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Abstract Standard error analysis for grad-div stabilization of inf-sup stable con-
forming pairs of finite element spaces predicts that the stabilization parameter should
be optimally chosen to be O(1). This paper revisits this choice for the Stokes equa-
tions on the basis of minimizing the H 1(�) error of the velocity and the L2(�) error
of the pressure. It turns out, by applying a refined error analysis, that the optimal
parameter choice is more subtle than known so far in the literature. It depends on the
used norm, the solution, the family of finite element spaces, and the type of mesh.
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In particular, the approximation property of the pointwise divergence-free subspace
plays a key role. With such an optimal approximation property and with an appro-
priate choice of the stabilization parameter, estimates for the H 1(�) error of the
velocity are obtained that do not directly depend on the viscosity and the pressure.
The minimization of the L2(�) error of the pressure requires in many cases smaller
stabilization parameters than the minimization of the H 1(�) velocity error. Alto-
gether, depending on the situation, the optimal stabilization parameter could range
from being very small to very large. The analytic results are supported by numeri-
cal examples. Applying the analysis to the MINI element leads to proposals for the
stabilization parameter which seem to be new.

Keywords Incompressible Stokes equations · Mixed finite elements · Grad-div
stabilization · Error estimates · Pointwise divergence-free subspace

Mathematics Subject Classification (2010) 65N30 · 76M10

1 Introduction

This paper investigates the choice of the parameter for grad-div stabilization in mixed
finite element methods for the Stokes equations, which are given by

−ν�u + ∇p = f, ∇ · u = 0 in �.

Grad-div stabilization results from adding 0 = −γ∇(∇ · u) to the continuous Stokes
equations, which yields the term γ (∇ · uh,∇ · vh) in the finite element formulation.
Since ∇ · uh �= 0 for most common finite element methods for the Stokes equations,
due to the only discrete enforcement of the divergence-free condition, this additional
term is non-zero and it acts to penalize a lack of mass conservation. This consistent
stabilization term was first introduced in [8], and it is well known that its use can
improve solution accuracy for Stokes [25] and Navier–Stokes equations [18, 23],
conditioning of discrete systems [13], convergence of iterative solvers [5, 14], and
even solution accuracy for related problems such as the Boussinesq equations and
others [7, 11, 15, 22, 30].

Due to the proven usefulness of grad-div stabilization, there is a natural interest
to deepen its understanding, and in particular to study how to choose the stabiliza-
tion parameter γ optimally. Theoretical analysis (which considers the dependence of
γ on the mesh width and the viscosity) and numerical simulations, originally per-
formed in [28], and subsequently in [3, 12, 20, 24, 25], suggest that γ = O(1)
is an appropriate choice in the context of inf-sup stable conforming finite element
spaces, and this choice seems to be widely accepted in the community. However,
it was recently shown in [11] that in certain situations, an optimal γ can actually
be much larger than O(1). There, the authors showed analytically and with numer-
ical studies that for solutions with large or complicated pressures, e.g., caused by
irrotational forcing, one gets very good results with γ = 104 and bad results with
γ = 1 or 10.
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The goals of the present paper are to show for the simplest model problem, the
Stokes equations, that

– the choice of the grad-div stabilization parameter from the analytic point of view
is more involved than it can be found so far in the literature, if the error in the
H 1(�) norm of the velocity is of primary interest,

– an enormous increase in accuracy can be achieved sometimes by using a param-
eter that is predicted by the analysis presented in this paper, instead of a standard
O(1) parameter.

The Stokes equations are considered, e.g., instead of the Navier–Stokes equations,
in order to concentrate on the main statement of this paper, the more subtle choice
of the stabilization parameter than it is known so far, without introducing technical
difficulties that arise, e.g., from the consideration of nonlinear problems. In particu-
lar, it will be shown first that for minimizing the H 1(�) velocity error the optimal
parameter choice depends critically on the magnitude of the pressure relative to the
velocity in appropriate norms. A statement of this form can be also found in [14, 24],
but the possibly large stabilization parameter is not investigated further. Secondly,
it depends on whether the pointwise divergence-free subspace of the finite element
velocity space has some optimal approximation properties, which seems to be a new
observation. These properties are closely related with the specific choice of the finite
element space, i.e., with the family of finite elements and with the mesh. The results
will be derived by performing a finite element error analysis for the H 1(�) velocity
error, considering it as a function of γ , and then minimizing it. Inserting the proposed
parameter into the error estimate reveals that there will be no direct dependence of
the bound on ν if a pointwise divergence-free subspace with optimal approximation
property exists. It will be also shown that one obtains different optimal stabiliza-
tion parameters if one considers the L2(�) error of the pressure. These parameters
are smaller in many cases than those obtained for the minimization of the H 1(�)

velocity error, in particular if the viscosity is small.
It turns out, depending on the specific situation, that the optimal stabilization

parameter might be of very different size, e.g., it depends on the norms of the veloc-
ity and pressure and the element choice, and might depend on the mesh width h, and
the viscosity ν. For the MINI element, for example, the optimal γ decreases with h,
but this is not true for the Taylor–Hood element. The proposed stabilization parame-
ters for the MINI element seem to be new. We like to remark that although the theory
consists essentially in refining a standard analysis, it is able to predict phenomena
seemingly unobserved before. However, it does not lead to formulas for choosing the
grad-div stabilization parameter that can be used instantly in practice since the formu-
las involve usually unknown constants and norms of derivatives of the velocity and
pressure solution of the continuous Stokes equations. Instead, the theory provides a
qualitative understanding for the practitioner, how the discretization method and the
mesh influence the choice of a good stabilization parameter.

The paper starts by introducing the continuous and the discrete Stokes equations
as well as the space of divergence-free and discretely divergence-free functions in
Section 2. Section 3 presents the finite element error analysis that leads to good
parameter choices for minimizing different errors and for different approximation
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properties of the pointwise divergence-free subspace. Numerical studies, presented
in Section 4, support the analytic results. In particular, it is shown that, depending on
the example, the finite element space, and the mesh, the optimal parameter might be
vary from O(h2) to O(104). Section 5 summarizes the results and further steps are
discussed that are necessary for the application of the theory to more difficult prob-
lems than considered in this paper. Throughout the paper, we use the notation (·, ·)
to represent the L2(�) inner product, ‖ · ‖0 the L2(�) norm, and | · |n the semi norm
in Hn(�).

