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a b s t r a c t

An adaptive algorithm for the numerical simulation of time-dependent convection–
diffusion–reaction equations will be proposed and studied. The algorithm allows the use
of the natural extension of any error estimator for the steady-state problem for controlling
local refinement and coarsening. The main idea consists in considering the SUPG solution
of the evolutionary problem as the SUPG solution of a particular steady-state convection–
diffusion problem with data depending on the computed solution. The application of the
error estimator is based on a heuristic argument by considering a certain term to be of
higher order. This argument is supported in the one-dimensional case by numerical anal-
ysis. In the numerical studies, particularly the residual-based error estimator from [18] will
be applied, which has proved to be robust in the SUPG norm. The effectivity of this error
estimator will be studied and the numerical results (accuracy of the solution, fineness of
the meshes) will be compared with results obtained by utilizing the adaptive algorithm
proposed in [5].

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, the numerical approximation of evolutionary convection–reaction–diffusion equations with finite element
methods is studied in the convection-dominated regime. It is well known that standard finite element approximations pro-
duce spurious oscillations and stabilized methods have to be utilized. One of the most popular stabilized finite element
methods is the streamline-upwind Petrov–Galerkin (SUPG) method introduced in [3,14]. As stated in [25] there is a, perhaps
general, consensus that adaptive methods will provide the most satisfactory approach for solving convection–diffusion prob-
lems. A posteriori error estimators or indicators are a necessary tool to perform adaptive algorithms. In [18], a residual-based
a posteriori error estimator for the SUPG approximation to steady-state problems is proposed. The error estimator was
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proved, under some hypotheses, to be robust in the SUPG norm, the natural norm in which the error of the method is usually
measured. The aim of the present paper consists in deriving and studying an adaptive algorithm for the evolutionary con-
vection–diffusion equation which uses the natural extension of the a posteriori estimator from [18] as criterion for the gen-
eration of adaptive meshes.

Adaptive methods and a posteriori error estimation for non-stationary convection–diffusion equations were already stud-
ied to some extent in the literature. In [28], residual-based a posteriori error estimates were proved. This paper considers
discretizations with the h-scheme in time and conforming finite elements in space covering the cases of using the standard
Galerkin method and the SUPG method. The derived estimator is an extension of the estimator proposed in [27], where ro-
bust estimators were obtained in a norm that adds to the energy norm a dual norm of the convective derivative. Applying the
estimator from [28] requires the solution of an auxiliary discrete stationary reaction–diffusion problem at each time step.
The estimates are uniformly bounded with respect to the diffusion. An extension of the error estimator from [28] to the case
of a stabilization by subgrid viscosity is considered in [1]. In [11], a finite element method in space and time with streamline
diffusion is used to develop an adaptive method applied to a non-stationary nonlinear one-dimensional model. In [22], a
space and time adaptive algorithm was proposed and an a posteriori upper bound was derived which is not robust with re-
spect to the diffusion parameter. An adapted Lagrange–Galerkin method for singularly perturbed unsteady linear convec-
tion–diffusion problems was introduced in [12]. The Lagrange–Galerkin method is based on combining the method of
characteristics with the standard Galerkin finite element method. An adaptive approach for a Lagrange–Galerkin method
can be found in [2], see also [13]. In [8], a framework for a posteriori error estimates in unsteady, nonlinear, possibly degen-
erated convection–diffusion problems was introduced. The estimators are based on a space–time equilibrated flux recon-
struction and were derived for the error measured in a space–time mesh-dependent dual norm.

Most of the above mentioned methods are based on space–time formulations. In [5], as well as in the present paper, we
followed the approach of separating spatial and temporal discretizations using the method of lines. An adaptive algorithm
based on the standard Galerkin method was introduced in [5, Section 3] to approximate linear evolutionary convection-dom-
inated problems. The algorithm is based on an a posteriori indicator of the size of the oscillations displayed by the finite ele-
ment approximation. This algorithm will be used for comparison with the adaptive algorithm introduced in the present
paper for the SUPG method. The numerical studies in Section 4 will show that the newly proposed method performs gen-
erally better.

In this paper, an algorithm will be proposed and studied which allows to apply the natural extension of any a posteriori
error estimator for the steady-state problem in the evolutionary setting. In the numerical studies, particularly the residual-
based a posteriori error estimator from [18] will be used. The main idea consists in considering the SUPG approximation to
the evolutionary problem also as the SUPG approximation to a special steady-state problem. For the latter problem, any of
the available a posteriori error estimators for the steady-state case can be applied. The same idea has been used already for
evolutionary nonlinear convection–diffusion problems in the diffusion-dominated regime in [4,6,7]. However, it should be
noted that the approach presented here is still heuristic with respect to the error estimation. It relies upon the assumption
that the error in the SUPG norm between the solution of the continuous evolutionary problem and the special steady-state
problem is of higher order. We can justify this assumption by numerical analysis only in the one-dimensional case. But on
the other hand, the numerical studies will show that the effectivity index of the used error estimator is robust with respect to
the mesh width and the diffusion, see Example 2. This result supports the point of view that the essential information on the
error is provided by the error estimator.

The outline of the paper is as follows. In Section 2, the SUPG discretization of the evolutionary convection–diffusion equa-
tion is given. The adaptive algorithm which uses the extension of the a posteriori error estimations from [18] is introduced in
Section 3. In addition, the analytical results that justify the assumption made in deriving this algorithm are presented in this
section. Numerical tests in Section 4 study the effectivity of the error estimator and compare the adaptive meshes computed
with the proposed algorithm and the algorithm from [5]. The paper finishes with a summary in Section 5.

