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Abstract. This paper presents a variational multiscale method (VMS) for the incompressible
Navier–Stokes equations which is defined by a large scale space LH for the velocity deformation
tensor and a turbulent viscosity νT . The connection of this method to the standard formulation of
a VMS is explained. The conditions on LH under which the VMS can be implemented easily and
efficiently into an existing finite element code for solving the Navier–Stokes equations are studied.
Numerical tests with the Smagorinsky large eddy simulation model for νT are presented.
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1. Introduction. The flow of an incompressible fluid is governed by the incom-
pressible Navier–Stokes equations

ut − νΔu + (u · ∇)u + ∇p = f in (0, T ] × Ω,
∇ · u = 0 in [0, T ] × Ω,

u = 0 in [0, T ] × ∂Ω,
u(0,x) = u0 in Ω,∫
Ω

p dx = 0, in (0, T ].

(1.1)

Here, Ω ⊂ R
d, d ∈ {2, 3}, is a bounded domain with boundary ∂Ω, [0, T ] a finite time

interval, u(t,x) the fluid velocity, and p(t,x) the fluid pressure. The parameters in
(1.1) are the viscosity ν > 0, which is inverse proportional to the Reynolds number
Re = O(ν−1), the prescribed body forces f(t,x), and the initial velocity field u0(x).

Turbulent flows are characterized by a high Reynolds number. Due to the richness
of scales in such flows, it is not possible to simulate them by a direct discretization
of (1.1), e.g., by a Galerkin finite element method. The use of a turbulence model
becomes necessary.

A currently very popular approach of turbulence modeling is large eddy simula-
tion (LES). In LES, one seeks to simulate only the large scales of a turbulent flow
accurately. This makes sense in applications, e.g., the prediction of a hurricane re-
quires above all an accurate prediction of the few large eddies and not of the millions
of small eddies. In classical LES, the large scales are defined by an averaging in
space. However, this definition leads to serious problems if the flow is given in a
bounded domain, which is the most frequent case in applications. Already the first
step of deriving equations for the large scales introduces additional terms, so-called
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commutation errors; see [2, 3, 9] for analysis of two kinds of commutation errors. The
commutation errors are simply neglected in applications. Consider, e.g., the com-
mutation error studied in [9]; its analysis shows that there are cases where it does
not vanish asymptotically. A second serious problem of the classical LES in bounded
domains is the definition of appropriate boundary conditions for the large scales. This
problem is unresolved. In applications, often physically motivated wall laws are used.
A possible remedy for this dilemma is the definition of the large scales in a different
way, namely, by projection into appropriate spaces. This idea is the basis of varia-
tional multiscale methods (VMS); see [12]. VMS is part of a circle of ideas including
the dynamic multilevel method by Dubois, Jauberteau, and Temam [8] and the addi-
tive turbulent decomposition; see Hylin and McDonough [15]. These approaches are
related in spirit and philosophy but each has its own unique features.

Following Collis [6], the flow can be decomposed into three scales:
• (resolved) large scales,
• (resolved) small scales, and
• unresolved scales.

A VMS starts by writing the Navier–Stokes equations (1.1) as a coupled system of
three equations for the three types of scales. Then, the equation for the unresolved
scales is neglected and the equation for the resolved small scales will be modeled with
a turbulence model; see section 3. In this way, the turbulence model acts directly
only on the resolved small scales and it acts solely indirectly on the large scales by the
coupling of the two remaining equations. One crucial point of a VMS is the definition
of appropriate spaces which define the large scales and the resolved small scales. In
[12], it is proposed to use a standard finite element space for the large scales and
mesh cell bubbles for the resolved small scales. This resembles the idea of the residual
free bubble approach for discretizing scalar convection-diffusion equations; e.g., see
Brezzi et al. [4]. The advantage of this approach is that the equations for the resolved
small scales can be solved mesh cell by mesh cell. However, using this approach in a
VMS imposes the assumption that the resolved small scales exist only in the interior
of mesh cells and they do not cross mesh cell faces. If the mesh is stationary, then
the resolved scales are also stationary in some sense. They can change only within
the mesh cells. It seems to be unlikely that this correctly reflects the behavior of the
resolved small scales. An important feature of the VMS presented in this paper is
that it does not have such an restriction. It allows the resolved small scales to move
across faces of mesh cells.

In the VMS considered in this paper, a variationally consistent eddy viscosity
turbulence model is introduced acting only on the discrete resolved small scales (fluc-
tuations). This technique is inspired by Guermond [11] and Layton [25]. It can be
also thought of as an extension of the spectral vanishing viscosity idea of Maday and
Tadmor [26]. The VMS studied in the present paper is an extension of an approach for
scalar convection-diffusion equations which can be found in [24]. It will be introduced
in section 2. In contrast to the proposal in [12], it starts with a pair of finite element
spaces which represents all resolved scales. There is one term where the turbulence
model acts on all resolved scales. Then, a large scale space is chosen and in a second
term, the action of the turbulence model on the large scales is subtracted again. The
connection of this VMS to the VMS proposed in [12] is given in section 3. Section 4
derives conditions on the large scale space under which the VMS can be implemented
easily and efficiently into an existing finite element code for Navier–Stokes equations.
Finally, section 5 presents numerical studies with the VMS.
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2. The VMS method. Throughout this paper, standard notations for Lebesgue
and Sobolev spaces are used; e.g., see Adams [1]. The inner product in (L2(Ω))d,
d ∈ N, is denoted by (·, ·).