2 The setup of the problem and its finite element discretization

This paper considers the Stokes equations with homogeneous Dirichlet boundary
conditions: find (u, p) ∈ H 1

0 (�)d × L2
0(�) in a Lipschitz domain with polyhedral

boundary � ⊂ R
d , d ∈ {2, 3}, such that, for all (v, q) ∈ H 1

0 (�)d × L2
0(�) it holds

ν(∇u,∇v)− (∇ · v, p) = (f, v),

(∇ · u, q) = 0.
(2.1)

For the finite element discretization, we choose pairs of conforming finite element
spaces Vh ⊂ H 1

0 (�)d and Qh ⊂ L2
0(�) that satisfy the inf-sup stability condition

(BB condition, LBB condition), see, e.g. [4, 17],

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)
‖∇vh‖0 ‖qh‖0

≥ β > 0. (2.2)

In addition, the discrete bilinear form is extended with a grad-div stabilization in
order to mitigate problems with poor mass conservation. Then, the stabilized finite
element discretization reads: For fixed γ ≥ 0, find (uh, ph) ∈ Vh ×Qh such that for
all (vh, qh) ∈ Vh ×Qh

ν(∇uh,∇vh)+ γ (∇ · uh,∇ · vh)− (∇ · vh, ph) = (f, vh),

(∇ · uh, qh) = 0.
(2.3)

We introduce now the spaces of weakly differentiable pointwise divergence-free
functions and discretely divergence-free functions, respectively,

V0 =
{

v ∈ H 1
0 (�)d : ∇ · v = 0

}
,

V0,h ={vh ∈ Vh : (∇ · vh, qh) = 0 for all qh ∈ Qh} .
In general, V0,h �⊂ V0, i.e., discretely divergence-free functions need not to be point-
wise divergence-free. Note that there are only few pairs of finite element spaces
that satisfy V0,h ⊂ V0. The space of divergence-free and discretely divergence-free
functions

V00,h := V0,h ∩ V0

will become important for an appropriate choice of the stabilization parameter γ .
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Definition 1 (Optimal approximation properties of the divergence-free sub-
space) Consider a sequence of quasi-uniform meshes with characteristic mesh size
h and the corresponding spaces V00,h. If for all v ∈ V0 ∩ Hk+1(�)d there exists a
sequence of vh ∈ V00,h with

‖∇v − ∇vh‖0 ≤ CV00,hh
k|v|k+1,

with CV00,h independent of h, then the sequence of spaces V00,h is said to possess
optimal approximation properties (w.r.t. the space V0).

There are several known combinations of element choices and mesh types where
optimal approximation properties are known to hold for V00,h, e.g. Xh = (Pk)

d with
k ≥ d on barycenter-refined triangular/tetrahedral meshes [2, 27, 31], and Xh =
(P1)

2 on Powell–Sabin grids [32] or Union Jack grids [33].

3 On choices of the grad-div parameter that are based on error estimates

The goal of the following analysis consists in finding good values for the stabiliza-
tion parameter γ . It will be shown that the standard parameter choice γ ∼ O(1),
presented, e.g., in [25, 29], is not always adequate, and that it can even be far from
optimal. This standard choice is justified in a paradigmatic way in the excellent arti-
cle [25] by deriving an optimal a-priori estimate for Eq. 2.3. We like to emphasize
that the discussion of an appropriate stabilization parameter in [25] is based on the

norm
(
ν

1
2 ‖∇u‖0 + γ

1
2 ‖∇ · u‖0 + ‖p‖0

)
. The choice of an optimal γ is not really

investigated there. Rather more, it is argued that the choice γ = O(1) leads to
a discrete problem that is uniformly well-posed in the corresponding energy norm
with respect to ν. Similarly, in [24] an optimal error estimate is derived in the norm(
ν ‖∇u‖2

0 + γ ‖∇ · u‖2
0 + ‖p‖2

0

) 1
2 , and an optimal γ is derived from the right-hand

side of the estimate.
In contrast, this paper studies first the optimality with respect to the velocity norm

‖∇u‖0 alone, since one is often mainly interested in the control of this error. Such an
estimate also allows to track the influence of the divergence error in a more appro-
priate way, and it will be revealed that the existence of a divergence-free subspace
with optimal approximation properties changes the optimal choice of the grad-div
stabilization parameter significantly. Moreover, problems are avoided that arise from
including γ into the error norm on the left-hand side of the error estimate and simul-
taneously varying γ in the right side of the error estimate. Note that for large γ on a

fixed grid the term γ
1
2 ‖∇ · u‖0 goes to zero only with O

(
γ− 1

2

)
[19]. Following this

analysis, it will be verified that the asymptotic optimal choice of γ which is based on
the consideration of the error in the L2(�) pressure norm leads to different values as
were derived for the error in the velocity norm. The choice of a different norm with
respect to the derivations in [25, 29], as well as the refined analysis, seem to explain
the different results.
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3.1 Appropriate choices of the grad-div parameter based on a velocity error estimate

We consider now the H 1(�) velocity error of the discrete Stokes system with
grad-div stabilization (2.3) and use the resulting error estimate to find a good
choice for γ .

Theorem 1 For a given f ∈ H−1(�)d , let (u, p) be the solution to Eq. 2.1, and let
(uh, ph) be the solution to Eq. 2.3. Then, the error in the L2(�) norm of the gradient
of the velocity is bounded by

‖∇(u − uh)‖2
0 ≤ inf

wh∈V0,h

(
4‖∇(u − wh)‖2

0 + 2
γ

ν
‖∇ · wh‖2

0

)
+ 2

γ ν
inf

qh∈Qh

‖p − qh‖2
0.

(3.1)

Proof Write u − uh = (u − wh) + (wh − uh) =: η + ψh, where wh ∈ V0,h is
arbitrary. First, by the triangle inequality and Young’s inequality, one obtains

‖∇u −∇uh‖2
0 ≤ 2 ‖∇η‖2

0 + 2
∥∥∇ψh

∥∥2
0 . (3.2)

For any vh ∈ V0,h, one concludes by subtracting Eqs. 2.1 and 2.3 that

ν(∇ψh,∇vh)+ γ (∇ ·ψh,∇ · vh) = −ν(∇η,∇vh)− γ (∇ · η,∇ · vh)+ (∇ · vh, p).