2. The equation and its discretization

Let X � Rd; d 2 f2;3g, be a bounded domain with polyhedral Lipschitz boundary and let ½0; T� be a finite time interval.
The time-dependent convection–diffusion–reaction equation which will be considered in this paper is given as follows
@tu� eDuþ b � ruþ cu ¼ f in ð0; T� �X;

u ¼ 0 on ½0; T� � CD;

e
@u
@n
¼ e@nu ¼ g on ½0; T� � CN;

uð0; xÞ ¼ u0ðxÞ in X;

ð1Þ
where e > 0, all given functions are sufficiently smooth, and n is the outward pointing unit normal at the boundary of X. It
will be assumed that @�X � CD; @

�X being the inflow boundary of X, i.e., the set of points x 2 @X such that bðxÞ � nðxÞ < 0. For
simplicity, in the present section, we assume g ¼ 0. A standard assumption in the analysis for equations of type (1) is that the
following condition is satisfied
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cðt;xÞ � 1
2

divðbðt;xÞÞ ¼ lðt; xÞP l0 > 0 8 ðt;xÞ 2 ½0; T� �X: ð2Þ
If this assumption is not satisfied, the change of variables v ¼ ue�at with a > 0 transforms problem (1) into one satisfying (2).
Finite element spaces are denoted by Vh;r , where h indicates the fineness of the underlying triangulation T h consisting of

mesh cells fKg, based on continuous local polynomials of degree r. Only conforming finite element spaces will be considered,
which implies in particular that vh ¼ 0 on @XD for all vh 2 Vh;r .

The semidiscrete in space Galerkin approximation based on linear polynomials to problem (1) consists in finding
uG

h : ð0; T� ! Vh;1 satisfying uhð0; �Þ ¼ u0
h 2 Vh;1 and
ð@tuG
h ;vhÞ þ eðruG

h ;rvhÞ þ ðb � ruG
h ;vhÞ þ ðcuG

h ;vhÞ ¼ ðf ;vhÞ; ð3Þ
for all vh 2 Vh;1. It is well known that the standard Galerkin approximation produces spurious oscillations in the convection-
dominated regime, which is given if for the mesh Péclet number holds PeK ¼ kbk1;K hK=ð2eÞ > 1, where hK is some measure
for the size of the mesh cell K, e.g., its length in the direction of the convection [16]. Stabilized discretizations are usually
applied to cope with this difficulty.

As already mentioned in the introduction, this paper studies the SUPG method. The bilinear form associated with this
method is given by
aSUPGðvh;whÞ ¼ eðrvh;rwhÞ þ ðb � rvh;whÞ þ ðcvh;whÞ þ ð�eDvh þ b � rvh þ cvh;b � rwhÞh 8 vh;wh 2 Vh;r ;
where ð�; �Þh denotes the broken inner product
ðf ; gÞh ¼
X
K2T h

dKðf ; gÞK ;
dK > 0 being the stabilization parameter and ð�; �ÞK is the standard inner product in L2ðKÞ. In the convection-dominated case,
the stabilization parameter dK is typically defined as dK ¼ d0hK=kbk1;K for some positive constant d0 [16].

Let uh : ð0; T� ! Vh;1 denote the spatial semidiscrete SUPG approximation to (1) satisfying uhð0; �Þ ¼ u0
h 2 Vh;1 and
ð@tuh;vhÞ þ aSUPGðuh;vhÞ ¼ ðf ; vhÞ þ ðf � @tuh;b � rvhÞh; 8 vh 2 Vh;1: ð4Þ
Standard error analysis for stabilized methods is performed in norms which possess a contribution from the stabilization. For
the SUPG approximation to (1) this norm has the form
kvkSUPG :¼ ekrvk2
0 þ

X
K2T h

dKkb � rvk2
0;K þ kl1=2vk2

0

 !1=2

; ð5Þ
see for example [17].

3. The adaptive algorithm based on the SUPG discretization

This section explains the a posteriori error estimator which will be used for the SUPG discretization (4) of the evolution-
ary problem (1). The main goal is to show that the a posteriori error estimator for the steady-state case from [18] can be
extended to the evolutionary case. This extension is in some way heuristic since we can only justify analytically the one-
dimensional case. The underlying idea can also be applied to any other error estimator for the steady-state problem and
it has been used before in evolutionary nonlinear convection–diffusion problems in the diffusion-dominated regime in
[4,6]. At the end of the section, the adaptive algorithm will be presented.

3.1. Residual-based estimators for an auxiliary steady-state problem

Consider the following steady-state problem
�eD~uþ b � r~uþ c~u ¼ f � @tuh in X;
~u ¼ 0 on CD;

e@n~u ¼ g on CN :

ð6Þ
The continuous piecewise linear SUPG approximation to problem (6) is: find uh 2 Vh;1 such that
aSUPGðuh;vhÞ ¼ ðf � @tuh;vhÞ þ ðf � @tuh;b � rvhÞh 8 vh 2 Vh;1:
It coincides with (4) such that uh is also the SUPG approximation to the evolutionary problem (1). Our goal consists in deriv-
ing, under certain assumptions, an a posteriori estimate for the error of uh, where the error should be bounded in the norm
(5), which is used in the a priori error analysis.

The starting point for getting an upper bound for the error is the decomposition
ku� uhkSUPG 6 ku� ~ukSUPG þ k~u� uhkSUPG: ð7Þ
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Now, the main idea consists in neglecting the first term in this decomposition and to consider just the second one. Justifi-
cations for this approach will be discussed below.

To bound the second term on the right-hand side of (7), the residual-based a posteriori error estimator will be used which
was proposed in [18] for the steady-state problem. Since uh is the SUPG approximation to problem (6) with right-hand side
g ¼ f � @tuh, applying the estimator from [18], the error k~u� uhkSUPG;K at every mesh cell can be bounded by the quantity
gK ¼ min
C
l0
;C

h2
K

e
;24dK

( )
kRKðuhÞk2

0;K þ 24dKkRKðuhÞk2
0;K þ

X
E2@K

min
24
kbk1;E

;C
hE

e
;

C

e1=2l1=2
0

( )
kREðuhÞk2

0;E

 !1=2

; ð8Þ
where RK and RE are the inner and edge residuals, respectively, of problem (6), which are defined as follows
RKðuhÞ :¼ f � @tuh þ eDuh � b � ruh � cuhjK ; ð9Þ

REðuhÞ :¼
�es@nE uht if E 2 Eh;X;

g � e@nE uh if E 2 Eh;N;

0 if E 2 Eh;D:

8><
>:
Here, the set of all faces in the finite element partition is denoted by Eh and Eh;X; Eh;N , and Eh;D refer to interior faces, faces on
the Neumann boundary, and faces on the Dirichlet boundary, respectively. In addition, the jump of any piecewise continuous
function v across E in an arbitrary but fixed direction nE orthogonal to E is denoted by svt.