Let V = (H1
0 (Ω))d equipped with the norm ‖v‖V = ‖∇v‖L2 and Q = L2

0(Ω). A
variational formulation of (1.1) reads as follows. Find u : [0, T ] → V , p : (0, T ] → Q
satisfying

(ut,v) + (2νD(u),D(v)) + b(u,u,v) − (p,∇ · v) = (f ,v) ∀v ∈ V,
(q,∇ · u) = 0 ∀q ∈ Q,

(2.1)

and u(0,x) = u0(x) ∈ V . Here, D(v) = (∇v + ∇vT )/2 is the velocity deformation
tensor and b(u,v,w) = ((u ·∇)v,w). For the continuous problem, (2.1) is equivalent
to a variational formulation where the viscous term has the form (ν∇u,∇v).

As mentioned in the introduction, a Galerkin finite element discretization of (2.1)
is unstable in the case of small viscosity (or high Reynolds number). A stabilization
becomes necessary, which can be done, e.g., by introducing a turbulence model in
(2.1). We consider the extension of an approach which was proposed in [24] for scalar
convection-diffusion equations.

To keep the presentation concise, we will present the approach immediately for the
semidiscrete problem. Let V h ⊂ V and Qh ⊂ Q be conforming finite element spaces
which fulfill the inf-sup condition, i.e., there is a positive constant C independent of
the mesh size parameter h such that

inf
qh∈Qh

sup
vh∈V h

(∇ · vh, qh)

‖∇vh‖L2 ‖qh‖L2

≥ C.(2.2)

In addition, let LH ⊂ L = {L ∈ (L2(Ω))d×d,L = L
T } and νT = νT (t,x,uh, ph) ≥ 0.

The semidiscrete problem (continuous in time) which we consider reads as follows.
Find uh : [0, T ] → V h, ph : (0, T ] → Qh and G

H : [0, T ] → LH satisfying

(uh
t ,v

h) + ((2ν + νT )D(uh),D(vh)) + b(uh,uh,vh)
−(ph,∇ · vh) − (νTG

H ,D(vh)) = (f ,vh) ∀vh ∈ V h,
(qh,∇ · uh) = 0 ∀qh ∈ Qh,

(GH − D(uh),LH) = 0 ∀L
H ∈ LH ,

(2.3)

and uh(0,x) = uh
0 ∈ V h is a discretely divergence-free approximation to u0. Let

PLH : L → LH , D(v) → PLHD(v) with

(PLHD(v) − D(v),LH) = 0 ∀L
H ∈ LH(2.4)

denote the L2-projection from L onto LH . Then G
H = PLHD(uh) in (2.3).

The model within system (2.3) is determined by the choices of LH and νT . The
space LH can be thought of as representing the large scales of the flow. Then, the
application of νT in (2.3) can be interpreted as follows. In the viscous term (the second
term in the first equation), the model (stabilization) is added to all scales, whereas in
the last term of the left-hand side of the first equation, it is subtracted again for the
large scales. Thus, the model, which is the only stabilization in the scheme, acts only
on the small scales. This is exactly the main idea of the VMS of Hughes, Mazzei, and
Jansen [12]. In this sense, (2.3) is a VMS; see the following section for a discussion of
the connection of (2.3) to the VMS proposed in [12].

A finite element error analysis of the VMS (2.3) for the case that νT is a constant
is presented in [21].
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3. The connection to the VMS proposed in [12]. We consider the three-
level partitioning of the flow given in the introduction. This partitioning will now
be described by appropriate chosen function spaces. Clearly, the continuous pair
of spaces (V,Q) contains all scales. The finite element spaces (V h, Qh) contain the
large and the resolved small scales. Let V H ∈ (H1(Ω))d be a discrete space such
that LH = D(V H). The space V H should be coarser than V h in the sense that the
piecewise polynomial degree of V H is less than the piecewise polynomial degree of
V h. The functions of V H may be defined on the same grid as the functions of V h

or on a coarser grid. But in the definition of V H no boundary conditions, like no-
slip conditions, are incorporated. Thus, in general V H 	⊂ V h. The large eddies of
a turbulent flow generally do not fulfill no-slip boundary conditions, e.g., the large
eddies of a hurricane move along the surface of the earth. Thus, it make sense not to
incorporate such boundary conditions into the definition of V H . The pair of spaces
for the large scales is given by (V H , QH), where QH is chosen such that an inf-sup
condition of type (2.2) is fulfilled for (V H , QH). The large scales PHu of the velocity
are defined by an elliptic projection into V H and the large scales PHp of the pressure
by the L2-projection into QH ; PH : (V,Q) → (V H , QH),

(D(u − PHu),D(vH)) = 0 ∀vH ∈ V H ,

(u − PHu, 1) = 0,(3.1)

(p− PHp, qH) = 0 ∀qH ∈ QH .

The following lemma shows that this choice is consistent in the following sense: the
deformation tensor of the large scales defined in (3.1) is equal to the large scales of the
deformation tensor defined in (2.4). That means that differentiation and the definition
of the large scales (by projection) commute. We like to recall that this property in
general is not valid in the classical LES.

