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Weighted essentially non-oscillatory (WENO) finite difference schemes have been rec-
ommended in a competitive study of discretizations for scalar evolutionary convec-
tion–diffusion equations [20]. This paper explores the applicability of these schemes for 
the simulation of incompressible flows. To this end, WENO schemes are used in several 
non-incremental and incremental projection methods for the incompressible Navier–Stokes 
equations. Velocity and pressure are discretized on the same grid. A pressure stabilization 
Petrov–Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to 
account for the violation of the discrete inf-sup condition. Algorithmic aspects of the pro-
posed schemes are discussed. The schemes are studied on several examples with different 
features. It is shown that the WENO finite difference idea can be transferred to the simu-
lation of incompressible flows. Some shortcomings of the methods, which are due to the 
splitting in projection schemes, become also obvious.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

This paper studies projection methods in combination with weighted essentially non-oscillatory (WENO) finite difference 
methods for discretizing the incompressible Navier–Stokes equations

∂t u − ν�u + (u · ∇)u + ∇p = f in (0, T ] × �,

∇ · u = 0 in [0, T ] × �,

u = u0 in {0} × �, (1)

in a finite time interval [0, T ] and in a bounded domain � ⊂ R
d , d ∈ {2, 3}, subject to Dirichlet boundary conditions u = g

on ∂�. In (1), u is the velocity field, p the pressure, and f a given body force.
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The motivation for studying this topic came from the good experience of applying the WENO finite difference method 
for the numerical solution of scalar evolutionary convection–diffusion–reaction equations in [20]. In this reference, sev-
eral methods were studied, including a linear and a nonlinear finite element method (FEM) flux-corrected transport (FCT) 
method combined with the Crank–Nicolson scheme, an essentially non-oscillatory (ENO) scheme of order three and a fifth 
order WENO scheme combined with total variational diminishing (TVD) Runge–Kutta methods. The ENO and WENO schemes 
were shown to perform efficiently and to produce accurate approximations with only small under- and overshoots.

With the good performance of the WENO scheme for scalar convection-dominated problems in mind, it is appealing 
to study the possibility of extending its application to the incompressible Navier–Stokes equations. However, the fact that 
velocity and pressure are coupled in these equations introduces a new difficulty. To circumvent this difficulty, the consid-
eration of projection methods, which decouple the computation of velocity and pressure, seems to be a natural approach 
for applying the WENO scheme for the simulation of incompressible flows. In this approach, the basic idea is to use central 
finite differences to approximate the spatial derivatives except for the nonlinear term (u · ∇)u that is approximated with 
the WENO scheme.

Projection methods or splitting schemes or pressure correction schemes have been a long tradition for the simulation 
of incompressible flows, see [12] for an overview. First proposals of so-called non-incremental schemes date back to [7,31]
and of incremental methods to [33]. However, the use of projection methods is still an active field of research: as stated 
in [3]: “As noted by Karniadakis and Sherwin [23], in high Reynolds incompressible flows, splitting methods can be com-
putationally efficient and competitive compared to more expensive coupled methods”. In [3] a pressure-correction scheme 
for the incompressible Navier–Stokes equations was presented which combines a discontinuous Galerkin approximation for 
the velocity and a standard continuous Galerkin approximation for the pressure. The main interest of the scheme is the 
reduced computational cost compared with monolithic strategies. Moderate to high Reynolds number flows were studied in 
[3] with Reynolds numbers up to 21 000. An adaptive finite element method for the incompressible Navier–Stokes equations 
based on a standard projection scheme (the incremental pressure correction scheme) is studied in [28]. In [14], a stable 
projection method on non-graded quadtree and octree meshes and arbitrary geometries is presented. The viscous term is 
treated implicitly with a finite volume approach while the convective term is discretized with a semi-Lagrangian scheme.

The main goal of the present paper consists in proposing and studying numerically the application of WENO finite 
difference schemes within several projection methods. Besides standard non-incremental and incremental methods, the ap-
plication of a TVD Runge–Kutta method to the Navier–Stokes equations will be studied. The considered schemes include 
two variants of the simplest Euler non-incremental scheme, an Euler incremental scheme, an incremental scheme based on 
BDF2, and the already mentioned incremental scheme based on a TVD Runge–Kutta method. The numerical studies include 
examples whose solutions possess different features. Although all studied methods are applicable in two and three dimen-
sions, only two-dimensional problems will be presented since, in our opinion, it turned out to be sufficient for illustrating 
the properties of the studied methods. The examples are not restricted to problems on rectangular domains. All flows are 
laminar and the meshes are sufficiently fine to resolve the important scales of the flow fields.

Velocity and pressure are approximated with finite differences on the same grid. It is well known that in the Euler 
non-incremental scheme certain pressure stability can be expected, regardless of the particular discrete velocity–pressure 
spaces chosen, see [13,25]. On the other hand, using the incremental schemes with this discretization, one encounters 
oscillations in the numerical solutions. These oscillations are due to the fact that the spatial discretization does not satisfy a 
discrete inf-sup condition. As a remedy of this problem, we propose to apply a stabilization technique which resembles the 
pressure-stabilized Petrov–Galerkin method (PSPG) used in finite element discretizations. The idea is to change the mass 
balance ∇ · u = 0 to ∇ · u − δ�p = 0, where δ is an appropriately chosen stabilization parameter. In the context of equal 
order finite element methods applied in an incremental projection scheme for the transient Stokes equations, this kind of 
stabilization can be found in [24]. A similar stabilization, but more related to local projection stabilization than to PSPG, 
was used in [8]. In a variational formulation, instead of adding δ(∇ph, ∇qh), the term δ(∇ph − πh, ∇qh) is added where πh
is the projection of ∇ph into a certain finite-dimensional space.