Choosing vh = ψh, and using that (∇ · ψh, qh) = 0 for any qh ∈ Qh, the error
equation becomes, for any qh ∈ Qh,

ν‖∇ψh‖2
0 + γ ‖∇ · ψh‖2

0 = −ν(∇η,∇ψh)− γ (∇ · η,∇ · ψh)+ (∇ · ψh, p − qh).

After applying the Cauchy-Schwarz and Young’s inequality on the right-hand side,
one gets

ν‖∇ψh‖2
0 + γ ‖∇ · ψh‖2

0 ≤ ν‖∇η‖2
0 + γ ‖∇ · η‖2

0 + 2‖p − qh‖0‖∇ · ψh‖0. (3.3)

The last term on the right-hand side can be estimated by

2‖p − qh‖0‖∇ · ψh‖0 ≤ γ−1‖p − qh‖2
0 + γ ‖∇ · ψh‖2

0, (3.4)

which leads to

‖∇ψh‖2
0 ≤ ‖∇η‖2

0 +
γ

ν
‖∇ · η‖2

0 +
1

γ ν
inf

qh∈Qh

‖p − qh‖2
0.

Finally, Eq. 3.2 gives

‖∇u − ∇uh‖2
0 ≤ 4‖∇η‖2

0 + 2
γ

ν
‖∇ · η‖2

0 +
2

γ ν
inf

qh∈Qh

‖p − qh‖2
0

for all wh ∈ V0,h, which is just the statement of the theorem.

The key of the analysis consists in tracking the divergence error to the final esti-
mate (3.1). This estimate allows to study the consequences of the error bound (3.1)
on the choice of γ for two different cases. These two cases are characterized by
whether or not the pointwise divergence-free subspace of the velocity space has
optimal approximation properties.
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Corollary 1 (Taylor–Hood elements) Consider (Vh,Qh) = (
(Pk)

d , Pk−1
)

on
quasi-uniform meshes and assume that the solution (u, p) of Eq. 2.1 lies in
Hk+1(�)d ×Hk(�).

Case 1 In the general case, if V00,h does not have optimal approximation properties,
then the a-priori estimate of Theorem 1 has the form

‖∇u − ∇uh‖2
0 ≤

(
4 + 2γ

ν

)
C2
V0,h

h2k|u|2k+1 +
2C2

Qh

γ ν
h2k|p|2k. (3.5)

Case 2 If V00,h has optimal approximation properties, one obtains the a-priori error
estimate

‖∇u −∇uh‖2
0 ≤ min

{(
4 + 2γ

ν

)
C2
V0,h

, 4C2
V00,h

}
h2k|u|2k+1 +

2C2
Qh

γ ν
h2k |p|2k.

(3.6)

The constants CQh, CV00,h , CV0,h are constants coming from interpolation esti-
mates, where CV00,h and CV0,h depend on β−1.

Proof For the first case, one can only use that ‖∇ · wh‖ = ‖∇ · (u − wh)‖ ≤
‖∇(u − wh)‖ holds in this setting. Then, one applies standard approximation theory
to prove (3.5).

For the second case, if the space V00,h has optimal approximation properties, one
gets an additional estimate. Here, one can choose wh ∈ V00,h in Eq. 3.1. Hence, the
velocity error term can be bounded also by

inf
wh∈V0,h

(
4‖∇(u − wh)‖2

0 + 2
γ

ν
‖∇ · wh‖2

0

)
≤ 4C2

V00,h
h2k|u|2k+1,

since 2 γ
ν
‖∇ ·wh‖2

0 vanishes. Combining both results gives (3.6). Since V00,h ⊂ V0,h,
one expects that CV00,h is larger than CV0,h .

Remark 1 (Taylor–Hood elements) The two different cases from Corollary 1 will be
discussed now in more detail.

Case 1 If V00,h does not have optimal approximation properties, one can regard the
right-hand side of Eq. 3.5 as a function dependent on γ . This function has a minimum
which can be determined by elementary calculus:

γopt ≈ CQh

CV0,h

|p|k
|u|k+1

. (3.7)

Hence, with respect to ν and h, the standard parameter choice γ = O(1) is recovered.
However, we emphasize that γopt from Eq. 3.7 may be quite large, whenever the
velocity norm is small compared with the pressure norm, and that this situation can
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happen in practice, e.g., in coupled flow problems like Rayleigh–Bénard convection,
see Section 4. Moreover, inserting γopt into the error estimate (3.5) gives

‖∇u − ∇uh‖0 ≤ 2hk
(
C2
V0,h

|u|2k+1 +
1

ν
CV0,hCQh |u|k+1|p|k

)1/2

. (3.8)

This error estimate reveals a direct dependence of the optimal velocity solution on
(|p|k/ν)1/2, even for the best possible stabilization parameter. In other words, even
if the approximation space V0,h can approximate the velocity solution u perfectly, it
is not guaranteed that the discrete (grad-div)-stabilized solution is a good approxima-
tion. The grad-div stabilization is therefore able to mitigate the problem of poor mass
conservation, but in general not able to heal it perfectly.

Case 2 If V00,h has optimal approximation properties, the right-hand side of estimate
(3.6) is not as easy to analyze. The numerical results in Fig. 2 show, depending on
the complexity of the pressure, there may or there may be not an optimal γ , since for
|p|k � |u|k+1 one has γopt = ∞, which is not feasible in practice (but is equivalent
to using ((P2)

2, P disc
1 ) Scott–Vogelius elements [6]). Therefore, giving up the idea of

finding the optimal γ , we only want to find a good γ , which should not be ∞. We
used as criterion for the choice of γ that the contribution of the pressure error equals
the maximum possible contribution of the velocity error 4C2

V00,h
h2k|u|2k+1, which is

already asymptotically optimal. This criterion leads to

γgood ≈ 1

2ν

(
CQh

CV00,h

|p|k
|u|k+1

)2

. (3.9)

The numerical studies in Section 4 will show that this consideration delivers good
results. It is interesting that only in the second case γgood is ν-dependent, which
can be observed in the numerical examples as well. In addition, inserting γgood into
Eq. 3.6 gives the error estimate

‖∇u −∇uh‖0 ≤ √
8CV00,h |u|k+1h

k, (3.10)

which does not directly depend on ν and p, but of course |u|k+1 might still depend
on ν. If |u|k+1 does not depend on ν, Equation 3.10 shows that the grad-div stabi-
lization is able to deliver optimal robust approximations, if there exists a subspace of
optimally converging divergence-free trial functions.