As explained in the introduction, residual-based a posteriori error estimators for the steady-state problem, which esti-
mate the error in other norms, see the overview in [18], will be used in the numerical studies as well. With the traditional
approach of deriving residual-based estimators, see [26], and taking care only on the dependency of the weights on the local
mesh width, one gets
krðu� uhÞk2
0 6 C

X
K2T h

h2
KkRKðuhÞk2

0;K þ
X
E2Eh

hEkREðuhÞk2
0;E

 !
þ h:o:t:; ð10Þ

ku� uhk2
0 6 C

X
K2T h

h4
KkRKðuhÞk2

0;K þ
X
E2Eh

h3
EkREðuhÞk2

0;E

 !
þ h:o:t: ð11Þ
The estimators (10) and (11) are not robust in the convection-dominated regime, i.e., the constants C depend on the Péclet
number, cf. the numerical studies in [15]. They become robust if diffusion dominates. The higher order terms describe data
approximation errors.

An estimator that is robust in the L2ðXÞ norm was proposed in [10]. It has the form
ku� uhk2
0 6 2

X
K2T h

g2
L2 ;K
kRKðuhÞk2

0;K þ
1
4

X
E�@K

jEj
jKjg

2
L2 ;K
kREðuhÞk2

0;E

 !
; ð12Þ
where jEj and jKj are the measures of E and K, respectively, and
gL2 ;K ¼ min
~hKffiffiffi

2
p
kbkL1ðKÞ

;
h2

K

3
ffiffiffiffiffiffi
10
p

e
;

1
kckL1ðKÞ

( )
for the Q1 finite element (bilinear element over quadrilateral grids), see [10, Appendix C]. Here, ~hK is the cell diameter in the
direction of the convection vector.

The aim of this paper is to use (8) for estimating the error in every mesh cell and to control an adaptive algorithm. This
estimator is the only one that has been proved, under some hypotheses, to be robust in the SUPG norm for the steady-state
problem, see [18]. In one of the numerical examples, the results will be compared with the results obtained by using the
estimators (10)–(12).

3.2. Discussion of neglecting the first term on the right-hand side of (7)

Next, it will be justified in some sense why the term ku� ~ukSUPG in (7) is negligible when compared with k~u� uhkSUPG, and,
consequently, why we only consider the second term. Note that the only difference in the equation for ~u compared with the
equation for u is the replacement of @tu by @tuh on the right-hand side.

In the diffusion-dominated regime, the first term in an analogous decomposition to (7) has been proved to have a higher
rate of decay than the error being estimated, see for example [4,6]. More precisely, the first term of the decomposition is
proved to be smaller than the second one by a factor Oðhj logðhÞjÞ. The higher rate of decay is obtained in both the L2ðXÞ
and H1ðXÞ norm, except for the linear finite element case in which the improved convergence is achieved only in the
H1ðXÞ norm. This fact has been used to a posteriori estimate the errors in [4,6].
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Let us observe that the function ~u solving (6) belongs to an infinite dimensional space. In order to get some bounds for the
error u� ~u, one needs to approximate ~u by a function which is contained in a finite dimensional space. Since we are inter-
ested in the convection-dominated regime, the first simplification we apply to study the size of ku� ~ukSUPG consists in replac-
ing ~u by an approximation to the steady-state problem (6) based on the SUPG method. Since the error to the piecewise linear
approximation uh should be estimated, a straightforward idea is to consider a higher order SUPG approximation ~uh to (6). For
this purpose, a second order approximation is used.

In the following we will assume that ~uh is a sufficiently good approximation to ~u in the sense that
ku� ~ukSUPG � ku� ~uhkSUPG:
By the triangle inequality it is clear that this assumption is satisfied if k~u� ~uhkSUPG is small enough. For this reason, we choose
~uh as the SUPG approximation based on quadratic polynomials to the steady-state problem (6) with solution ~u. Then
k~u� ~uhkSUPG converges with order 5=2, which is larger than the rate of convergence of the terms being compared with.

The goal of this section is to prove that, in one space dimension and under certain regularity assumptions on the solution
u, ku� ~uhkSUPG is in the convection-dominated regime of higher order than ku� uhkSUPG. More precisely, while the order of
the error ku� uhkSUPG is 3=2, it will be shown that ku� ~uhkSUPG is of order 2.

The model problem, which will be considered, has the form
@tu� e@xxuþ @xuþ u ¼ f in ð0; T� � ð0;1Þ;
uð0; tÞ ¼ uð1; tÞ ¼ 0 on ½0; T�;
uð0; xÞ ¼ u0ðxÞ in ð0;1Þ:

ð13Þ
For simplicity, a uniform partition 0 ¼ x0 < x1 < � � � < xN ¼ 1f g of ½0;1� of size h ¼ 1=N is used. The same value for the sta-
bility parameter at every subinterval K of the partition is applied: dK ¼ d ¼ h=2.

The SUPG approximation to the corresponding steady-state problem to (6) based on quadratic polynomials consists in
finding ~uh 2 Vh;2 such that
ðeþ dÞð@x~uh; @xvhÞ þ ð@x~uh;vhÞ þ ð~uh; vhÞ þ dð~uh; @xvhÞ ¼ ðf � @tuh; vhÞ þ dðf � @tuh; @xvhÞ þ
X
K2T h

deð@xx~uh; @xvhÞK ; ð14Þ
for all vh 2 Vh;2.
For the analysis of this section, in addition the following auxiliary steady-state problem is considered, where the right-

hand side depends on @tu,
�e@xxwþ @xwþw ¼ g; 0 < x < 1; wð0Þ ¼ wð1Þ ¼ 0; ð15Þ
with g ¼ f � @tu. It is clear that at any fixed time t the solution uðt; �Þ of (13) is also the solution of (15). Denote by wh the
SUPG approximation to (15) based on quadratic polynomials which satisfies
ðeþ dÞð@xwh; @xuhÞ þ ð@xwh;uhÞ þ ðwh;uhÞ þ dðwh; @xuhÞ ¼ ðg;uhÞ þ dðg; @xuhÞ þ
X
K2T h

deð@xxwh; @xuhÞK 8 uh 2 Vh;2

ð16Þ
In the following analysis, the splitting u� ~uh ¼ ðu�whÞ þ ðwh � ~uhÞwill be applied. The error bounds for wh are the standard
bounds for the SUPG approximation in the steady-state case, e.g., see [25, Theorem 10.5] or [20]: if u 2 H3ðXÞ then
ku�whkSUPG 6 Ch5=2kuk3: ð17Þ
Two lemmas will be proved to obtain the main result of the section. First, in Lemma 1, the auxiliary steady-state problem
�e@xxwþ @xw ¼ g; in ð0;1Þ; wð0Þ ¼ wð1Þ ¼ 0; ð18Þ
will be studied. In Lemma 2 the evolutionary problem
@tu� e@xxuþ @xu ¼ f in ð0; T� � ð0;1Þ;
uð0; tÞ ¼ uð1; tÞ ¼ 0 on ½0; T�;
uð0; xÞ ¼ u0ðxÞ in ð0;1Þ;