The paper is organized as follows. In Section 2 the methods are described in detail. Section 3 is devoted to the presen-
tation of the numerical studies. Finally, Section 4 summarizes the numerical results and gives an outlook.

2. The projection methods

In this section, the studied methods are presented in detail, the application of the WENO scheme is described, and several 
algorithmic aspects of the methods are discussed, in particular the computation of the divergence at the boundary, the 
parameter choice in the PSPG-type stabilization, and the extension of the WENO finite difference method to non-rectangular 
domains (but still Cartesian grids). For simplicity of presentation, the case of homogeneous boundary conditions g = 0 is 
considered.

2.1. Euler non-incremental method, type 1 (Eul-ninc1)

Given u0, compute (ũn+1
, un+1, pn+1), n = 0, . . . , N , with the following algorithm. In the first step, ũn+1 is obtained by 

solving the vector-valued convection–diffusion equation
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ũn+1 − un

�t
− ν�ũn+1 + (un · ∇)un = f n+1 in �,

ũn+1 = 0 on ∂�. (2)

The second equation is of the form

un+1 − ũn+1

�t
+ ∇pn+1 = 0 in �,

∇ · un+1 = 0 in �,

un+1 · n = 0 on ∂�. (3)

Taking the divergence of this equation leads to an equation for computing pn+1

−�pn+1 = − 1

�t
∇ · ũn+1 in �,

∇pn+1 · n = 0 on ∂�. (4)

Finally, one obtains un+1 from the update

un+1 = ũn+1 − �t∇pn+1. (5)

Since velocity and pressure are defined both in the nodes of the mesh, the discretization of velocity and pressure does 
not satisfy a discrete inf-sup condition. Note that (4) has the form of the pressure stabilization Petrov–Galerkin (PSPG) 
method, which is popular in finite element methods for stabilizing pairs of spaces that do not satisfy the discrete inf-sup 
condition. Thus, this scheme possesses an inherent stabilization with respect to the discrete inf-sup condition. The stabiliza-
tion parameter in (4) is �t and it becomes small for small time steps, see [8,13]. The similarity of the stabilization in this 
scheme with the PSPG stabilization was already observed in [25].

2.2. Euler non-incremental method, type 2 (Eul-ninc2)

In this method, the convective term of the vector-valued convection–diffusion equation changes to (ũn · ∇)ũn . Inserting 
now (5) into this equation gives a method which computes only (ũn+1

, pn+1), n = 1, . . . , N , where ũ1
, p1 have to be given. 

The vector-valued convection–diffusion equation for the velocity reads as follows

ũn+1 − ũn

�t
− ν�ũn+1 + (ũn · ∇)ũn + ∇pn = f n+1 in �,

ũn+1 = 0 on ∂�. (6)

The second equation in this scheme is (3) such that the pressure is computed by solving (4). Performing the update (5) is 
not necessary. Because the pressure Poisson equation in this scheme is of form (4), it contains a stabilization with respect 
to the discrete inf-sup condition.

2.3. Euler incremental method (Eul-inc)

The definition of this method considers also triplets (ũn+1
, un+1, pn+1). The equation for computing ũn+1 has the form

ũn+1 − un

�t
− ν�ũn+1 + (ũn · ∇)ũn + ∇pn = f n+1 in �,

ũn+1 = 0 on ∂�. (7)

Then, the correction is defined by

un+1 − ũn+1

�t
+ ∇(pn+1 − pn) = 0 in �,

∇ · un+1 = 0 in �,

un+1 · n = 0 on ∂�. (8)

Substituting un from (8) into (7) gives the first equation of the scheme which will be considered here. Let ũ2
, p2, p1 be 

given, compute (ũn+1
, pn+1), n = 2, . . . , N , by first solving in each discrete time

ũn+1 − ũn

�t
− ν�ũn+1 + (ũn · ∇)ũn + ∇(2pn − pn−1) = f n+1 in �,

ũn+1 = 0 on ∂�. (9)
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A Poisson equation for the pressure update is derived by taking the divergence of (8)

−�(pn+1 − pn) = − 1

�t
∇ · ũn+1 in �,

∇(pn+1 − pn) · n = 0 on ∂�. (10)

The method (9), (10) is problematic for velocity and pressure approximations that do not satisfy a discrete inf-sup 
condition. This problem becomes obvious if the equation has in the limit a steady-state solution. Then pn+1 = pn and from 
(10) it follows that ∇ · ũn+1 = 0. This implied equation is together with (9) a saddle point problem whose well-posedness 
requires the satisfaction of an inf-sup condition. In fact, we could observe in simulations that steady-state solutions usually 
could not be reached by using the scheme (9), (10) and time-dependent solutions often showed notable spurious oscillations. 
A remedy, which was mentioned already in [24, Chapter 7.4], consists in stabilizing this method in the spirit of the PSPG 
method. To this end, the mass balance of (8) is changed to

∇ · un+1 − δ�pn+1 = 0, (11)

which gives the pressure Poisson equation

−�

((
1 + δ

�t

)
pn+1 − pn

)
= − 1

�t
∇ · ũn+1 in �,

∇
((

1 + δ

�t

)
pn+1 − pn

)
· n = 0 on ∂�. (12)

The considered method Eul-inc solves (9) and (12). The choice of the stabilization parameter δ will be discussed in Sec-
tion 2.7.