Lemma 3.1. Let v ∈ V and LH = D(V H). Then

PLHD(v) = D(PHv) ∀v ∈ V.(3.2)

Proof. From LH = D(V H) and PLHD(v) ∈ LH follow that there is a wH ∈ V H

such that PLHD(v) = D(wH). Using (2.4) gives

(D(v − wH),LH) = 0 ∀L
H ∈ LH .(3.3)

On the other hand, since LH = D(V H), (3.1) is equivalent to

(D(v − PHv),LH) = 0 ∀L
H ∈ LH .(3.4)

The statement of the lemma follows now directly from (3.3) and (3.4) since the elliptic
projection is unique.

Let νT be a constant. A straightforward calculation shows that

(νTD(uh),D(vh)) − (νTPLHD(uh),D(vh))

= (νT (I − PLH )D(uh), (I − PLH )D(vh)).

Thus, system (2.3) can be reformulated as follows. Find uh : [0, T ] → V h, ph :
(0, T ] → Qh satisfying

(uh
t ,v

h) + (2νD(uh),D(vh)) + b(uh,uh,vh)

−(ph,∇ · vh) + (νT (I − PLH )D(uh), (I − PLH )D(vh)) = (f ,vh) ∀vh ∈ V h,

(qh,∇ · uh) = 0 ∀qh ∈ Qh.(3.5)
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Decompose now V h = V H + Ṽ h, Qh = QH + Q̃h with Ṽ h = (I − PH)V h. It follows
with (3.2) that

(I − PLH )D(vh) = D(vh − PHvh) = D((I − PH)vh).(3.6)

If vH ∈ V H , we have D(vH) = D(PHvH). Thus, a straightforward calculation shows
that the momentum equation in (3.5) becomes for all test functions vH ∈ V H

(uH
t ,vH) + (2νD(uH),D(vH)) + b(uH ,uH ,vH) − (pH ,∇ · vH) + (ũh

t ,v
H)

+ (2νD(ũh),D(vH)) + b(uH , ũh,vH) + b(ũh,uH ,vH) − (ph,∇ · vH)

= (f ,vH) − b(ũh, ũh,vH).(3.7)

The definition of Ṽ h, (3.6), and a direct calculation show that

(ũh
t , ṽ

h) + (2νD(ũh),D(ṽh)) + b(ũh, ũh, ṽh) − (p̃h,∇ · ṽh) + (νTD(ũh),D(ṽh))

= (f , ṽh) − (uH
t , ṽh) − (2νD(uH),D(ṽh)) − b(ũh,uH , ṽh) − b(uH , ũh, ṽh)

+ (pH ,∇ · ṽh)(3.8)

for all ṽh ∈ Ṽ h. The coupled system (3.7), (3.8) possesses exactly the form of the
VMS proposed in [12]. The unresolved scales are modeled only in the small scale
equation (3.8). In [12, 13, 14], eddy viscosity models of Smagorinsky type have been
used. There is no model in (3.7) for the large scales. The model of the unresolved
scales influences the large scales only indirectly by the coupling of (3.7) and (3.8).

4. Aspects of the implementation. This section describes some aspects of
implementing (2.3) into a finite element code. One has two options for defining
the large scale space LH . The first option is to define LH on a coarser grid than
(V h, Qh). Since, we will use higher order finite element spaces for (V h, Qh), there
is as second option to define LH on the same grid as (V h, Qh) using lower order
polynomials. We will use the second way. It will be shown that in this case an
efficient implementation with only small modifications of an existing code for solving
the Navier–Stokes equations is possible if LH is a discontinuous finite element space
with a L2-orthogonal basis. We will describe the implementation for three dimensions;
the modifications in two dimensions are obvious.

Let the velocity vector uh and the symmetric tensor G
H be given by

uh =

⎛
⎝ uh

1

uh
2

uh
3

⎞
⎠ , G

H =

⎛
⎝ gH11 gH12 gH13

gH12 gH22 gH23
gH13 gH23 gH33

⎞
⎠

and let the spaces V h and LH be equipped with the bases

(4.1)

V h = span

⎧⎨
⎩
⎛
⎝ vhi

0
0

⎞
⎠ ,

⎛
⎝ 0

vhi
0

⎞
⎠ ,

⎛
⎝ 0

0
vhi

⎞
⎠ : i = 1, . . . , nV

⎫⎬
⎭ ,

LH = span

⎧⎨
⎩
⎛
⎝ lHj 0 0

0 0 0
0 0 0

⎞
⎠ ,

1

2

⎛
⎝ 0 lHj 0

lHj 0 0
0 0 0

⎞
⎠,

1

2

⎛
⎝ 0 0 lHj

0 0 0
lHj 0 0

⎞
⎠,

⎛
⎝ 0 0 0

0 lHj 0
0 0 0

⎞
⎠,

1

2

⎛
⎝ 0 0 0

0 0 lHj
0 lHj 0

⎞
⎠,

⎛
⎝ 0 0 0

0 0 0
0 0 lHj

⎞
⎠ : j = 1, . . . , nL

⎫⎬
⎭ .
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After an implicit discretization of (2.3) in time and an appropriate linearization of the
convective term in the current time step, one obtains a linear saddle point problem
of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 BT
1 G̃11 G̃12 G̃13 G̃14 G̃15 G̃16