ð19Þ
will be considered.
It will be shown in Lemma 1 that, if the solution is sufficiently smooth, the L2ðXÞ norm of the error of the SUPG approx-

imation to (18), based on linear elements, behaves at least as Oðh2Þ instead of Oðh3=2Þ, which is the bound for the general
case, see [25, Theorem 10.5]. In Lemma 2, these results are extended to the evolutionary problem (19). In Remark 2 it will
be discussed that the results of Lemma 2 are also valid for the original model (13). Finally, in Theorem 1 it will be proved that,
under certain regularity assumptions for the solution u of (13), the error ku� ~uhkSUPG is Oðh2Þ in the convection-dominated
regime.
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Lemma 1. Let w be the solution of (18) and assume that w 2 C2ð½0;1�Þ. Consider a mesh with e 6 h=6 and denote by wh the SUPG
approximation based on linear finite elements. Then, the following bound holds
kw�whk0 6 Ch2
;

where the constant C depends on K0 ¼max½0;1�j@xxwj.
Proof. Denote by phw 2 Vh;1 the elliptic projection of w into Vh;1 given by
ð@xphw; @xvhÞ ¼ ð@xw; @xvhÞ 8 vh 2 Vh;1:
Starting with the weak form of (18) for test functions from Vh;1 and using the definition of phw, straightforward calculations
show that
ðeþ dÞð@xphw; @xvhÞ þ ð@xphw; vhÞ ¼ ðg; vhÞ þ dðg; @xvhÞ þ ð@xðphw�wÞ; vhÞ þ dðe@xxw; @xvhÞ:
Consequently, one obtains for eh ¼ phw�wh the equation
ðeþ dÞð@xeh; @xvhÞ þ ð@xeh; vhÞ ¼ ð@xðphw�wÞ;vhÞ þ deð@xxw; @xvhÞ:
Denoting by ej the coefficients of eh in the nodal basis, eh ¼
PN�1

j¼1 ejuj, taking into account that adding the stabilization term
dð@xeh; @xvhÞ is the same as doing upwind in the convective term (instead of approximating it by central finite differences)
since d ¼ h=2 (or performing a straightforward calculation), one gets
ej � ej�1 ¼ ð@xðphw�wÞ;ujÞ þ
he
2
ð@xxw; @xujÞ � eð@xeh; @xujÞ; j ¼ 1; . . . ;N � 1:
Taking the sum from 1 to j and using e0 ¼ 0, one obtains
ej ¼ F1 þ F2; ð20Þ

where
F1 ¼ ð@xðphw�wÞ;u1 þu2 þ � � � þujÞ;

F2 ¼ deð@xxw; @xðu1 þu2 þ � � � þujÞÞ � eð@xeh; @xðu1 þu2 þ � � � þujÞÞ:
Integrating by parts and taking into account that @xðu1 þ � � � þujÞ vanishes in ½x1; xj� yields
jF1j 6
1
h
�
Z x1

0
ðphw�wÞdxþ

Z xjþ1

xj

ðphw�wÞdx

�����
����� 6 1

h
hkphw�wk1 þ hkphw�wk1
� �

6 CK0h2
: ð21Þ
In the last inequality, the bound
kphw�wk1 6 Ch2max
½0;1�
j@xxwj;
was used, see [24]. For the second term, one obtains� � � �

jF2j 6

e
2

Z x1

0
@xxwdx�

Z xjþ1

xj

@xxwdx
����

����þ e
h
�
Z x1

0
@xehdxþ

Z xjþ1

xj

@xehdx
����

���� 6 ehK þ e
h
j � e1 þ ejþ1 � ejj: ð22Þ
From (20)–(22), it follows that
jejj 6 Ch2 þ 3
e
h
kehk1; j ¼ 1; . . . ;N � 1;
and consequently
kehk1 6 Ch2 þ 3
e
h
kehk1;
or � �

1� 3

e
h
kehk1 6 Ch2

:

Using the assumption on the mesh width, one gets kehk1 6 2Ch2, which implies kehk0 6 2Ch2.
Finally, decomposing ðw�whÞ ¼ ðw� phwÞ þ eh and using kw� phwk0 ¼ Oðh

2Þ finishes the proof by applying the
triangle inequality. h
Remark 1. Note that the order of convergence of the SUPG method in the L2ðXÞ norm for linear finite elements has been
proved to be Oðh3=2Þ in the general multi-dimensional case, see for example [23]. As stated in [25], the apparent loss of half
an order in the L2ðXÞ norm has attracted much attention. In [30], the optimal accuracy of the SUPG method for linear ele-
ments was investigated. The use of a very special type of meshes allows to prove that the SUPG method can converge in
the L2ðXÞ norm with any order between 3=2 and 2. In [29], by orienting the mesh in the streamline direction and imposing
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a uniformity condition on the mesh, the theoretical order of pointwise convergence is proved to be Oðh2j logðhÞjÞ. The com-
putational results of [29] show that the SUPG method actually converges in the maximum norm with the optimal order
Oðh2Þ on many standard quasi-uniform meshes. The question of improved L2ðXÞ error estimates has also been considered
in [21]. Based on these results from the literature, one can conclude that in the particular one-dimensional case the order
of convergence obtained in Lemma 1 is the expected one. Also, one can expect that in many numerical simulations, a qua-
dratic order of convergence for the SUPG method in the L2ðXÞ norm will be observed. In this sense, although the results
shown here are only valid in the one-dimensional case, they give some insight in the validity of analogous results in more
general situations.

The next lemma shows that the bound of Lemma 1 can be extended to the evolutionary case, improving to Oðh2Þ the
bound for the L2ðXÞ norm of the error for the SUPG approximation uh to (19). Under weaker regularity assumptions for
the solution u, the bound for ku� uhk0 obtained in [17] is Oðh3=2Þ.