For both cases, one does not observe a dependence on the mesh width h. The
dependence of the stabilization parameter on higher order norms of the solution can
be already found in [14, 24].

The corollary and remark above are specific to Taylor–Hood elements, but the
same techniques can be applied to any conforming inf-sup stable finite element pair
used for computing solutions of Eq. 2.3. Naturally, results for optimal stabilization
parameter γ will vary. In the numerical experiments in Section 4, the theory will be
tested on both the Taylor–Hood element and the MINI element.
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3.2 Appropriate choices of the grad-div parameter based on a pressure error estimate

We consider now the effect of grad-div stabilization on the L2(�) pressure error and
how the optimal parameter scales with the problem data.

Theorem 2 For a given f ∈ H−1(�)d , let (u, p) be the solution to Eq. 2.1, let
(uh, ph) be the solution to Eq. 2.3, and assume for the inf-sup constant 0 < β ≤
O(1). Then the pressure error is bounded by

‖p − ph‖0 ≤ C(β−1)

{(
1 +

(
ν

γ

)1/2
)

inf
qh∈Qh

‖p − qh‖0

+ inf
wh∈V0,h

((
ν + (νγ )1/2

)
‖∇(u − wh)‖0

+
(
(νγ )1/2 + γ

)
‖∇ · wh‖0

) }
. (3.11)

Proof From Eqs. 2.1 and 2.3 it follows that ∀vh ∈ Vh

(p − ph,∇ · vh) = ν(∇(u − uh),∇vh)+ γ (∇ · (u − uh),∇ · vh).

Writing p − ph = (p − qh) + (qh − ph) for arbitrary qh ∈ Qh, and dividing both
sides by ‖∇vh‖ and reducing gives

(qh − ph,∇ · vh)
‖∇vh‖0

= ν
(∇(u − uh),∇vh)

‖∇vh‖0
+ γ

(∇ · (u − uh),∇ · vh)
‖∇vh‖0

− (∇ · vh, p − qh)

‖∇vh‖0

≤ ν ‖∇(u − uh)‖0 + γ ‖∇ · (u − uh)‖0 + ‖p − qh‖0 .

Next, applying the inf-sup stability (2.2) implies that

β ‖ph − qh‖0 ≤ ν ‖∇(u − uh)‖0 + γ ‖∇ · (u − uh)‖0 + ‖p − qh‖0

for any qh ∈ Qh. Hence by the triangle equality one obtains

‖p − ph‖0 ≤ ν

β
‖∇(u − uh)‖0 + γ

β
‖∇ · (u − uh)‖0 +

(
1 + 1

β

)
inf

qh∈Qh

‖p − qh‖0 .

(3.12)
From Eq. 3.1 it follows immediately that

‖∇(u − uh)‖0 ≤ inf
wh∈V0,h

(
2‖∇(u − wh)‖0 +

(
2γ

ν

)1/2

‖∇ · wh‖0

)

+
(

2

γ ν

)1/2

inf
qh∈Qh

‖p − qh‖0. (3.13)

Applying to Eq. 3.3

2‖p − qh‖0‖∇ · ψh‖0 ≤ 2γ−1‖p − qh‖2
0 +

γ

2
‖∇ · ψh‖2

0
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instead of Eq. 3.4, one can derive with the same arguments the estimate

‖∇ · (u − uh)‖0 ≤ inf
wh∈V0,h

((
2ν

γ

)1/2

‖∇(u − wh)‖0 +
(

1 +√
2
)
‖∇ · wh‖0

)

+ 2

γ
inf

qh∈Qh

‖p − qh‖0. (3.14)

Then from Eqs. 3.12–3.14, one gets

‖p − ph‖0 ≤ β−1

{(
β + 1 + 2 +

(
2ν

γ

)1/2
)

inf
qh∈Qh

‖p − qh‖0

+ inf
wh∈V0,h

((
2ν + (2νγ )1/2

)
‖∇(u − wh)‖0

+
(
(2νγ )1/2 +

(
1 +√

2
)
γ
)
‖∇ · wh‖0

)}
,

and assuming that β ≤ O(1) allows this to be reduced to Eq. 3.11.

Note that the assumption on β is without loss of generality. If Eq. 2.2 holds for
some positive β, it holds also for all positive stabilization parameters smaller than β.

The impact of the error bound (3.11) on the choice of the stabilization parameter
will be studied in more detail again for the pairs of Taylor–Hood elements.

Corollary 2 (Taylor–Hood elements) Let the conditions of Corollary 1 hold.

Case 1 If V00,h does not have optimal approximation properties, one obtains the
error estimate

‖p − ph‖0 ≤ C(β−1)

((
1 +

(
ν

γ

)1/2
)
CQhh

k|p|k

+
(
ν + (νγ )1/2 + γ

)
CV0,hh

k|u|k+1

)
. (3.15)

Case 2 If V00,h has optimal approximation properties, the a-priori error estimate
becomes

‖p − ph‖0 ≤ C(β−1)

((
1 +

(
ν

γ

)1/2
)
CQhh

k |p|k

+min
{(

ν + (νγ )1/2 + γ
)
CV0,h ,

(
ν + (νγ )1/2

)
CV00,h

}
hk |u|k+1

)
. (3.16)

Proof The statements follow with the same arguments as were used in the proof of
Corollary 1.
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Remark 2 Similarly to the velocity case, we want to find good values for γ . However,
minimizing the a priori error estimate with respect to γ is more complex than in the
velocity case. For instance, the necessary condition for getting the optimal value of
γ from Eq. 3.15 leads to an equation of the form

ν

4

(
CQh |p|k

CV0,h |u|k+1
− γ

)2

= γ 3. (3.17)

Standard calculus gives that there is at least one non-negative value of γ that satisfies
(3.17) which is smaller than (CQh |p|k)/(CV0,h |u|k+1). This value is the most left non-
negative intersection of the curves on both sides of Eq. 3.17. Since the right-hand side
of Eq. 3.15 is a continuous function for γ ∈ (0,∞) with the limit ∞ at both ends
of this interval, the most left local extremum must be a minimum. In the interesting
case that ν is small, the curve on the left-hand side of Eq. 3.17 becomes flat and then
there will be exactly one intersection of both curves, which has to correspond to a
minimum and which has to be smaller than (CQh |p|k)/(CV0,h |u|k+1). We could not
obtain an analytic expression for this minimum, but a comparison with Eq. 3.7 shows
already that one gets a different (smaller) optimum than obtained for minimizing the
H 1(�) error of the velocity. In the case of small ν, where the lowest power of ν is of
importance, a slight dependence γgood = O(ν1/3) can be deduced from Eq. 3.17.