A21 A22 A23 BT
2 G̃21 G̃22 G̃23 G̃24 G̃25 G̃26

A31 A32 A33 BT
3 G̃31 G̃32 G̃33 G̃34 G̃35 G̃36

B1 B2 B3 0 0 0 0 0 0 0
G11 G12 G13 0 M 0 0 0 0 0
G21 G22 G23 0 0 M

2 0 0 0 0
G31 G32 G33 0 0 0 M

2 0 0 0
G41 G42 G43 0 0 0 0 M 0 0
G51 G52 G53 0 0 0 0 0 M

2 0
G61 G62 G63 0 0 0 0 0 0 M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uh
1

uh
2

uh
3

ph

gH11
gH12
gH13
gH22
gH23
gH33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fh
1

fh
2

fh
3

0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.2)

The matrices A11, . . . , A33 and B1, B2, B3 have to be assembled if (2.3) is discretized
without the terms involving GH , i.e., if all scales are stabilized. The matrix M in
(4.2) is the mass matrix of LH : (M)ij = (lHj , lHi ). The general entries of the matrices

G11, . . . , G63 and G̃11, . . . , G̃36 can be computed easily by using the bases of V h and
LH . Straightforward calculations give

(G11)ij =

⎛
⎝
⎛
⎝ (vhj )x (vhj )y/2 (vhj )z/2

(vhj )y/2 0 0
(vhj )z/2 0 0

⎞
⎠ ,

⎛
⎝ lHi 0 0

0 0 0
0 0 0

⎞
⎠
⎞
⎠

= ((vhj )x, l
H
i ) G22 = G33 = 1

2G11,
(G42)ij = ((vhj )y, l

H
i ) G21 = G53 = 1

2G42,
(G63)ij = ((vhj )z, l

H
i ) G31 = G52 = 1

2G63,

(G̃11)ij = (νT l
H
j , (vhi )x) G̃22 = G̃33 = 1

2 G̃11,

(G̃24)ij = (νT l
H
j , (vhi )y) G̃12 = G̃35 = 1

2 G̃24,

(G̃36)ij = (νT l
H
j , (vhi )z) G̃13 = G̃25 = 1

2 G̃36.

(4.3)

All other blocks Gαβ and G̃αβ vanish. Thus, one has to assemble only the entries

of the blocks G11, G42, G63, G̃11, G̃24, G̃36. The assembling of the last three blocks
is not necessary if νT is constant. The matrices G11, G42, G63, and M have to be
assembled only once since they are not time dependent. The matrices G̃11, G̃24, G̃36

are time dependent iff νT is time dependent, e.g., if νT depends on the solution as in
the numerical studies presented in section 5.

Now, (4.2) can be solved for gH11, . . . , g
H
33. This leads to a saddle point problem

for (uh, ph) of the form

⎛
⎜⎜⎝

Ã11 Ã12 Ã13 BT
1

Ã21 Ã22 Ã23 BT
2

Ã31 Ã32 Ã33 BT
3

B1 B2 B3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

uh
1

uh
2

uh
3

ph

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

fh
1

fh
2

fh
3

0

⎞
⎟⎟⎠(4.4)
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with

Ã11 = A11 − G̃11M
−1G11 −

1

2
G̃24M

−1G42 −
1

2
G̃36M

−1G63,

Ã12 = A12 −
1

2
G̃24M

−1G11,

Ã13 = A13 −
1

2
G̃36M

−1G11,

...

Ã33 = A33 − G̃36M
−1G63 −

1

2
G̃11M

−1G11 −
1

2
G̃24M

−1G42.

Note that a different scaling of the basis functions of LH leads to the same formulas.
Let T h be triangulation of Ω with mesh cells K and let (·, ·)K denote the inner

product in L2(K). The (i, j)th entry of G̃11M
−1G11 has the form

(G̃11M
−1G11)ij =

nL∑
m,n=1

(G̃11)im(M−1)mn(G11)nj

=

nL∑
m,n=1

(νT l
H
m, (vhi )x)(M−1)mn((vhj )x, l

H
n )(4.5)

=

nL∑
m,n=1

⎛
⎝ ∑

K∈T h

(νT l
H
m, (vhi )x)K

⎞
⎠ (M−1)mn

⎛
⎝ ∑

K∈T h

((vhj )x, l
H
n )K

⎞
⎠ .

This formula reveals that for an easy and efficient implementation of the method into
an existing code, two requirements have to be fulfilled.

First, an efficient computation of (4.5) is possible if M is a diagonal matrix. This
holds iff the basis functions of LH are L2-orthogonal. One obtains in this case

(G̃11M
−1G11)ij =

nL∑
m=1

∑
K∈T h(νT l

H
m, (vhi )x)K

∑
K∈T h((vhj )x, l

H
m)K∑

K∈T h(lHm, lHm)K
.(4.6)

For a nonorthogonal basis, one can use the approximation (diag(M))−1 instead of
M−1 or some other diagonal matrix which is derived from M , e.g., by adding all
matrix entries in a row to the diagonal.

