is more promising
to eliminate the use of bubble functions and to study the two-scale
VMS method from [30], which also contains a grad–div stabiliza-
tion term. This approach would also eliminate the computational
overhead of assembling and solving the local problems as well as
the unphysical modeling of the resolved small scales as described
at the end of Section 2.2.

Among the projection-based FEVMS methods, the method
which introduced the most viscosity gave the best results, namely
VMS0 with all resolved scales in the Smagorinsky model (19). It
could be observed that the large scale space LH had a much higher
impact on the results than the eddy viscosity model, i.e. (19) or (20).

Often, the best reduced bubble-based FEVMS and VMS0 gave
comparable results in comparable computing times.
4. Summary and outlook

Two principal different approaches of FEVMS methods were ap-
plied at turbulent channel flow simulations on rather coarse grids.
Several variants for both approaches were assessed, details of the
assessment can be found in Section 3.4.

A main conclusion of the numerical studies is that the applica-
tion of bubble-based FEVMS methods is quite complicated. It has to
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Fig. 6. Turbulent channel flow at Res ¼ 395, Level 3, comparison of the FEVMS methods.
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be decided which simplifying assumptions for the resolved small
scales are permissible, how fine should the local meshes be and
which models for mT and sK should be used. The numerical studies
showed that the grad–div term, as model for the resolved small
scale pressure, possesses a high importance. In addition, the
usefulness of the computed resolved small scales is questionable
because of the dominating influence of the viscosity model in the
numerical solution of these equations on very coarse local grids.
In view of our experiences, we think that it is more promising,
and also easier from the computational point of view, to con-
sider the recently proposed two-scale VMS method from [30]
which contains several stabilization terms, among them a grad–
div term.

The numerical results for the projection-based FEVMS methods
showed that the choice of the large scale space has the essential
influence on the results. The next step in our research will be the
design of an adaptive projection-based FEVMS where the large
scale space is chosen differently on different mesh cells and where
this choice is done a posteriori, i.e. during the simulations.
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