An alternative option consists in replacing the nonlinear convective term in (7) by (un · ∇)un and to compute un after 
having computed the pressure from (12). In our experience, this approach gives very similar results to the method (9), (12)
such that we omit the discussion of the alternative approach for the sake of brevity.

2.4. BDF2 incremental method (BDF-inc)

This method uses a second order time stepping scheme and a second order extrapolation of the convective term. It is 
given by

3ũn+1 − 4un + un−1

2�t
− ν�ũn+1 + 2(ũn · ∇)ũn

−(ũn−1 · ∇)ũn−1 + ∇pn = f n+1 in �,

ũn+1 = 0 on ∂�, (13)

and the correction is defined by

3un+1 − 3ũn+1

2�t
+ ∇(pn+1 − pn) = 0 in �,

∇ · un+1 = 0 in �,

un+1 · n = 0 on ∂�. (14)

Substituting un and un−1 from (14) into (13) yields the following scheme. Given ũ3
, ũ2

, ũ1
, p3, p2, p1, compute 

(ũn+1
, pn+1), n = 3, . . . , N , by first solving in each discrete time

3ũn+1 − 4ũn + ũn−1

2�t
− ν�ũn+1 + 2(ũn · ∇)ũn

−(ũn−1 · ∇)ũn−1 + ∇(7pn − 5pn−1 + pn−2)

3
= f n+1 in �,

ũn+1 = 0 on ∂�. (15)

Deriving the pressure Poisson equation from (14) leads to the same instability problem as discussed for the method Eul-inc 
and we encountered the same bad observations in numerical studies as described in Section 2.3. Again, a remedy consists 
in applying the PSPG-like stabilization (11) to the equation for the mass balance in (14). Then, the update for the pressure 
is computed by solving

−�

((
1 + 3δ

2�t

)
pn+1 − pn

)
= − 3

2�t
∇ · ũn+1 in �,

∇
((

1 + 3δ
)

pn+1 − pn
)

· n = 0 on ∂�. (16)

2�t
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The method BDF-inc solves (15) and (16). Apart from the form of the convective term, BDF-inc is the same method that 
was studied in [3].

Using 2(un · ∇)un − (un−1 · ∇)un−1 in (13) as convective term gave very similar results for the examples considered in 
Section 3 to the method (15), (16) such that the discussion of this approach will be omitted.

2.5. TVD Runge–Kutta incremental method (RK-inc)

This method transfers the idea of using TVD Runge–Kutta methods for the simulation of scalar convection–diffusion 
problems to projection methods. To the best of our knowledge, this transfer cannot be found in the literature so far.

The method of Heun for discretizing the equation u̇ = F (t, u) is given by

k1 = F (tn−1, un−1),

k2 = F (tn−1 + �t, un−1 + �tk1),

un = un−1 + �t

2
(k1 + k2).

It is a second order method. Its implementation in the context of projection schemes may be done as follows. Given u1, p1, 
one computes in each time step n = 2, . . . , N , the first stage for an intermediate velocity by

k1 = ν�un − (un · ∇)un − ∇pn + f n,

ũn,∗ = un + �tk1.

Concerning the projection into the divergence-free space, the same remarks are in order as for the method Eul-inc, i.e., one 
has to apply a stabilization because the discrete velocity and pressure do not satisfy an inf-sup condition. This stabilization 
can be performed in the same way as for Eul-inc, giving for the first stage the pressure equation

−�

((
1 + δ

�t

)
pn,∗ − pn

)
= − 1

�t
∇ · ũn,∗ in �,

∇
((

1 + δ

�t

)
pn,∗ − pn

)
· n = 0 on ∂�, (17)

and the velocity after the first stage is computed by

un,∗ = ũn,∗ − �t∇ (
pn,∗ − pn) .

The computation of the second stage starts with

k2 = ν�un,∗ − (un,∗ · ∇)un,∗ − ∇pn,∗ + f n+1,

ũn+1 = un + �t

2
(k1 + k2)

and the equation for the pressure update, which includes the PSPG-type stabilization, has the form

−�

((
1 + δ

�t

)
pn+1 − pn,∗

)
= − 1

�t
∇ · ũn+1 in �,

∇
((

1 + δ

�t

)
pn+1 − pn,∗

)
· n = 0 on ∂�. (18)

From this equation, pn+1 is computed. The new velocity is obtained by

un+1 = ũn+1 − �t∇
(

pn+1 − pn,∗) .

2.6. Evaluating the convective term with the WENO scheme

For the numerical discretization of the convective term, the finite difference weighted essentially non-oscillatory (WENO) 
method presented in [30] will be used. For simplicity of presentation, the method will be described for a scalar convective 
term.

The main idea in the finite difference WENO scheme is to approximate the spatial derivatives of the solution ∂xu(t, xi, y j), 
∂yu(t, xi, y j) using a convex combination of several finite differences formulae with appropriate weights. For simplicity, the 
approximation of the one-dimensional function b(t, x)∂xu(t, x) at x = xi on an equidistant mesh with grid size h will be 
considered. A WENO scheme of fifth order with a stencil of six nodes, which is used in many applications [30], defines the 
approximation of u(t, xi) in the case b(t, xi) ≥ 0 as follows [15]
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h)x,1 = 1

h

(
−ui−1

h

3
− ui

h
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+ ui+1
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h

6

)
,

(ui
h)x,2 = 1
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(
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h + ui
h
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h

3
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(ui
h)x,3 = 1
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(
−ui−3

h

3
+ 3

2
ui−2

h − 3ui−1
h + 11

6
ui

h

)
,

(ui
h)x = ω1(ui

h)x,1 + ω2(ui
h)x,2 + ω3(ui

h)x,3,

where the weights ωi are given by

ωi = αi

α1 + α2 + α3
, i = 1,2,3,

with

αi = di

(ce + βi)
2
, i = 1,2,3, d1 = 3/10, d2 = 3/5, d3 = 1/10.