Second, the sparsity pattern of Ãαβ must not be larger than the sparsity pattern
of Aαβ . Then, the entries coming from terms like (4.6) can be simply added to Aαβ .
An entry (Aαβ)ij generally does not vanish if the intersection of the support of vhi and
the support of vhj is at least one mesh cell K. If the support of lHm is only one mesh cell,
then the numerator in (4.6) may be not equal to zero only if this mesh cell belongs
also to the support of vhi and to the support of vhj . In this case, the sparsity pattern

of G̃11M
−1G11 (and hence of Ã11) will be the same as of A11. The requirement on

the support of lHm can be fulfilled if LH is a discontinuous finite element space.
If the support of lHm consists of more than one mesh cell, the sparsity pattern

of G̃11M
−1G11 will in general be larger than that of A11. In this case, one can

use an approximation of G̃11M
−1G11 where all entries which do not belong to the

sparsity pattern of A11 are dropped (similar to the standard approach for an ILU
decomposition).

Examples of spaces LH fulfilling both requirements are given in section 5.
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Since (4.4) has the same form as the Galerkin discretization of the Navier–Stokes
equations, existing solvers of a code for this discretizations can be used as well for
(4.4).

The implementation of this approach in the code MooNMD [23], which was used
in the computations presented in section 5, is as follows. The matrices M , G11, G42,
and G63 are assembled once at the initial time. The matrices Ãαβ , G̃11, G̃24, and

G̃36 have to be assembled in each step of the iterative scheme to solve the nonlinear
equation in each discrete time. We start by assembling Aαβ , G̃11, G̃24, and G̃36. Then

all necessary matrix products G̃ijM
−1Gkl are computed and subtracted from Aαβ to

obtain Ãαβ . The computational overhead of the second step is studied in section 5.3.
In summary, using for LH a discontinuous finite element space with an L2-

orthogonal basis leads to a system of form (4.4) where the matrices Ãij have the
same sparsity pattern as Aij . Solvers for the Navier–Stokes equations which are al-
ready implemented can be applied immediately to (4.4). The only extension of an
existing code for the Navier–Stokes equations consists of assembling the matrices Ãij

instead of Aij .

5. Numerical studies. Given a turbulent viscosity νT , the amount of modeling
in the VMS studied in this paper is determined by the choice of the space LH . If
LH = {O}, the model acts on all resolved scales. The larger LH ⊆ D(V h) is chosen,
the less scales are influenced by the model and the closer the computed solution
should be to the solution of the Navier–Stokes equations discretized by the Galerkin
finite element method. The numerical studies in sections 5.1 and 5.2 will support this
expectation. Finally, section 5.3 studies a turbulent flow around a cylinder.

In the numerical studies, the Smagorinsky model [31]

νT = cSδ
2‖D(uh)‖F(5.1)

is used for the turbulent viscosity. Here, cS is a constant, δ is the filter width of
LES, which is related to the mesh width, and ‖ · ‖F denotes the Frobenius norm of
a tensor. The Smagorinsky model is a simple and popular LES model; e.g., see [30]
for its advantages and drawbacks. It was used in the computations with the VMS
presented in [13, 14].

We will present computations on hexahedral grids with the pair of mapped finite
element spaces (Q2, P

disc
1 ). Here, Q2 is the space of continuous piecewise triquadratic

functions and P disc
1 is the space of discontinuous piecewise linears. This pair of finite

element spaces is considered currently among the best performers in the numerical
simulation of incompressible flows; see [10, 22, 16].

The basis functions of Q2 on the reference cube are {ξiηjζl, i, j, l = 0, 1, 2}.
Thus, the deformation tensor of functions from Q2 contains all polynomials up to
degree 1 and even polynomials of higher order. This gives a guideline for choosing
LH ⊆ D(V h). In our computations, we use for LH discontinuous finite element spaces
P disc
k , k ∈ {0, 1}, containing piecewise constants or linears, respectively. It is easy to

equip these spaces with L2-orthogonal bases of piecewise Legendre polynomials.
As temporal discretization, the fractional-step θ-scheme [5] is applied in sec-

tions 5.1 and 5.2 and the Crank–Nicolson scheme in section 5.3. These fully im-
plicit second order schemes are among the most popular time stepping schemes in
incompressible flow computations [32].

The nonlinear problem in each discrete time was linearized by a fixed point it-
eration. In each step of the fixed point iteration, a linear saddle point problem, a
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so-called Oseen problem, has to be solved. We used as solver a preconditioned flexible
GMRES method [29] with a multilevel preconditioner. This solver is described in
detail in [16, 18]. The computations were performed with the code MooNMD [18, 23].

5.1. The flow through a three-dimensional channel. We consider the flow
through the channel Ω = (0, 10) × (0, 1) × (0, 1). At the inflow boundary x = 0, the
steady state inflow

u(t, 0, y, z) =

⎛
⎝ 4y(1 − y)

0
0

⎞
⎠ =: U,

at the boundaries y = 0 and y = 1 no-slip conditions u = 0, and at the boundaries
z = 0 and z = 1 free slip conditions are prescribed. The implementation of the free slip
conditions into MooNMD is described in [17]. The flow leaves the channel at x = 10
by outflow boundary conditions. The initial velocity is given by u(0, x, y, z) = U and
the right-hand side is chosen to be f = 0. The solution of the Navier–Stokes equations
(1.1) of this channel flow is

u(t, x, y, z) = U, p(t, x, y, z) = −8ν(x− 10).(5.2)

We present results of computations with the viscosity ν−1 = 105 and the final
time T = 20. The Reynolds number of the flow, based on the average inflow U and
the height of the channel L = 1, is

Re =
UL

ν
=

2

3
105 ≈ 66667.