Considering Case 2 on the same basis like in Remark 1 gives

γgood = CQh |p|k
CV00,h |u|k+1

. (3.18)

Again, the parameter is different from those obtained for minimizing the H 1(�) error
of the velocity. In contrast to Eq. 3.9, the parameter (3.18) does not depend on the
inverse of ν such that one can expect that for small ν the parameter (3.9) is larger
than Eq. 3.18.

4 Numerical experiments

Two numerical experiments will be presented in this section. The first one is for an
analytic test problem with known solution to support the analysis. In this experiment,
the optimal values for γ can be computed and these values will be compared with
the predictions from Section 3. The second example is of more practical interest;
it is a Rayleigh–Bénard convection for silicon oil. Here, an analytic expression for
the analytic solution is unknown, but from experiments one can hypothesize that
|p|2/|u|3 is very large, and therefore large grad-div stabilization parameters may
significantly improve results. It will be verified that this is indeed the case.

4.1 Optimal stabilization parameters for an analytic test problem

This section will verify that the different regimes for choosing γopt or γgood given
in the previous section can be observed in numerical simulations. Examples with
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prescribed analytic solutions will be considered. Further steps of the application of
the analytic results to more complicated situations will be pointed out at the end of
Section 4.1.

The discretization of the Stokes problem was studied with two choices of con-
forming inf-sup stable pairs of finite element spaces and with three types of
meshes. We considered (2.1) with � = (0, 1)2 and with the prescribed velocity
solution

u =
(

cos(2πy)
sin(2πx)

)
.

Four values for the viscosity were studied, ν ∈ {
1, 10−1, 10−3, 10−6

}
, and three

different functions that serve as a prescribed pressure solution:

p1 = sin(2πy), p2 = sin(8πy), p3 = 104 sin(2πy).

For each of these solutions, the forcing f was computed using the Stokes equa-
tion. In all examples, Dirichlet boundary conditions for the velocity were applied.
The discrete problem (2.3) was then solved with varying stabilization parameter
γ ∈ [10−3, 104]. More than 500 values for γ were chosen in this interval, with finer
distances for small γ and increasing distances for large γ . The simulations were per-
formed with the code MOONMD [16] and selected results were double checked with
freeFEM [10].

The first purpose of the numerical studies was to verify that the analysis-
based selections of γopt or γgood, e.g., see Eq. 3.7 or 3.9 for the Taylor–Hood
finite element, are close to the actual optimal γ , in the sense of minimizing
the H 1(�) velocity error. Secondly, the optimal stabilization parameters were
computed also on the basis of minimizing the L2(�) error of the pressure to
show the differences to the velocity case and to illustrate the predictions from
Remark 2.

There are unknown interpolation constants in the predictions of the optimal sta-
bilization parameter. For each simulation, after having found the optimal parameter,
one can compute an estimate of these constants. To get some idea of the magnitude of
these constants, for all results with respect to the velocity error in the H 1(�) norm,
we computed the estimate if the optimal parameter was not a boundary point of the
interval [10−3, 104]. Then, the three smallest and the three largest of these estimates
were neglected (to remove extreme values which might come from round-off errors,
see below) and from the remaining estimates the median and the arithmetic mean will
be given.

Delaunay triangulations, barycenter refinements of triangular meshes, and Union
Jack (criss-cross) meshes were considered. The use of these meshes allows one to
study the cases of optimal vs. non-optimal approximation properties of the point-
wise divergence-free subspaces of the velocity spaces for the

(
(P2)

2, P1
)

and the(
(P bub

1 )2, P1
)

pairs of finite elements. From [2, 27] it is known that the pointwise
divergence-free subspace of the (P2)

2 velocity space has optimal approximation
properties on a barycenter refinement of a regular mesh. Also, the pointwise

divergence-free subspace of the
(
P bub

1

)2
velocity on Union Jack meshes has optimal
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Fig. 1 Barycenter-refined (h = 1/8), Delaunay (h = 1/16), and Union Jack (criss-cross, h = 1/16)
meshes (left to right) used in the numerical studies

approximation properties, see [33]. An example of each of the considered mesh types
is shown in Fig. 1.

From the available numerical analysis, which tracks the dependence of the sta-
bilization parameter on the viscosity and the mesh width, the proposal for this
parameter is γ = O(1) in the case of inf-sup stable pairs of finite element spaces of
Taylor–Hood type, [3, 21]. The analysis of Section 3 leads to the same asymptotics
for the case that the divergence-free subspace does not possess the optimal approxi-
mation property, see Eq. 3.7. However, in the other case, the dependence O(ν−1) is
predicted, see Eq. 3.9.

We could not find in the literature studies of the grad-div stabilization for the MINI
element. However, the use of the MINI element ((P bub

1 )2, P1) for the Stokes problem
is equivalent to applying the PSPG stabilization with the equal-order pair

(
(P1)

2/P1
)

with a special choice of the PSPG parameter [26]. The finite element error analysis
of the PSPG/grad-div stabilization for the ((P1)

2/P1) pair of finite element spaces
applied to the Stokes equations proposes to choose γ = O(ν) [3, 8, 9, 21]. In this
analysis, contributions from the PSPG stabilization are used to estimate the coupled
velocity-pressure terms of the weak form of the Stokes equations. In the analysis of
Section 3, these terms had to be estimated in a different way. It will turn out that the
application of the results of Section 3 to the MINI element leads to different proposals
for γ than O(ν), namely O(h2/ν) or O(h), depending on the approximation property
of the pointwise divergence-free subspace. Since the results from Sections 4.1.3 and
4.1.4 indicate that γ = O(ν) is often a bad choice for small ν, we do not wish to call
it the standard choice for the grad-div parameter. Altogether, we could not identify a
parameter choice which is standard for the MINI element.