The parameter ce is introduced to avoid the denominator to become 0. In the numerical studies ce = 10−6 was used. The 
role of the parameter ce has been studied in several papers, see for example [1]. The value ce = Ch2 implies that the order 
of accuracy of the WENO reconstruction near discontinuities of the function is 3. However, for smooth solutions the order 
of accuracy is 5 if ce is a constant. In practice, a fixed value line ce = 10−5 or ce = 10−6 is commonly used. In the numerical 
examples studied in Section 3, we could observe only negligible differences between solutions computed with ce = 10−6

and ce = h2. The values βi are the so-called smooth indicators of the stencil [15]

β1 = 13

12

(
ui

h − 2ui+1
h + ui+2

h

)2 + 1

4

(
3ui

h − 4ui+1
h + ui+2

h

)2
,

β2 = 13

12

(
ui−1

h − 2ui
h + ui+1

h

)2 + 1

4

(
ui−1

h − ui+1
h

)2
,

β3 = 13

12

(
ui−2

h − 2ui−1
h + ui

h

)2 + 1

4

(
ui−2

h − 4ui−1
h + 3ui

h

)2
,

where ui
h =

(
ui

h − ui−1
h

)
/h are the cell averages of the first spatial derivative. For b(t, x) < 0, one has to compute the 

following quantities

(ui
h)x,1 = −1

h

(
−ui+1

h

3
− ui

h

2
+ ui−1

h − ui−2
h

6

)
,

(ui
h)x,2 = −1

h

(
ui+2

h

6
− ui+1

h + ui
h

2
+ ui−1

h

3

)
,

(ui
h)x,3 = −1

h

(
−ui+3

h

3
+ 3

2
ui+2

h − 3ui+1
h + 11

6
ui

h

)
,

β1 = 13

12

(
ui

h − 2ui−1
h + ui−2

h

)2 + 1

4

(
3ui

h − 4ui−1
h + ui−2

h

)2
,

β2 = 13

12

(
ui+1

h − 2ui
h + ui−1

h

)2 + 1

4

(
ui+1

h − ui−1
h

)2
,

β3 = 13

12

(
ui+2

h − 2ui+1
h + ui

h

)2 + 1

4

(
ui+2

h − 4ui+1
h + 3ui

h

)2
,

where now ui
h =

(
ui+1

h − ui
h

)
/h. All other quantities are the same as in the case b(t, xi) ≥ 0.

To compute the WENO approximation at and near the boundary, values on the boundary are extended in a constant way 
off �.

In [20], also a simple upwind scheme and an essentially non-oscillatory (ENO) extrapolation of the convective term 
were studied. In our experience, these approximations give less accurate results than the WENO approximation, see also 
Example 3.2 for a brief discussion of this topic. Similarly, results obtained with central differences as discretization for the 
convective term will be discussed in Examples 3.4 and 3.5.
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Remark 1. This remark provides some comments on the stability and consistency of the proposed methods. The numerical 
analysis of the Euler and BDF2 projection methods in the space-continuous case or combined with finite element methods 
has been carried out by several authors, the reader is referred to [12] for a survey. The literature about projection methods 
in combination with finite difference schemes is rather scarce. In [2] a second order projection method is described and 
numerically (but not analytically) checked using a specialized higher order Godunov method for differencing the nonlinear 
convective terms. We are unaware of analysis for Runge–Kutta type projection methods as the one proposed here. A rig-
orous analysis of the method, even the semidiscrete, space-continuous scheme, is out of the scope of this paper. However, 
supported by the numerical experience we guess that the proposed method can be proven to be second order in time. On 
the other hand, the analysis (consistency) of the WENO scheme has been developed in [1]. In [1] the order of the WENO 
reconstructions is proved to be 5 in smooth regions and 3 near discontinuities. The analysis of the WENO schemes for a 
one-dimensional scalar conservation law with the third order TVD Runge–Kutta scheme as temporal discretization, assum-
ing sufficient regularity for the solution and an appropriately chosen CFL condition, can be found in [15]. Altogether, as it 
can be concluded from the above discussion, the analysis of even the simplest method proposed in this paper (Euler projec-
tion method for nonlinear Navier–Stokes equations with fifth order WENO finite difference approximation of the convective 
term) seems to be a difficult task and it is at any rate out of the scope of the present paper.

Remark 2. As in the vast majority of papers studying WENO schemes, we have chosen an explicit evaluation of the convec-
tive term. However, one can wonder if a semi-implicit evaluation un · ∇ũn+1 or ũn · ∇ũn+1 is also possible. In [11] several 
predictor–corrector schemes with semi-implicit WENO evaluation of convective terms are considered. The authors state that 
a semi-implicit approach which does not involve a separate predictor step is also possible but there is the danger that the 
stencil determined by the weights at time tn will cross the shock at time tn+1 and leads to instability. Several explicit and 
semi-implicit/predictor–corrector methods are compared in [11]. The semi-implicit methods are shown to reduce the CFL 
stability restriction from the value 1/2 (in the explicit methods) to the value 1. However, although the admissible time step 
is doubled by using semi-implicit methods, when considering the cost of semi-implicit methods it is evident in [11] that 
they do not outperform the explicit schemes.

2.7. Algorithmic aspects

For problems where an initial condition of the velocity is known, the discrete initial condition just took the values of the 
given initial condition at the nodes of the grid.