The initial grid (level 0) consists of 80 cubes of size h = 0.5. The computations
were carried out on levels 1 (h = 0.25) and 2 (h = 0.125). On level 1, there are
19, 683 degrees of freedom (d.o.f.) of the velocity and 2, 560 d.o.f. of the pressure.
The number of d.o.f. on level 2 is 139, 587 for the velocity and 20, 480 for the pressure.
The filter width in the Smagorinsky model (5.1) was chosen to be δ = 2h. For the
constant, cS = 0.01 was used. These are typical values. The fractional-step θ-scheme
was applied with equidistant time steps of length 0.01.

The quantities of interest which we consider are the errors U − uh in different
norms (see Table 5.1) and the total kinetic energy of the flow given by

Ekin(u) =
1

2

∫
Ω

uTu dx for t ∈ [0, T ].

The total kinetic energy of (5.2) is 2.666 for each time t.
The solution (5.2) of the Navier–Stokes equations is contained in the ansatz space

(V h, Qh) and it is steady state. Thus, the Galerkin finite element discretization
computes in this example exactly this solution. However, slight perturbations of the
initial or inflow condition lead to a blow-up of the Galerkin finite element method
(FEM) solution.

The numerical results are presented in Table 5.1 and Figure 5.1. Modeling all
scales by the Smagorinsky model often gives the largest errors to the solution of the
Navier–Stokes equations and always gives the largest difference of the total kinetic
energy. Choosing the small space LH = P disc

0 in the VMS often gives somewhat
smaller errors. If one uses LH = P disc

1 in the VMS, one obtains solutions in this
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Table 5.1

Three-dimensional channel flow, errors of the velocity in different norms.

Level Error Smagorinsky VMS, LH = Pdisc
0 VMS, LH = Pdisc

1

1 L∞(0, T ;L2) 1.186e-1 7.606e-2 3.428e-5

1 L2(0, T ;L2) 4.807e-1 3.260e-1 1.332e-4

1 L2(0, T ;H1) 4.672 7.7016 3.738e-3

2 L∞(0, T ;L2) 6.064e-2 1.612e-2 5.609e-5

2 L2(0, T ;L2) 2.285e-1 6.943e-2 2.029e-4

2 L2(0, T ;H1) 2.167 3.657 1.020e-2
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Fig. 5.1. Three-dimensional channel flow, total kinetic energy. Left, level 1; right, level 2.

channel flow example which are nearly identical with the solution of the Navier–
Stokes equations. The refinement in space from level 1 to level 2 results in a decrease
of the errors and in the difference of the total kinetic energy for the Smagorinsky
model and the VMS with LH = P disc

0 . For the VMS with LH = P disc
1 , the errors

seem to be dominated by the discretization error in time.

5.2. A three-dimensional mixing layer problem. The mixing layer problem
is an often used test problem for turbulent flow simulations in three dimensions.
Computations with this problem can be found, e.g., in Comte, Lesieur, and Lamballais
[7], Rogers and Moser [28], Vreman, Guerts, and Kuerten [33], and [19].

The domain of computation is Ω = (−1, 1) × (−2, 2) × (0, 2). Free slip boundary
conditions are applied at y = −2 and y = 2. On the other four boundaries, periodic
boundary conditions are prescribed. The initial velocity is given by

u0 =

⎛
⎜⎜⎜⎝

U∞tanh

(
2y

σ0

)
0

0

⎞
⎟⎟⎟⎠ + cnoiseU∞

⎛
⎜⎜⎜⎜⎜⎜⎝

∂ψ

∂y
+

∂ψ

∂z

−∂ψ

∂x

−∂ψ

∂x

⎞
⎟⎟⎟⎟⎟⎟⎠

(5.3)

with ψ = exp(−(2y/σ0)
2)(cos(πx) + cos(2πz)). We will present computations with

ν−1 = 700, U∞ = 1, cnoise = 0.01, and the initial vorticity thickness σ0 = 1/14.
Defining the Reynolds number by Re = σ0U∞ν−1 gives a flow with Re = 50.
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Fig. 5.2. Three-dimensional mixing layer problem, relative momentum thickness, cS = 0.01
(left), cS = 0.005 (right).

A time unit t is defined by t = σ0/U∞. The fractional-step θ-scheme was applied
with an equidistant time step of Δtn = 0.5t = 1/28 ≈ 0.035714 and the final time
was set to T = 100t ≈ 7.1428. The initial grid (level 0, h =

√
3) consists of 16 cubes

of edge length one. This grid is refined uniformly. The computations are carried out
on level 3, h =

√
3/8 (199, 680 d.o.f. for the velocity, 32, 768 d.o.f. for the pressure).

In the Smagorinsky model (5.1), the filter width δ = h and the scaling parameters
cS = 0.01 and cS = 0.005 were used.