To unify and simplify the presentation of the numerical results, the analytically
proposed parameters will be denoted by γgood below and the “optimal γ ” will be the
stabilization parameter that corresponds to the actually best results in the simulations.

4.1.1
(
(P2)

2, P1
)

Taylor–Hood element on barycenter-refined meshes

First, the ((P2)
2, P1) Taylor–Hood element on a barycenter-refined uniform mesh is

considered, a case where it is known that the divergence-free subspace of the velocity
space has optimal approximation properties [2]. Thus, following the scaling analysis



504 E.W. Jenkins et al.

of the previous section, a good choice of γ for this test problem for minimizing the
H 1(�) velocity error will satisfy, see Eq. 3.9,

γgood ≈ C0
1

2ν

|p|22
|u|23

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C0

16νπ2
for p1,

16C0

νπ2
for p2,

108C0

16νπ2
for p3,

(4.1)

where C0 is an unknown constant, which is independent of h and γ . Numerical sim-
ulations were performed on three meshes, with h ∈ {1/8, 1/16, 1/32} (the h = 1/8
mesh is shown in Fig. 1 on the left-hand side).

The results of the numerical studies are presented in Fig. 2, where the H 1(�)

velocity error is plotted against the grad-div stabilization parameter γ . The leg-
ends contain the actual optimal values of γ and the H 1(�) velocity error for the
standard choice γ = 1 (std.). The qualitative behavior of the results in relation with

Fig. 2 H 1(�) velocity errors vs. grad-div stabilization parameter γ , for each of the Stokes solutions, on
successive refinements of barycenter-refined uniform meshes, “std” gives the error for γ = 1
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the predictions from Eq. 4.1 will be discussed. From Eq. 4.1 one expects an increase
of the optimal parameter for decreasing viscosities. A good situation for observing
this behavior are the cases where |p|22/|u|23 is small, i.e., the cases p1 and p2. In
Fig. 2, one can see the expected behavior always for p1 (first column) and mostly
for p2 (second column). For the case p2 it should be noted that the error is always
almost constant for all viscosities and γ � 100. In such a situation, small changes
of the velocity errors due to round-off errors might become important for the deter-
mination of the optimal stabilization parameter. Next, one expects from Eq. 4.1 that
γ increases notably if |p|22 increases. This effect is clearly visible by comparing, on
the one hand, p2 and p1 (second and first column) and, on the other hand, p3 and p2
(third and second column). The next prediction is that very large optimal γ occur if
ν is very small or |p|22 is large. Finally, one does not expect a dependence of the opti-
mal γ on the mesh width. Both expectations were always met. For C0 in Eq. 4.1, the
mean value 3.36 and the median 3.33 were estimated.

With respect to the accuracy of the computed solution, one can see clearly that in
the case of |p|22 being large, i.e. for p3 (third column), the errors computed with the
optimal γ are smaller by several orders of magnitude than the errors obtained with the
standard parameter γ = 1. The independence of the error for the optimal parameter
γ on ν, which is predicted in Eq. 3.10 together with |u|3 being independent of ν, can
be observed as well.

Results for the L2(�) pressure error are shown in Fig. 3. We could observe that
for all pressures and for all viscosities, the pressure error was almost constant and the
relative change in the pressure error was very small for varying γ . For this reason,
numerical errors, like round-off errors (in particular in the case of small viscosities),
might have influence in the determination of the optimal parameter and we are not
sure if it is possible to draw reliable conclusions with respect to all aspects of the
prediction (3.18) on the basis of these results. Also, one should keep in mind that
Eq. 3.18 was derived under the assumption of the maximal possible second term in
Eq. 3.16. For the sake of brevity, only the results for p3 are presented and discussed
in some detail. Similar discussions could be performed for p1 and p2. First of all, it
was predicted in Remark 2 that the optimal stabilization parameter for the pressure
error is smaller than for the velocity error. This behavior can be seen clearly for
all simulations. Then, we could observe that the optimal γ generally increases with
increasing pressure norm |p|2 and in Fig. 3 one can see that the optimal γ does not
depend on the mesh width. Both observations conform with Eq. 3.18. However, in
Fig. 3, a dependence of the optimal γ on ν can be observed, which is not predicted by
Eq. 3.18. The dependence is inverse to the velocity case. At the moment, one possible
explanation are the round-off errors mentioned above.

4.1.2
(
(P2)

2, P1
)

Taylor–Hood element on Delaunay-generated triangulations

Next, the case of ((P2)
2, P1) Taylor–Hood elements on a Delaunay-generated trian-

gulation is considered, which is a situation where it is not expected that the pointwise
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Fig. 3 L2(�) pressure errors vs. grad-div stabilization parameter γ , for p3 on three barycenter refined
triangulations with h ∈ {1/8, 1/16, 1/32}, “std” gives the error for γ = 1

divergence-free subspace of the velocity space has optimal approximation properties.
Hence, the parameter choice (3.7) should be applied, such that

γgood ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C0√
8π

for p1,

C0
√

32

π
for p2,

C0104

√
8π

for p3.

(4.2)

The test problems were computed on three successively finer Delaunay-generated
triangulations with h ∈ {1/8, 1/16, 1/32}. The mesh with h = 1/16 is depicted in
Fig. 1.

The results with respect to the error in the H 1(�) velocity norm are displayed in
Fig. 4. Again, the behavior of the numerical results in comparison with the analytical
predictions will be discussed. From Eq. 4.2 one does not expect a dependence of the
optimal stabilization parameter on the viscosity. This behavior can be observed rather
well for p1 and p2 (first and second column), except for the case ν = 10−6. But
note that in this case the error is almost constant in a wide range of γ and the round-
off errors might have influence particularly in this case. Next, a moderate increase
of the optimal γ between p1 and p2 is expected from Eq. 4.2. Comparing with the
other case of a subspace with optimal approximation property, Eq. 4.1 and Fig. 2,
the increase should be smaller in the present case. Both predictions can be observed
well in the numerical results. Further, very large optimal parameters are expected for
large |p|2, which is clearly seen for p3 (third column). Finally, a dependence of the
optimal parameter on the mesh width is not predicted from Eq. 4.2. Also this feature
can be observed. The estimated mean value of C0 from Eq. 4.2 was 6.45 and the
median was 3.00.