In all methods that need initialization steps, these steps were performed with the method Eul-ninc1.
The Laplacian of �ũn+1 was always discretized with the usual five points central finite differences.
For computing the divergence of ũn+1, which is needed in the right-hand sides of the pressure Poisson equations, central 

finite differences were used in all interior nodes. The values of ∇ · ũn+1 at the boundary nodes determine, via the pressure 
Poisson equations (4), (12), (16), (17), and (18), essentially the pressure at the boundary. Projection schemes are known to 
compute discrete pressures which might exhibit boundary layers. We could observe that different approaches for computing 
∇ · ũn+1 at the boundary in fact might notably influence the accuracy of the computed solutions, see Example 3.2 for a brief 
discussion. The following approaches were studied:

(1) It is set ∇ · ũn+1 = 0 in nodes at Dirichlet boundaries. There is no equation for the divergence of ũn+1. However, at 
Dirichlet boundaries, it is ũn+1 = un+1. Since un+1 is assumed to be pointwise divergence-free, this property is in this 
method also transferred to ũn+1 at Dirichlet boundaries.

(2) The function ũn+1 is extrapolated constantly in the required direction and the central difference at the boundary node 
is applied.

(3) One-sided differences are used at the boundary. This approach is equivalent with extrapolating ũn+1 linearly off the 
domain and applying a central difference.

Note that for a rectangular domain with the boundaries in coordinate direction, the divergence in the corners is determined 
by the values at the boundary. To avoid errors from finite difference approximations using Dirichlet boundary conditions, 
∇ · ũn+1 = 0 was set at all corners also in methods 2 and 3. Method 1 does not depend on computed values. Computed 
values possess less impact in method 2 than in method 3 in the sense that the extrapolated values in method 2 do not 
depend on computed values.

The gradient of the pressure was computed with central differences in all nodes, extending the pressure off the domain 
in a constant way. Note that in the case of Dirichlet boundary conditions, the values of the gradient of the pressure in 
boundary nodes do not enter the schemes, such that in this case even the computation of the gradient of the pressure at 
the boundary can be omitted.

After having computed un+1 in the scheme Eul-ninc1 from (5), the values of un+1 at the boundary nodes were set to 
the values of the boundary condition at the nodes.

The choice of the stabilization parameter δ in the pressure Poisson equations (12), (16), (17), and (18) is based on known 
results and experience from finite element methods. For the diffusion-dominated regime, an optimal finite element error 
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analysis for the transient Stokes equations is obtained for δ = δ0h2, see [21], where h is the mesh width (diameter of the 
mesh cells). Also in [24], where the PSPG-type stabilization was used in an incremental scheme for solving the transient 
Stokes equations, a stabilization parameter of this form was used. The experience for smooth solutions in [21] and also 
our experience with the projection methods is that δ0 should be chosen to be small. For the convection-dominated regime, 
there is a proposal for the steady-state Oseen equations to choose δ = δ0 min{h, h2/ν}, e.g., see [26, p. 475]. Thus, the 
asymptotic choice of δ seems to be clear for the diffusion-dominated case, but the situation for the convection-dominated 
regime seems to be unclear. All numerical results which will be presented in Section 3 are for laminar flow problems on 
meshes which are sufficiently fine to resolve all important scales of the flow fields. In this situation, one is, in some sense, 
in the transition zone from diffusion-dominated to convection-dominated problems. We found out with numerical studies 
that usually δ = δ0h2 was often a better choice than δ = δ0h, see Example 3.1 for an illustration. Here, δ0 can be chosen to 
be small for smooth solutions and larger, up to the order of unity, for more complicated solutions. The concrete choice will 
be given for all presented results.

The solution of the pressure Poisson equations is only determined up to an additive constant due to the Neumann 
boundary conditions. Fixing one value and using the direct sparse solver umfpack [9], we could not observe any difficulties 
to compute a solution. Afterwards, this solution was projected into L2

0(�).
Examples 3.4 and 3.5 consider problems defined in non-rectangular domains. The basic idea for extending the WENO 

finite difference method to such domains consists in including � in a tensor product domain �̃. Then, the equations are 
approximated in �̃ while setting the values at the nodes in �̃\� to zero.

It should be noted that the WENO methodology in conjunction with finite differences can only be applied to uniform 
or smooth meshes, see [30, Section 3.3]. For this reason all the meshes considered in the numerical studies are uniform 
meshes.

All simulations were performed with two codes to double check the results. One of the codes was MooNMD [18].

3. Numerical studies

This section presents several numerical studies for assessing the proposed methods. We think it to be important not only 
to show the favorable properties of these methods but also to present their shortcomings.

A number of problems in two dimensions will be considered. In Example 3.1, a problem will be studied where the 
temporal error dominates. With this example, the order of convergence with decreasing time step can be assessed. An 
analytical solution is considered in Example 3.2 to study the accuracy of the computed solutions in different norms. Ex-
ample 3.3 presents results for a regularized driven cavity. In this example, the velocity possesses a boundary layer. The 
last two examples consider problems in domains which are not rectangular. Example 3.4 studies a flow across a step and 
Example 3.5 a flow around a cylinder.

Grids consisting of squares were used in the simulations.

Example 3.1 (A problem with small spatial discretization error (similar to [19])). Let T = 1 and � = (0, 1)2. The right-hand side f , 
the initial condition u0, and the non-homogeneous Dirichlet boundary conditions are chosen such that

u =
(

t3 y

t2x

)
, p(x, y) = tx + y − t + 1

2

is the solution of the Navier–Stokes equations (1). The solution is linear with respect to the spatial variables. Thus, one 
expects mainly errors from the temporal discretization and the splitting.