Lemma 2. Let u be the solution of (19) and assume that u; @tu 2 C2ð½0;1�Þ for all t 2 ½0; T�. Let uh be its SUPG approximation based
on linear finite elements and denote by Phu 2 Vh;1 the SUPG approximation to the steady-state problem (18) with right-hand side
g ¼ f � @tu. Assume that uhð0Þ ¼ Phu0. Then, the following bound holds
kðu� uhÞðtÞk0 6 Ch2
; t 2 ½0; T�; ð23Þ
where the constant C depends on max06t6T K1ðtÞ;K2ðtÞð Þ with K1ðtÞ ¼max½0;1�j@xxuðtÞj and K2ðtÞ ¼max½0;1� j@txxuðtÞj.
Proof. Following [17], one compares uh with Phu 2 Vh;1, where Phu is defined by
aSUPGðPhu;vhÞ ¼ aSUPGðu;vhÞ ¼ ðf ðtÞ � @tu;vhÞ þ dðf � @tu; @xvhÞ
for all vh 2 Vh;1. Applying Lemma 1, one obtains the following bound
kuðtÞ �PhuðtÞk0 6 CðK1ðtÞÞh2
; t 2 ½0; T�: ð24Þ
Moreover, considering (18) with the right-hand side g ¼ @t f � @ttu and using ðPhuðtÞÞt ¼ Phð@tuðtÞÞ, one can apply Lemma 1
again and gets
k@tuðtÞ �Ph@tuðtÞk0 6 CðK2ðtÞÞh2
; t 2 ½0; T�: ð25Þ
The error is decomposed in the following way
ðu� uhÞðtÞ ¼ ðu�PhuÞðtÞ þ ðPhu� uhÞðtÞ:
To bound the first term on the right-hand side, one can apply (24). For the second term, following the notation in [17], denote
eh ¼ uh �Phu and observe that the error satisfies
ð@teh;vhÞ þ aSUPGðeh; vhÞ ¼ ðTtr;vhÞ þ dðTtr; @xvhÞ � dð@teh; @xvhÞ
for all vh 2 Vh;1, where T tr ¼ @tu�Ph@tu. Arguing exactly as in the proof of [17, Lemma 5.1] yields
kehðtÞk2
0 6 C kehð0Þk2

0 þ
Z t

0
kT trðsÞk2

0ds
� 	

:

Using the assumption ehð0Þ ¼ 0 and applying (25) to bound kT trk0 finishes the proof. h
Remark 2. Observe that the change of variable v ¼ etu transforms problem (13) into (19). Hence, the error bounds of
Lemma 2 for the SUPG approximation to problem (19) also hold for the SUPG approximation to problem (13). In the next
theorem, the original problem (13) is considered for proving the main result of the section.
Theorem 1. Let ~uh be the SUPG approximation defined in (14), let u be the solution of (13) satisfying u 2 H3ð0;1Þ and
u; @tu; @

2
ttu 2 C2ð½0;1�Þ for all t 2 ½0; T�, and assume uhð0Þ ¼ Phu0. Then, in the convection-dominated regime e� h, the following

bound holds
kðu� ~uhÞðtÞkSUPG 6 Ch2
; t 2 ½0; T�;
where the constant C depends on kuðtÞk3 and on max06t6T K2ðtÞ;K3ðtÞð Þ, K2ðtÞ ¼ max½0;1�jð@txxuðtÞÞj, and
K3ðtÞ ¼max½0;1�jð@ttxxuðtÞÞj.
Proof. The proof starts with the decomposition
ðu� ~uhÞ ¼ ðu�whÞ þ ðwh � ~uhÞ;
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where wh is the SUPG approximation based on quadratic polynomials (16) to the steady-state problem (15) with right-hand
side f � @tu.

The bound (17) can be applied for the first term. To bound the second one, denote ~eh ¼ ~uh �wh. Subtracting (16) from (14)
gives for all vh 2 Vh;2
ðeþ dÞð@x~eh; @xvhÞ þ ð@x~eh; vhÞ þ ð~eh;vhÞ þ dð~eh; @xvhÞ �
X
K2T h

deð@xx~eh; @xvhÞK ¼ ð@tu� @tuh;vhÞ þ dð@tu� @tuh; @xvhÞ:
Now, one takes vh ¼ ~eh. Then, one gets
X
K2T h

deð@xx~eh; @xehÞK 6
he
2

X
K2T h

k@xx~ehk0;Kk@xehk0;K 6
Cinve

2
k@xehk2

0;
where Cinv is the constant in the inverse estimate. A straightforward calculation gives Cinv ¼ 1=
ffiffiffiffiffiffi
12
p

. Applying integration by
parts and the Cauchy–Schwarz inequality leads to
e
2
þ d

� �
k~ehk2

1 þ k~ehk2
0 6

1
2
k@tu� @tuhk2

0 þ
1
2
k~ehk2

0 þ
d
2
k@tu� @tuhk2

0 þ
d
2
k~ehk2

1;
from which it follows that
k~ehk2
SUPG ¼ ðeþ dÞk~ehk2

1 þ k~ehk2
0 6 k@tu� @tuhk2

0 þ dk@tu� @tuhk2
0: ð26Þ
Now, since @tuh is the SUPG approximation to the evolutionary problem with solution @tu, from Lemma 2, see also Remark 2,
arguing as in [17], one gets
k@tu� @tuhk0 6 Ch2
; ð27Þ
where C depends on max06t6T K2ðtÞ;K3ðtÞð Þ, K2ðtÞ ¼max½0;1�j@txxuðtÞj, and K3ðtÞ ¼max½0;1�j@ttxxuðtÞj. Finally, the error at the ini-
tial time is bounded by
k@tuð0Þ � @tuhð0Þk0 6 k@tehð0Þk0 þ kPh@tuð0Þ � @tuð0Þk0;
where, as in Lemma 2, eh ¼ uh �Phu. To bound the second term, (25) is applied. For estimating the first term, one can follow
[17, Lemma 5.1] and use that @xehð0Þ ¼ 0 since ehð0Þ ¼ 0.