The computational results are evaluated using the relative momentum thickness
(Figures 5.2 and 5.4), the total kinetic energy (Figures 5.3 and 5.4), and plots of the
z-component of the vorticity in the plane z = 1 (Figures 5.5 and 5.6), where the
part (−1, 1) × (−1, 1) of the cut plane is presented. The vorticity of a vector field
u = (u1, u2, u3)

T is given by

ω = ∇× u =

⎛
⎜⎜⎝

(u3)y − (u2)z

(u1)z − (u3)y

(u2)x − (u1)y

⎞
⎟⎟⎠ .

Let Ω = (x0, x1) × (−y0, y0) × (z0, z1) with y0 > 0. The momentum thickness μ(t) is
a typical quantity which is considered in the three-dimensional mixing layer problem.
It is given by

μ(t) =

∫ y0

−y0

(
1

4
−
(
〈u1〉(t, y)

2U∞

)2
)
dy,

where

〈u1〉(t, y) =

∫ x1

x0

∫ z1
z0

u1(t, x, y, z)dzdx∫ x1

x0

∫ z1
z0

dzdx
.

The momentum thickness of the discrete initial velocity is μ(0) = 2.108548e− 2 and
the relative momentum thickness is defined by μ(t)/μ(0).

In this example, we used the VMS also with LH = P disc
2 , although in this case

LH 	⊆ D(V h). A local basis, i.e., a basis in each mesh cell, of the scalar space P disc
2 is
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Fig. 5.3. Three-dimensional mixing layer problem, total kinetic energy, cS = 0.01 (left), cS =
0.005 (right).
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Fig. 5.4. Three-dimensional mixing layer problem, cS = 0.01, differences of using LH = Pdisc
1

and LH = Pdisc
2 in the VMS to the Galerkin discretization of the Navier–Stokes equations, relative

momentum thickness (left), total kinetic energy (right).

the set {ξiηjζl, 0 ≤ i + j + l ≤ 2}. This set contains 10 functions. Accordingly, the
local basis of the symmetric tensor space P disc

2 has the dimension 60; see (4.1). The
restriction of D(V h) to a mesh cell contains 57 of these basis functions. Not contained
in D(V h) are ⎛

⎜⎜⎝
ξ2 0 0

0 0 0

0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0

0 η2 0

0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0

0 0 0

0 0 η2

⎞
⎟⎟⎠ .

On the other hand, D(V h) contains also functions which do not belong to LH = P disc
2 .

The computational results agree completely with the expectations. The larger
LH is chosen, the closer become the results of the VMS to the results obtained with
the Galerkin discretization of the Navier–Stokes equations. Using the Smagorinsky
model, LH = {O}, one can observe for both values of cS that it is too diffusive. The
eddies in the flow are quickly smoothed out; see the second row in Figures 5.5 and
5.6. Although the relative momentum thickness and the total kinetic energy with
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Fig. 5.5. Three-dimensional mixing layer problem, vorticity at time units 10, 30, 60, 100 (left
to right), Galerkin FEM, Smagorinsky model with cS = 0.01, VMS with LH = Pdisc

0 , VMS with
LH = Pdisc

1 , VMS with LH = Pdisc
2 (top to bottom).

LH = P disc
0 are much closer to the curves obtained for the Navier–Stokes equations,

there is only a small improvement visible in the vorticity plots; see the third row in
Figures 5.5 and 5.6. The curves of the relative momentum thickness and the total
kinetic energy are almost identical for LH = P disc

1 and LH = P disc
2 . But the plots of

the vorticity show the great improvement which is achieved with LH = P disc
2 ; compare

the fourth and fifth rows in Figures 5.5 and 5.6. For cS = 0.01, the solution is very
similar to the solution for the Navier–Stokes equations, at least up to time unit 60.
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Fig. 5.6. Three-dimensional mixing layer problem, vorticity at time units 10, 30, 60, 100 (left
to right), Galerkin FEM, Smagorinsky model with cS = 0.005, VMS with LH = Pdisc

0 , VMS with
LH = Pdisc

1 , VMS with LH = Pdisc
2 (top to bottom).

For cS = 0.005, both solutions are almost the same in the whole time interval. The
differences in the relative momentum thickness and the total kinetic energy of the
VMS solutions obtained with LH = P disc

1 and LH = P disc
2 to the solution of the

Navier–Stokes equations are presented in Figure 5.4. One can observe how small the
differences in these two parameters are, but the plots of the vorticity show that the
solutions differ considerably.
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Fig. 5.7. Turbulent flow around a cylinder, the cross section of the domain (all length in m),
and the initial grid; the height of the channel is H = 0.4 m.

5.3. A turbulent flow around a cylinder with square cross section. This
example was defined by Rodi et al. [27]. The flow domain and the initial grid (level
0) consisting of hexahedra are given in Figure 5.7. The height of the channel is
H = 0.4 m. The computations have been carried out on level 2, resulting in 522, 720
velocity d.o.f. and 81, 920 pressure d.o.f. The inflow is given by

u(t, 0, y, z) = (1 + 0.04 ∗ rand, 0, 0)T ,

where rand is a random number in [−0.5, 0.5]. The noise in the inflow serves to
stimulate the turbulence. No-slip boundary conditions are prescribed at the column
and outflow boundary conditions at x = 2.5. On all other boundaries, free slip
conditions are used. The Reynolds number of the flow, based on the mean inflow
U∞ = 1 m/s, the length of the cylinder D = 0.1 m, and the viscosity ν = 1/220, 000
is Re = 22, 000. There are no external forces acting on the flow. The Crank–Nicolson
scheme was applied with equidistant time steps of length Δtn = 0.01 and Δtn = 0.005.
Again, the Smagorinsky model (5.1) was used for the turbulent viscosity νT with
cS = 0.005 and δ = hK , where hK is the diameter of the mesh cell K.