The simulations were performed on a grid with mesh cells of diameter h = √
2/128. Among the methods for computing 

the divergence of ũn+1 at the boundary, methods 2 and 3 gave similar results for the velocity, with one exception. In all 
numerical tests which we performed with BDF-inc and method 3, the simulations blew up. The velocity errors for methods 2 
and 3 were much lower and the order of convergence considerably higher than for method 1. With respect to the pressure 
error, method 2 gave the most accurate results. Below, results obtained with method 2 are presented. The PSPG stabilization 
parameter in the incremental schemes was set to be δ = 0.001h2.

In this example, also results for the diffusion-dominated regime are shown, see Fig. 1. Concerning the velocity errors, the 
schemes Eul-inc and BDF-inc (with the exception of the error at the final time) converge with an order of approximately 1.5, 
whereas a first order convergence is observed for Eul-ninc1 and Eul-ninc2. The order of convergence for the pressure is for 
the non-incremental schemes around 0.8 and for the incremental schemes approximately 1.

Results for a convection-dominated case are depicted in Fig. 2. One can observe some order reduction for the BDF-inc 
and Eul-inc schemes. The orders for the convergence of the velocity errors is somewhat below 1.5. Nevertheless, the most 
accurate results were obtained with BDF-inc. The results computed with RK-inc belong to the least accurate ones.

Fig. 3 presents results for the convection-dominated case and a stabilization parameter of the PSPG method which scales 
like the mesh width h and not like h2. Comparing these results with the corresponding results from Fig. 2, it can be seen 
that in particular for finer time steps, the results with δ = 0.001h2 are more accurate.

It can be observed, also in other examples, that with respect to the L2(�) error of the velocity, Eul-ninc1 is considerably 
more accurate than Eul-ninc2 if method 2 is used for computing ∇ · ũn+1 at the boundary. With method 3 there were 
generally only much smaller differences.
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Fig. 1. Example 3.1, results for ν = 1 and δ = 0.001h2. The asymptotics are of order 0.8 (dash-dotted line), 1 (dotted line), and 1.5 (dashed line). All 
simulations with the scheme RK-inc blew up.

Fig. 2. Example 3.1, results for ν = 10−3 and δ = 0.001h2. The asymptotics are of order 0.5 (dash-dotted line), 1 (dotted line), 1.25 (continuous line), and 
1.5 (dashed line).

Example 3.2 (Analytical solution). An example in the unit square � = (0, 1)2 is considered with the prescribed solution

u = 2π sin(t)

(
sin2(πx) sin(π y) cos(π y)

sin(πx) cos(πx) sin2(π y)

)
, p = 20 sin(t)

(
x2 y − 1

6

)
.



J. de Frutos et al. / Journal of Computational Physics 309 (2016) 368–386 377
Fig. 3. Example 3.1, results for ν = 10−3 and δ = 0.001h, same axes and asymptotics as in Fig. 2.

Fig. 4. Example 3.2, results for ν = 10−3, h = √
2/64 (level 7).

The length of the time interval is chosen to be T = 5 and Dirichlet boundary conditions were applied. Only results for the 
convection-dominated case ν = 10−3 will be presented.

Most of the presented results were computed with method 2 for the computation of ∇ · ũn+1 at the boundary nodes. For 
this example as well an illustration of the results obtained with the other methods is given. In addition, a brief comparison 
of results obtained with the simple upwind stabilization, ENO, and WENO is presented.

In the incremental schemes, the PSPG stabilization parameter δ = 0.1h2 was used. Errors which are of interest in the 
error analysis were monitored. Results obtained on a fixed spatial grid and for different time steps are presented in Fig. 4. 
One can see that on a spatial grid with h = √

2/64 all incremental schemes give the same results if the time step is 
sufficiently small. There are differences only for �t = 2 · 10−3. For �t = 5 · 10−3, the simulations with most of the schemes 
blew up. In addition, one can see that in the case of small time steps the non-incremental scheme Eul-ninc1 gives more 
accurate results than all other studied methods for the L2(�) error of the velocity. Finally, the method RK-inc shows a good 
behavior in this example in the sense that it reaches the level of the spatial error already for the largest value of �t while 
the other methods require smaller values of �t .

Fig. 5 shows results obtained for a fixed time step and on different spatial grids. The grid level l corresponds to a mesh 
width h = √

2/2l−1. Again, all incremental schemes give more or less the same results, save on the finest grid. On level 9, 
one can see some instabilities. The simulation with BDF-inc even blew up (but with the alternative version of BDF-inc 
described at the end of Section 2.4 it succeeded and these results are presented). The chosen PSPG stabilization parameter 
becomes too small on the finest level to stabilize the violation of the discrete inf-sup condition appropriately. In fact, we 
could observe that simulations with larger parameters, e.g., δ = 10h2, do not show instabilities and do not blow up. Again, 
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Fig. 5. Example 3.2, results for ν = 10−3, �t = 5 · 10−4, BDF-inc on level 9: alternative variant. Curve for BDF-inc is below curve for RK-inc.

Fig. 6. Example 3.2, results for ν = 10−3, �t = 5 · 10−4, method 1 for computing ∇ · ũn+1. Note the different scaling of the y-axes compared with Fig. 5.

one can see that the results computed with Eul-ninc1 are of similar accuracy as those of the incremental methods, at least 
on coarser grids.