Finally, taking into account e� h, one obtains from (26) and (27) the bound
k~ehkSUPG 6 Ch2
;

which finishes the proof. h
Example 1. Consider problem (1) in X ¼ ð0;1Þ � ð0;1Þ with homogeneous boundary conditions on @X, b ¼ ð�1;1ÞT ; c ¼ 1,
and f and u0 chosen so that the analytical solution is the same as in [18, Example 6.1]
uðx; y; tÞ ¼ expðsinð2ptÞÞ sinð2pxÞ sinð2pyÞ:
We consider a uniform partition of size h and compare the errors in the convective derivative of the following
approximations:

	 uh, the SUPG approximation based on linear elements to problem (1),
	 wh, the SUPG approximation based on quadratic polynomials to the following steady-state problem
�eDwþ b � rwþw ¼ f � @tu; in X; w ¼ 0 on @X;
	 ~uh, the SUPG approximation based on quadratic polynomials to problem (6).

The trapezoidal rule as described in Section 3.3 was used as temporal discretization.
From the general convergence theory for the SUPG method, one expects that kb � rðu�whÞk0 ¼ Oðh

2Þ and
kb � rðu� uhÞk0 ¼ OðhÞ. Assuming that the results from Theorem 1 carry over to this two-dimensional example with a
smooth solution on a uniform grid, one expects that kb � rðu� ~uhÞk0 ¼ Oðh

3=2Þ.
In the left picture of Fig. 1, the three considered errors are depicted for three decreasing values of h ¼ 1=N, against t. The

errors with respect to wh and uh behave as expected. For the error with respect to ~uh, one can see even second order
convergence. In the right picture of Fig. 1, where kb � rðu� uhÞðtÞk0=kb � rðu� ~uhÞðtÞk0 is presented, one can see this ratio
increases roughly by a factor of two with one mesh refinement, showing that the order of convergence of the error with
respect to ~uh is higher by one compared with the order with respect to uh.



Fig. 1. Left: L2ðXÞ norm of the convective derivative of the error for uh (continuous line), ~uh (discontinuous line), and wh (dotted line). Right: ratios between
the L2ðXÞ norm of the convective derivative of the errors of uh and ~uh .
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3.3. The adaptive algorithm

As in [5], the trapezoidal rule implemented as described in [9] was used as temporal discretization. This time inte-
grator is a variable step size implementation of the trapezoidal rule that uses the explicit two-step Adams formula
for error estimation and employs a stabilization strategy to suppress the ð�1Þn mode, see [9] for details. The implemen-
tation in [9] is carefully designed to avoid subtractive cancellation. As argued in [9], this method is well suited for time-
dependent convection–diffusion problems. The algorithm requires to choose several parameters, whose values were set
in our computations exactly the same as used in the numerical simulations in [9], including the initial step size
Dt0 ¼ 10�10. The only change we made to the algorithm in [9] was that the step size updates suggested in [9, (1.15)]
and those after a rejection were further multiplied by 0.85. This provision reduces the number of rejections. We tried
different values for the tolerance of the time integrator. As in [5], the value of the tolerance in all the simulations pre-
sented in Section 4 was TOLT ¼ 10�5. With this value, the temporal errors arising from the time discretization were
smaller than the spatial errors.

Let Un
h be the fully discrete approximation to Eq. (4) at time tn. Then, the quantities
gn
K ¼ min

1
l0
;
h2

K

e
;24dK

( )
kRKðUn

hÞk
2
0;K þ 24dKkRKðUn

hÞk
2
0;K þ

X
E2@K

min
24
kbk1;E

;
hE

e
;

1

e1=2l1=2
0

( )
kREðUn

hÞk
2
0;E

 !1=2

; ð28Þ
obtained from (8) replacing uh by Un
h, and setting C ¼ 1 were computed. The residuals are defined as in (9), changing the

semidiscrete in space approximations by the fully discrete approximations.
Assume that at a time level tn an approximation Un

h , defined in some finite element mesh T n
h, has been computed. This grid

is the last one of a sequence of meshes, T 0
h; T

1
h; . . . ; T n

h , where each one is obtained from the previous one by subdividing or
eliminating some mesh cells. Then, the adaptive algorithm reads as follows:

(1) Perform one time step to compute the SUPG approximation Unþ1
h at time tnþ1 on the mesh T n

h.
(2) Compute the estimator gnþ1

K defined in (28).
(3) If gnþ1

K > TOL1 the cell K is marked to be refined. If gnþ1
K < TOL2;K is marked as a candidate to be coarsened.

(4) Perform the refining/coarsening procedure to generate the new mesh T nþ1
h .

(5) Interpolate Unþ1
h to the new mesh T nþ1

h and return to the first step of the algorithm until the final time is reached.

For the fourth point, the same procedure was used as described in detail in [5, Appendix].
4. Numerical studies

In this section, we consider the model problem (1) in the domain X ¼ ð0;1Þ � ð0;1Þ. The temporal discretization is de-
scribed in Section 3.3. In Example 2, the effectivity index of the global error estimator derived from (28) is studied. Examples
3–5 consider the proposed adaptive algorithm and compare it with the algorithm based on the Galerkin discretization from
[5].
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Example 2. The effectivity index of the global error estimator. This example studies the effectivity index, i.e., the ratio of the
estimated error with the global form

P
K2T h
ðgn

KÞ
2

� �1=2
of the a posteriori error estimator (28), and the actual error in

the SUPG norm (5) at time tn. A study of this kind requires the knowledge of (a good approximation of) the solution of the
continuous problem (1). An example with analytically known solution with an interior layer was proposed in [19,
Section 7.2], which was used also here. The solution
uðt; x; yÞ ¼ 16 sinðptÞxð1� xÞyð1� yÞ � 1
2
þ arctan½2e�1=2ð0:252 � ðx� 0:5Þ2 � ðy� 0:5Þ2Þ�

p

 !
: ð29Þ
describes a hump that changes its height. In this example, the convection–diffusion problem (1) was solved with two values
e 2 f10�3;10�6g; b ¼ ð2;3ÞT , c ¼ 1, and the right-hand side and the boundary conditions were chosen such that (29) solves
the problem. The trapezoidal rule was used in this example with an equi-distant time step Dt ¼ 10�3.
Fig. 2. Example 2. Effectivity indices.
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Besides varying the diffusion, simulations were performed on uniform meshes of different mesh width and for triangular
and quadrilateral finite elements of different order. The results for the effectivity index, as a function of time, are presented in
Fig. 2, where Pi and Qi i ¼ 1;2;3, denote continuous finite element spaces of degree i on triangular and quadrilateral meshes,
respectively. It can be seen that this index takes generally values of around 7, independent of the mesh size and the value of
the diffusion as long as convection dominates. A similar observation was reported for several examples for steady-state
problems in [18]. There are some peaks in the curves for the indices at the times t ¼ 1 and t ¼ 2 where the hump (29)
changes its sign and both the continuous solution and its finite element approximation are very small. On the finest grid for
the third order finite elements and e ¼ 10�3, the effectivity index becomes larger. This increase of the index in the diffusion-
dominated regime was also observed for steady-state problems in [18].