From the prediction (4.2), one can expect that for each pressure there is a param-
eter choice, which is independent of the mesh width and the viscosity, that should
give good results. In Fig. 4 one can see that such choices are γ = 1 for p1, γ = 5
for p2, and γ = 104 for p3. Since inserting (3.7) into the error estimate (3.5) leads to
the dependence on ν−1/2 of terms on the right-hand side of the estimate, see Eq. 3.8,
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Fig. 4 H 1(�) velocity errors vs. grad-div stabilization parameter γ , for each of the Stokes solutions, on
three Delaunay-generated triangulations with h ∈ {1/8, 1/16, 1/32}, “std” gives the error for γ = 1

one expects to see an increase of the error for the optimal stabilization parameter if
ν decreases. For p1 and p2 (first and second column), this increase can be observed.
One cannot see this effect forp3. We think that again round-off errors are responsible.
The case p3 requires a very large γ , see Eq. 4.2, and then the grad-div contribu-
tion in the velocity-velocity coupling dominates the contribution from the viscous
term. In the numerics, the round-off errors arising in adding terms of much different
magnitudes annihilate the contribution of the viscous term.

With respect to the L2(�) norm of the pressure, we could again observe that the
error was almost constant in a wide range of γ . For this reason, we present again only
the results obtained for p3, see Fig. 5. Most importantly, one can clearly see that the
optimal γ is smaller than for the H 1(�) error of the velocity, as it was predicted in
Remark 2. In addition, one can see that the optimal γ decreases with decreasing ν,
which was also predicted. For p3, one gets larger optimal γ with decreasing mesh
width, although in Eq. 3.17 a mesh dependence does not occur. However, because
of the very small relative changes of the pressure errors and the possible influence
of round-off errors, in our opinion, the last two observations should not be used for
conclusive statements.



508 E.W. Jenkins et al.

Fig. 5 L2(�) pressure errors vs. grad-div stabilization parameter γ , for p3 on three Delaunay-generated
triangulations with h ∈ {1/8, 1/16, 1/32}, “std” gives the error for γ = 1

4.1.3 The MINI element on union jack triangulations

Now, the MINI element ((P bub
1 )2, P1) is considered, which was first studied

in [1]. The simulations were performed on meshes of Union Jack type with h ∈
{1/16, 1/32, 1/64}, see the right-hand side picture in Fig. 1 for the coarsest of these
meshes. From [33] it is known that on this type of mesh the MINI element has the
property that the pointwise divergence-free subspace of the velocity space has opti-
mal approximation properties. Arguing the same way as for the Taylor–Hood finite
element, the theory derived in the previous section predicts that a good choice of γ
should satisfy

γgood ≈ C0h
2

2ν

|p|22
|u|22

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C0
h2

4ν
for p1,

64C0
h2

ν
for p2,

2.5 · 107C0
h2

ν
for p3.

(4.3)

Note that there is now a dependence of the parameter on the mesh width, which
comes from the equal-order interpolation of the velocity and pressure finite element
space. Asymptotically, one has γgood = O(h2/ν) and in particular γgood → 0 as
h → 0.

The results of the numerical simulations are presented in Fig. 6. From Eq. 4.3,
one predicts decreasing optimal stabilization parameters for decreasing mesh sizes.
This expectation is always met. Similarly, the increase of the optimal stabilization
parameter for small viscosities can be observed well for p1 and p2. For p3, there
is one exception concerning this issue, the computation for ν = 10−6 on the grid
with h = 1/64. We think that round-off errors might have gained some influence in
the simulations with the largest stabilization parameters. For C0 in Eq. 4.3, the mean
value 0.068 and the median 0.075 were estimated.

For the same reason as discussed in Section 4.1.1, no dependence of the error for
the optimal stabilization parameter on ν is expected. This expectation is met.
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Fig. 6 H 1(�) velocity errors vs. grad-div stabilization parameter γ , for each of the Stokes solutions,
using the MINI element on Union Jack triangulations with h ∈ {1/16, 1/32, 1/64}. We think that round-
off errors influenced the simulations with the largest stabilization parameters and ν = 10−6 on the finest
mesh

4.1.4 The MINI element on Delaunay-generated triangulations

Finally, the MINI element on Delaunay-generated triangulations will be considered,
where one does not expect the divergence-free subspace of the velocity space to have
optimal approximation properties. Hence, the optimal stabilization parameter should
be derived with the same arguments that were used to get Eq. 3.7, such that

γgood ≈ C0h
|p|2
|u|2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C0√
2
h for p1,

8
√

2C0h for p2,

5000
√

2C0h for p3.

(4.4)

Figure 7 presents the results of the numerical simulations. In accordance with the
expectations from Eq. 4.4, the optimal parameter decreases with mesh refinement.
A dependence on the viscosity is not predicted. Save on the coarsest mesh, this pre-
diction is fulfilled. In addition, note that particularly for small viscosities the error is
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Fig. 7 H 1(�) velocity errors vs. grad-div stabilization parameter γ , for each of the Stokes solutions,
using the MINI element on Delaunay-generated triangulations with h ∈ {1/16, 1/32, 1/64}

almost constant on these meshes in a wide interval that includes the optimal stabi-
lization parameter. The estimated mean value of C0 from Eq. 4.4 was 0.19 and the
median 0.17.

In this case, one expects from Eq. 3.8 a dependence of the error for the optimal γ
on ν−1/2. In fact, an increase of the error for small ν can be observed in Fig. 7.

4.1.5 Outlook to more complicated situations

For applying the results of the analysis, it is crucial to know whether or not a point-
wise divergence-free subspace with optimal approximation properties exists. A first
idea for answering this question for unknown situations is based on the fact that the
existence of such a subspace depends only on the finite element space (grid and ele-
ment choice) but not on the concrete problem. Given a triangulation, one can consider
the Stokes equations with different viscosities and with a prescribed solution which
does not depend on the viscosity. Performing simulations as presented in this section,
one monitors the dependence of the optimal stabilization parameter and of the error
in the H 1(�) norm of the velocity on the viscosity. If there is a pointwise divergence-
free subspace with optimal approximation property, the optimal parameter should
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increase for decreasing ν and the error should not depend on ν. For the other case,
the situation should be vice versa. After having identified the case, an estimate for
C0 can be computed. The study of the practicability of this approach is outside the
scope of this paper.