Some results for the two other methods for computing ∇ · ũn+1 at boundary nodes are presented in Figs. 6 and 7. For 
method 1, one can see that all schemes provide less accurate solutions than for method 2. This statement holds in particular 
for the non-incremental schemes, which produce with method 1 less accurate results than the incremental schemes. The 
accuracy of the results obtained with methods 2 and 3 is for the most schemes similar. Only with Eul-ninc1, one obtains 
clearly worse results with method 3.

A representative result is presented which shows that the solutions computed with the WENO scheme are more accurate 
than the solutions obtained with the ENO scheme and both results are much more accurate than the solutions computed 
with simple upwinding, see Table 1.

Example 3.3 (A regularized lid driven cavity example). Lid driven cavity examples are very popular and there are several 
proposals for such examples in the literature. Here, a regularized lid driven cavity will be proposed and studied where 
the velocity can be expected to belong to C2(�) ∩ C(�), as one needs to get second order accuracy with finite difference 
methods, and which is consistent in the sense that ∇ · u = 0 holds also at the corners of the domain.

The lid driven cavity example is defined in � = (0, 1)2. There are no-slip conditions at the boundaries x = 0, x = 1, and 
y = 0. In the classical lid driven cavity example, e.g., as studied in [10], the velocity at y = 1 is chosen to be u = (1, 0)T

(the concrete choice of the values at the upper corners is not specified in [10]). At any rate, the boundary condition of 
the velocity has a jump such that the velocity solution is not yet in H1(�). Strictly speaking, this setup is not even suited 
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Fig. 7. Example 3.2, results for ν = 10−3, �t = 5 · 10−4, method 3 for computing ∇ · ũn+1. The simulations with BDF-inc blew up on the two finest levels. 
The scaling of the y-axes is the same as in Fig. 5.

Table 1
Example 3.2, results for ν = 10−3, h = √

2/64 (level 7), �t = 5 · 10−4, divergence computation with method 2.

Eul-ninc1 Eul-ninc2 Eul-inc BDF-inc RK-inc

‖u − uh‖L2(L2)

upwind 1.058 1.020 1.054 1.053 1.053
ENO 1.262e−2 1.277e−1 4.673e−2 4.559e−2 4.559e−2
WENO 1.004e−2 1.263e−1 1.790e−2 1.710e−2 1.711e−2

‖p − ph‖L2(L2)

upwind 1.901 1.839 1.895 1.895 1.895
ENO 4.439e−2 1.645e−1 8.532e−2 8.454e−2 8.470e−2
WENO 4.330e−2 1.621e−1 4.863e−2 4.819e−2 4.828e−2

for finite element methods. In the last years, several regularized driven cavity examples were proposed. As mentioned 
already, the divergence of the solution should pointwise vanish and the divergence at the corners is determined by the 
boundary values. The regularized examples we could find in the literature do not meet the requirement of the velocity 
being divergence-free at the corners. For this reason, we propose a new regularized example, where the velocity at y = 1 is 
given by

u(x,1) =
(

u1(x)

0

)
,

u1(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 1
4

(
1 − cos

(
x1−x

x1
π

))2
for x ∈ [0, x1],

1 for x ∈ (x1,1 − x1),

1 − 1
4

(
1 − cos

(
x−(1−x1)

x1
π

))2
for x ∈ [1 − x1,1].

(19)

It can be checked that u1(x) is twice continuously differentiable. In the simulations x1 = 0.1 was used.
Numerical results for ν−1 = Re = 10 000 will be presented. It is known for the classical lid driven cavity example that 

stationary solutions become unstable at a Reynolds number of around Re = 8000 and that at Re = 10 000 there is a stable 
periodic solution, e.g., see [4,6,32]. On the one hand, the driving (19) is a little bit smaller than in the classical setup because 
(19) tends to zero at the corners. But on the other hand, the considered Reynolds number is considerably larger than the 
Reynolds number for stable stationary solutions of the classical problem. Altogether, one expects for the studied regularized 
lid driven cavity example also a stable periodic solution.

The computed solutions will be compared with a solution obtained with a fully implicit finite element approach. In 
this approach, the inf-sup stable Q 2/P disc

1 pair of finite element spaces was used, i.e., the velocity is discretized with 
a continuous, piecewise biquadratic function and the pressure with a discontinuous piecewise linear function. This pair of 
finite element spaces is very popular and known to perform well, e.g., see [17]. As discretization in time, the Crank–Nicolson 
scheme was used. Altogether, for a similar number of degrees of freedom, one expects to obtain more accurate results with 
this finite element approach than with the studied finite difference methods for two reasons. First, in the finite element 
approach there is no splitting error and second, the fully nonlinear problem is solved in each discrete time. This expectation 
was met, e.g., in the numerical studies in [5].

An initial condition is not known for this example. An impulsive start was used for all simulations, i.e., u = 0 on all 
internal nodes. The time step was chosen to be �t = 10−3 and the PSPG stabilization parameter in the incremental schemes 
was set to be δ = h2. The high Reynolds number leads to small scales of the flow for whose resolution a rather fine grid 
is necessary. Figs. 8 and 9 present results obtained for h = √

2/320, which led to 206 082 velocity degrees of freedom and 
103 041 pressure degrees of freedom (including nodes at Dirichlet boundaries). The velocity exhibits a boundary layer at 
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Fig. 8. Example 3.3, change of the Euclidean norm of the computed velocity ‖ũn+1 − ũn‖l2 .