In summary, for the considered example, whose solution has an interior layer, the a posteriori error estimator (28) turned
out to be robust with respect to the mesh width and the value of the diffusion.

Next, the same examples as in [5] will be studied to compare the adaptive algorithm for the SUPG method from Sec-
tion 3.3 with the adaptive algorithm for the Galerkin method proposed in [5, Section 3]. For simplicity of notation, we will
call them SUPG-based algorithm and Galerkin-based algorithm, respectively. Linear finite elements were used, as in [5].
The starting meshes consisted of a uniform 25� 25 triangulation. Step (3) of the SUPG-based algorithm appears also in
the Galerkin-based algorithm. However, the local error estimator (28) and the local indicator used in the Galerkin-based
method are not related such that one cannot expect appropriate values for TOL1 and TOL2 to be the same. In [5], different
combinations of values for TOL1 and TOL2 were investigated. The values TOL1 ¼ 10�2 and TOL2 ¼ TOL1=20 were found to
be best in terms of efficiency (number of degrees of freedom required for a prescribed accuracy) and consequently, results
obtained with these values were presented in all pictures shown in [5]. Linear systems of equations were solved with the
sparse direct solver UMFPACK (backslash command of MATLAB). We did not find any significant difficulty with this
procedure.
Fig. 3. Example 3. Solution computed with the SUPG-based method (left) and corresponding adaptive mesh (right), at time t ¼ 0:6 (top) and t ¼ 1:2
(bottom).
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Example 3. Example with an exponential boundary layer and two characteristics boundary layers. This example is defined by (1)
with b ¼ ð1;0ÞT ; c ¼ 0; u0 ¼ 0; f ¼ 1; e ¼ 10�4, and homogeneous Dirichlet boundary conditions. The boundary x ¼ 1 is the
outflow boundary and an exponential boundary layer appears there. At the tangential boundaries y ¼ 0 and y ¼ 1,
characteristic or parabolic boundary layers develop.

The solutions and meshes for the SUPG-based algorithm, obtained with the tolerances TOL1 ¼ 10�3 and TOL2 ¼ 10�3=20,
are presented in Fig. 3. Comparing them with [5, Fig. 3], the results of both adaptive algorithms are, on the first glance,
similar. However, a detailed inspection shows that the SUPG-based algorithm uses considerably less mesh cells and
computes a more accurate solution. For instance, at time t ¼ 0:6, the mesh produced by the Galerkin-based algorithm has
213704 cells while for the SUPG-based algorithm it has 171931 cells. At the final time, the difference increases and the
meshes have 470192 cells for the Galerkin-based algorithm and 222581 cells for the SUPG-based algorithm.

In Fig. 4, a detail of the mesh generated by the SUPG-based algorithm at time t ¼ 1:2 is presented. The mesh shows a very
different refinement according to the different kinds of layers: the exponential layer at x ¼ 1 and the parabolic layer at y ¼ 0.

Fig. 5 shows a plot of the solutions computed with both adaptive methods along the line x ¼ 0:5. With the SUPG-based
algorithm, there are no oscillations at the parabolic layer, which is in contrast to the Galerkin-based algorithm. Hence, the
solution computed with the SUPG-based algorithm appears to be more accurate. With both algorithms, the solutions do not
exhibit spurious oscillations in the exponential layer, see [5, Fig. 5] for the Galerkin-based algorithm. The picture for the
SUPG-base algorithm is nearly identical and its presentation is omitted here.
Fig. 4. Example 3. Zoom of bottom right picture of Fig. 3.

Fig. 5. Example 3. Zoom of the parabolic layer at x ¼ 0:5 and y ¼ 0 at time t ¼ 1:2, SUPG-based algorithm (left), Galerkin-based algorithm (right).
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In this example, the solution computed with the SUPG-based algorithm is more accurate than the solution obtained with
the Galerkin-based algorithm and the grids generated with the SUPG-based algorithm possess considerably less mesh cells.
Example 4. Rotating three body problem. This example considers a configuration of three geometrical bodies that rotate
clockwise. It was studied in the hyperbolic limit, e ¼ 10�20, e.g., in [17,19].

In this example, the rotation is driven by b ¼ ðy� 0:5;0:5� xÞT . The forcing term is f ¼ 0 and it is c ¼ 0 as well.

Homogeneous Dirichlet boundary conditions were imposed. Results obtained for the value e ¼ 10�6 will be reported here.
The initial condition, consisting of three disjoint bodies, is represented in Fig. 6. It is zero outside the three bodies. More

precisely, for a given ðx0; y0Þ, let rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ

2
q

=r0. The center of the slotted cylinder is located at

ðx0; y0Þ ¼ ð0:5;0:75Þ and its shape is defined by
uð0; x; yÞ ¼
1 if rðx; yÞ 6 1; jx� x0jP 0:0225 or y P 0:85;
0 otherwise:




The hump at the left-hand side is defined by ðx0; y0Þ ¼ ð0:25;0:5Þ and
Fig. 6. Example 4. Initial condition.