4.2 Rayleigh–Bénard convection for silicon oil

The second test problem we consider is the differentially heated cavity on the unit
square with Rayleigh number Ra = 106, Prandtl number Pr = ∞ (correspond-
ing to silicon oil), with no slip boundary conditions for the velocity, and mixed
Dirichlet/Neumann conditions for the temperature, see Fig. 8. Since Pr = ∞, the
system of equations that governs this flow is given by

−�u + ∇p = (0,Ra T )T in �,

∇ · u = 0 in �,

−�T + u · ∇T = 0 in �.

Although this system is nonlinear because of the energy equation, the momentum
equation is a Stokes equation. Thus, the theory developed in this paper is applicable.

This system was implemented with a standard finite element approach, see, e.g.,
[11], using (Vh,Qh) = ((P2)

2, P1) Taylor–Hood elements to approximate veloc-
ity and pressure, respectively, and Xh = P2 to approximate temperature. The finite
element formulation for a specified Ra takes the form: Find (uh, ph, Th − Td,h) ∈
Vh ×Qh ×Xh such that for all (vh, qh, sh) ∈ Vh ×Qh ×Xh

ν(∇uh,∇vh)+ γ (∇ · uh,∇ · vh)− (∇ · vh, ph) = ((0,Ra Th)
T, vh),

(∇ · uh, qh) = 0,

(∇Th,∇sh)+ (u · ∇Th, sh) = 0,

(4.5)

where Td,h is an extension of the Dirichlet data to the finite element space with inho-
mogeneous Dirichlet boundary conditions. The nonlinearity of Eq. 4.5 is resolved
using Newton’s method, to a relative difference of 10−10 in successive iterates. We

Fig. 8 The domain and
boundary conditions for the
natural convection problem
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u=0, (  T  n)=0
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also found it necessary to use a continuation method in Ra to get convergence with
Ra = 106 (via Ra ∈ {104, 105, 106}), and each Newton iteration typically took 4 or 5
iterations to converge. Plots of the resolved solution’s velocity streamlines, pressure
contours, speed contours, and temperature contours are shown in Fig. 9. Observe that
the size of the pressure ph is on the order of 105, while the speed |uh|2 is on the order
of 102, and hence the size of the velocity is on the order 101. Thus, the ratio of the
size of the pressure to the size of the velocity is very large, and from the contour plots
one can expect |p|2/|u|3 to be large as well. Considering this problem on a coarse
mesh, a larger velocity error (compared with the reference solution) can be expected
that is dominated by the contribution from the pressure. The analysis presented in
this paper suggests that this contribution can be reduced by increasing the grad-div
stabilization parameter γ , thereby reducing the overall error, and finally leading to
significantly improved solutions for the velocity.

We computed solutions to Eq. 4.5, using ((P2)
2, P1, P2) elements for velocity-

pressure-temperature, on the mesh shown in Fig. 10 that provided 3,679 total degrees
of freedom, with varying grad-div stabilization parameter γ . Solutions are shown
in Fig. 11, as velocity streamlines and temperature contours. Comparing with the

Fig. 9 The velocity streamlines (top left), temperature contours (top right), pressure contours (bottom
left), and speed contours (bottom right) of the resolved solution to the differentially heated cavity
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Fig. 10 The mesh used for the
differentially heated cavity
problem

resolved solution in Fig. 9, the temperature contours agree for all solutions except
when γ = 0, but the velocity streamlines are correct only for the γ = 1, 000 and
γ = 10, 000 simulations. Hence, one observes an increase in accuracy from the use
of large grad-div stabilization parameters, as expected. A similar observation was
reported in [7] for the case Pr = 1.

Fig. 11 Differentially heated cavity problem: velocity streamlines and temperature contours of solutions
with varying γ
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5 Conclusions and outlook

A re-investigation of the question of optimal grad-div stabilization parameters in
finite element methods for the Stokes equations was presented that clarified that one
has to distinguish several situations for designing such a parameter for conforming
inf-sup stable pairs of finite element spaces, depending on whether the H 1(�) error
of the velocity or the L2(�) error of the pressure is of interest. It was verified that
the question of the existence of a divergence-free subspace with optimal approxima-
tion properties is crucial. Consequently, the optimal parameter choice does not even
have the same expression within classes of finite element spaces, e.g., within the
class of Taylor–Hood finite elements, as it depends on the concrete space itself, i.e.,
on the properties of the grid and the element choice together. In addition, the regular-
ity of the solution also plays a role for the optimal stabilization parameter. Based on
estimate (3.1), one can derive parameters for solutions with reduced smoothness by
applying interpolation estimates to spaces with appropriate regularity.

A main observation is that the bound of the error estimate for the H 1(�) error
of the velocity does not depend directly on the viscosity and the pressure if a point-
wise divergence-free subspace with optimal approximation properties exists and an
appropriate stabilization parameter is used. It was shown that a good choice of the
stabilization parameter for minimizing the H 1(�) velocity error gives in many cases
larger parameters than obtained for minimizing the L2(�) error of the pressure. For
the MINI element, good stabilization parameters were derived on the basis of the
present analysis which seem to be new.

The present paper gave an analytic support for the observation from [11] that the
use of large stabilization parameters is appropriate in certain situations. Numerical
studies were presented that support the analytic results. Moreover, and particularly
important for applications, an enormous error reduction (in the H 1(�) error of the
velocity) could be observed in certain cases by using parameters predicted on the
basis of the present analysis instead of parameters of O(1), as they were proposed
in the literature (based on error estimates for other norms). Also in a more complex
flow problem, the choice of large stabilization parameters resulted in considerable
improvements of the computed velocity field.

Extending the analytic considerations to more complex equations or systems from
Computational Fluid Dynamics will result in more terms on the right-hand side of
the error estimates. Hence, it will become more complicated to derive information
about a good value of the stabilization parameters. This issue will be studied in future
work. Also from the practical point of view, a number of issues need to be addressed.
How to determine whether the divergence-free subspace of the finite element velocity
has optimal approximation properties? A first idea for answering this question was
presented in Section 4.1.5. Or, how to estimate parameters of form Eq. 3.7 or 3.9
efficiently without knowledge of the analytic solution? Altogether, there are a number
of topics for further research on the grad-div stabilization.
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