Characteristic values of the flow are the drag and the lift coefficient at the cylinder
and the Strouhal number. The coefficients can be computed as volume integrals (e.g.,
see [20]),

cd(t) = − 2

ρDHU2
∞

[(ut,vd) + (ν∇u,∇vd) + b(u,u,vd) − (p,∇ · vd)]

for any function vd ∈ (H1(Ω))3 with (vd)|S = (1, 0, 0)T ; vd vanishes on all other
boundaries and S is the boundary of the cylinder. The density of the fluid is in this
example ρ = 1 kg/m3. Similarly, it holds that

cl(t) = − 2

ρDHU2
∞

[(ut,vl) + (ν∇u,∇vl) + b(u,u,vl) − (p,∇ · vl)]

for any function vl ∈ (H1(Ω))3 with (vl)|S = (0, 1, 0)T and vl vanishes on all other
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Table 5.2

Results for the turbulent flow around a cylinder.

Method Δtn cl cl,rms cd cd,rms St

Smagorinsky 0.01 0.001 1.295 2.507 0.103 0.152

VMS, LH = Pdisc
0 0.01 0.020 1.039 2.529 0.140 0.141

VMS, LH = Pdisc
1 0.01 -0.007 1.282 2.619 0.171 0.135

Smagorinsky 0.005 -0.001 1.190 2.482 0.079 0.152

VMS, LH = Pdisc
0 0.005 0.029 1.216 2.598 0.131 0.144

VMS, LH = Pdisc
1 0.005 0.017 1.276 2.614 0.151 0.132

ILLINOIS2 -0.02 1.40 2.52 0.27 0.13

UKAHY2 -0.04 1.15 2.30 0.14 0.13

experiments 0.7 - 1.4 1.9 - 2.1 0.1 - 0.2 0.132

boundaries. The actual choice of vd and vl in our computations is the same as in [22].
The Strouhal number is defined by St = DU∞/T , where T is a characteristic time
scale (the average length of a period in this example).

In [27], the results obtained with more than a dozen codes are presented. These
results include time averaged values c̄d, c̄l of the drag and lift coefficient, root mean
squared values for cd, cl which are defined by

cd,rms =

(∑
i

(cd(ti) − c̄d)
2

)1/2

, cl,rms =

(∑
i

(cl(ti) − c̄l)
2

)1/2

,

where the summation covers all discrete times in the time interval for which c̄d, c̄l
are computed, and the Strouhal number. However, the results of the different codes
varied too much to define benchmark values. Some of the results from [27] are given,
for comparison to our results, in Table 5.2. ILLINOIS2 is a code by Wang and Vanka,
and UKAHY2 is a code by Pourquie, Breuer, and Rodi. In addition, values from
experiments which were used in [27] also for comparison are given in Table 5.2.

The evolution of the lift coefficient for the Smagorinsky model, the VMS with
LH = P disc

0 , and the VMS with LH = P disc
1 is presented in Figure 5.8. The periodicity

of the flow can be observed. The amplitudes of the lift coefficient vary much more
for both VMS than for the Smagorinsky model. This shows that the flows computed
with the VMS are more irregular (turbulent). The characteristic values of the flow,
averaged over 10 periods, are presented in Table 5.2. It can be seen that they are in the
range of the values computed with the engineering codes. The most reliable value with
respect to the variation of the computational results in [27] is the Strouhal number.
In our computations, this number is predicted the worst by the Smagorinsky model,
clearly better by the VMS with LH = P disc

0 , and by far the best by the VMS with
LH = P disc

1 . This is with respect to both the results obtained with the other codes
and the experimental values. The different length of the periods computed with the
different methods can be seen clearly in Figure 5.8. Altogether, using a VMS instead
of the Smagorinsky model improves the computed flow in several aspects.

The computations were carried out at a computer with HP PA-RISC 8700 proces-
sors (3 GFlops peak). The assembling of the matrices for a VMS requires additional
operations in comparison to the Smagorinsky model; see the description of our ap-
proach at the end of section 4. In this example, each assembling took approximately
111 s for the Smagorinsky model, 124 s for the VMS with P disc

0 , and 137 s for the
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Fig. 5.8. Turbulent flow around a cylinder, evolution of the lift coefficient.

VMS with P disc
1 . Because of the noise in the inflow, the Euclidean norm of the

residual was always rather large (more than 1e6) at the beginning of each discrete
time. The fixed point iteration for solving the nonlinearity was stopped after having
reduced this norm below 1e-5. In general, five iterations were necessary to reach this
goal, independent of the method. Also the number of iterations for solving the linear
saddle point problems was the same for all methods. The average time which was
needed by the solver for one discrete time step was 490 s. It can be deduced from
these observations that, at least in this example, the conditioning of the matrices is
not much different for the Smagorinsky model and the VMS with P disc

k , k ∈ {0, 1}.
The only overhead of the VMS was indeed in the assembling of the matrices.
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