Fig. 7. Example 4. SUPG-based algorithm, approximation after one rotation (left) and difference to the initial condition (right).
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uð0; x; yÞ ¼ 1
4

1þ cosðp minfrðx; yÞ;1gÞð Þ:
The conical body on the lower part is given by ðx0; y0Þ ¼ ð0:5;0:25Þ and
uð0; x; yÞ ¼ 1� rðx; yÞ:
In the SUPG-based algorithm, the tolerances TOL1 ¼ 10�3 and TOL2 ¼ 10�3=20 were used. Again, one can observe that the
Galerkin-based approach generates meshes with much more cells: 391314 vs. 22250 at the final time, that is a difference
of more than one order of magnitude. Comparing the results in Fig. 7 with [5, Figs. 9 and 10], one can see that both solutions
are of similar quality. While the fineness of the mesh leads to a somewhat more accurate approximation of the cylinder with
the Galerkin-based algorithm, the SUPG-based method computes a more accurate solution in the rest of the domain. The
variation of the solution computed with the SUPG-based algorithm at time 2p is given by
maxðuhÞ �minðuhÞ ¼ 1:0509� ð�0:0635Þ ¼ 1:1144. This quantity can be taken as a measure of the spurious oscillations still
remaining in the numerical approximation, in particular at the cylinder. The corresponding value for the Galerkin-based
method 1:0159 from [5] shows the better accuracy obtained with this method at the cylinder (with about 17 times more
mesh cells).

Fig. 8 presents the adaptive meshes for the SUPG-based algorithm at times t 2 fp=2;p;3p=2;2pg. It can be observed that
this algorithm is able to follow very well the movement of the three bodies, thereby refining only around them and keeping
the mesh essentially coarse in the rest of the domain. This behavior is in strong contrast to the Galerkin-based algorithm
[5, Fig. 11], which produces, in the whole time interval, a refinement of a large part of the domain.

In this example, it was possible to compute with the SUPG-based algorithm a qualitatively similar solution as with the
Galerkin-based algorithm on a grid with much less cells. The good capturing of the layers and coarsening of the mesh at the
smooth parts of the solution by the SUPG-based algorithm could be observed well.
Fig. 8. Example 4. SUPG-based method, computational meshes at times t 2 fp=2;p;3p=2;2pg.



Fig. 9. Example 4. Approximation at time 2p obtained with the error estimator (10) and the corresponding mesh.

Fig. 10. Example 4. Approximation at time 2p obtained with the error estimator (11) and the corresponding mesh.

Fig. 11. Example 4. Approximation at time 2p obtained with the error estimator (12) and the corresponding mesh.
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Figs. 9–11 present the solutions which were computed using instead of (28) the local error estimators (10)–(12),
respectively. The size of the variations in the final solutions are maxðuhÞ �minðuhÞ ¼ 1:0619� ð�0:0597Þ ¼ 1:1215; maxðuhÞ
�minðuhÞ ¼ 1:0688� ð�0:00613Þ ¼ 1:1301, and maxðuhÞ �minðuhÞ ¼ 1:0491� ð�0:0519Þ ¼ 1:1010, respectively, and the
number of cells at the final meshes are 23 106, 20 600, and 42 684. The only solution giving a slightly smaller variation than
the solution computed with the estimator (28) is the last one, associated to the error estimator (12). However, the number of
cells needed to compute this approximation was almost twice as large as the one with (28). Altogether, one can conclude
that, in this example, the SUPG-based algorithm with all estimators (10)–(12), and (28) shows a similar behavior.
Fig. 12. Example 5. SUPG-based algorithm, solutions at times t 2 f0:2;0:6;1:0;1:4;1:8g.



Fig. 13. Example 5. SUPG-based algorithm, meshes at times t 2 f0:2;0:6;1:0;1:4;1:8g.
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Example 5. Example with moving internal layers and a developing exponential layer. Problem (1) is considered with
b ¼ ðy;�xÞT ; c ¼ 0; u0 ¼ 0, f ¼ 0, and e ¼ 10�5. Dirichlet boundary conditions are given by u ¼ 0 at the boundaries
x ¼ 1; y ¼ 0, and y ¼ 1 and by u ¼ 1 at x ¼ 0. In this example, a front is generated at the side x ¼ 0 and, as time evolves,
it moves through the domain, thereby rotating around the origin. A curved interior layer is created. When the front arrives
at the boundary y ¼ 0, an exponential boundary layer is generated there. In the steady state, the curved internal layer coex-
ists with the exponential boundary layer at y ¼ 0.

In the simulations, the tolerances TOL1 ¼ 2 � 10�4 and TOL2 ¼ TOL1=20 were used. Fig. 12 represents the numerical
solutions computed with the SUPG-based algorithm at times t 2 f0:2;0:6;1:0;1:4;1:8g. One can observe that the solutions
are essentially non-oscillating and that the meshes are adapted to the characteristics of the solution.

The meshes corresponding to these numerical solutions are plotted in Fig. 13. Comparing with [5, Fig. 13], where the
meshes generated with the Galerkin-based approach are shown, one gets the impression that the behavior of the two
algorithms is not very different. However, a look at the actual number of mesh cells gives for the Galerkin-based algorithm
92017;119138;144336, 180375, and 2210665 at the five different times, respectively, while the numbers of cells for the
SUPG-based algorithm are 99240;115948;122877;116690, and 1313316. Except for the first mesh at t ¼ 0:2, where both
algorithms produce almost the same number of cells, the SUPG-based algorithm generates meshes with a smaller number of
cells. In addition, the ratio of the number of cells generated with the Galerkin-based and the SUPG-based algorithm increases
as time evolves, being for the final time equal to 1:68.

In this example, the solutions of both algorithms are similar but the SUPG-based algorithm obtained its solution on a
mesh with considerably less cells.
Remark 3. From the numerical experiments, we infer that in spite of using adaptive mesh refinement, the number of mesh
cells may still be too high in some cases. The use of anisotropic mesh refinement could possibly help to alleviate this
problem.
5. Summary

In this paper, an adaptive algorithm for evolutionary convection–diffusion–reaction equations was proposed which al-
lows the application of the natural extension of any error estimator which is known for the steady-state problem. This ap-
proach is based on the observation that the SUPG solution of the evolutionary problem is also the solution of an appropriate
steady-state problem. In the derivation of the algorithm, the heuristic argument was used that the first term on the right-
hand side of (7) is of higher order. This argument was supported in one dimension with an error analysis. In the numerical
studies, in particular the residual-based estimator from [18] was considered. It was shown for an example with interior layer
that also for the time-dependent problem the error estimates in the SUPG norm are robust with respect to the polynomial
degree of the finite element space, the mesh width, and the value of the diffusion. Comprehensive comparisons with the
adaptive method proposed in [5] showed that the new method obtains in general more accurate solutions on grids with con-
siderably less mesh cells.
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