Fig. 9. Example 3.3, streamlines of the velocity for Re = ν−1 = 10 000, h = √
2/320: Eul-ninc1, Eul-ninc2, Eul-inc, BDF-inc, RK-inc, reference finite element 

solution (top left to bottom right), 20 equidistant intervals in [−0.15, −0.01], 6 equidistant intervals in [−0.01, 0], and 40 equidistant intervals in [0, 0.01].

y = 1, a large vortex in the center of the domain, and smaller vortices in all corners save the upper right corner. None of 
the studied schemes reaches a steady state. Results concerning the change of the discrete velocity from time step to time 
step, see Fig. 8, show that a periodic solution is computed. Comparisons with visualizations of the flow field confirm that 
the oscillations of the change of the velocity field reflect indeed a periodic behavior of the flow field (not presented in 
detail for the sake of brevity). The length of the period is considerably longer for the incremental methods. This behavior 
corresponds better to the results obtained with the finite element method. Snapshots of the solutions obtained with the 
studied schemes are presented in Fig. 9. To find discrete times where all schemes are at a comparable state in their period, 
the maximal value of the streamfunction was monitored. Then, discrete times were picked where this value has a local 
maximum in time and this maximum is attained in the lower left corner of the domain. It can be seen in Fig. 9 that on the 
one hand the solutions computed with Eul-ninc1 and Eul-ninc2 look similar and on the other hand the solutions obtained 
with all incremental schemes are almost identical. There are small differences between the results of the non-incremental 
and the incremental schemes, e.g., in the form of the eddy in the lower left corner. It was found that on a finer grid with 
h = √

2/640 the solutions obtained with Eul-ninc1 and Eul-ninc2 are similar to the solutions with the incremental schemes 
and the reference solution depicted in Fig. 9. In comparing the solutions with results from the literature one should keep 
in mind that the boundary condition at the top of the cavity is a new proposal. Nevertheless, the snapshots look very 
similar to the results presented in [4, Figure 9, second row left] (note that the velocity on the upper lid is right to left 
in [4]).

Altogether the proposed schemes compute qualitatively correct results for this flow with a boundary layer.
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Fig. 10. Example 3.4, sketch of the domain (not to scale).

Fig. 11. Example 3.4, streamlines of the velocity at t = 50 for ν = 10−3 and h = √
2/32: Eul-ninc1, Eul-ninc2, Eul-inc, BDF-inc, RK-inc, and reference finite 

element solution (top to bottom), 41 equidistant streamlines in [−1, 3].

Example 3.4 (Flow across a step). The simulation of flows across bodies is a situation which often occurs in applications. 
Because of the re-entrant corners, the flow across a step is considered to be as one of the more challenging setups.

The setup of this example is similar to [16]. The domain for the simulations is depicted in Fig. 10. At the inlet x = 0 and 
the outlet x = 40, the same parabolic profile was prescribed

u(t, x) = U (t)

(
1.5y(2 − y)

0

)
(20)

with

U (t) =
{

sin(πt/8) if t ∈ [0,4],
1 if t ≥ 4.

Due to the parabolic inflow profile (20), in contrast to the constant profile in [16], the width of the channel was chosen to 
be smaller here. The viscosity was chosen to be ν = 10−3. With this setup, vortices are created behind the step and a vortex 
street develops. The results obtained with the studied schemes will be compared with the results computed with the same 
finite element method as described in Example 3.3.

Snapshots of solutions obtained with �t = 10−3 on a grid with squares of diameter h = √
2/32 and with the PSPG 

stabilization parameter δ = h2 for the incremental methods are presented in Fig. 11. This mesh results in 166 530 velocity 
degrees of freedom and 83 265 pressure degrees of freedom (including boundary nodes and the step). The reference solution 
with the finite element method was computed with the same discretization as described in Example 3.3 on a grid with 
h = √

2/128, which results in 2 599 682/970 752 velocity/pressure degrees of freedom, and with the time step �t = 10−2. 
One can see in Fig. 11 that all schemes compute qualitatively a correct solution. The solutions with the projection schemes 
look smoother than the reference solution, which indicates that the projection methods introduce a certain amount of 
numerical viscosity.

Applying in this example central differences for the discretization of the convective term led to a blow-up of the simu-
lations for all projection schemes.

Example 3.5 (Flow around a cylinder). This example is a popular benchmark problem defined in [27]. The domain is given by

� = (0,2.2) × (0,0.41)/
{
(x, y) | (x − 0.2)2 + (y − 0.2)2 ≤ 0.052

}
and the time interval is [0, 8]. At the inlet and the outlet, the prescribed velocity profile has the form

u(0, y) = u(2.2, y) = 6

0.412
sin

(
πt

8

)(
y(0.41 − y)

0

)
.

On all other boundaries, no-slip conditions are applied. The initial velocity is u = 0 and the viscosity is ν = 10−3.
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Fig. 12. Example 3.5, velocity field at t = 6: Eul-ninc1, Eul-ninc2, Eul-inc, BDF-inc, RK-inc (top to bottom).

While increasing the inflow, a vortex street develops behind the cylinder, starting at around t = 4. Important parameters 
of the flow are the drag coefficient at the cylinder, the lift coefficient, and the difference of the pressure between the front 
and the back of the cylinder

�p(t) = p(t;0.15,0.2) − p(t;0.25,0.2).

The most accurate reference values for the maximal drag and lift coefficient and the pressure difference can be found 
in [22].

An additional difficulty compared with Example 3.4 is that the domain where the finite difference method has to be 
switched off is not aligned with the grid lines. Using the strategy explained in Section 2.7 leads thus to a rather inaccurate 
approximation of the cylinder. Also the calculation of the drag and lift coefficient becomes on the one hand complicated 
and on the other hand, the results are influenced by the inaccurate approximation of the boundary. Considering the drag 
coefficient, the formula given in [27] can be reformulated in the form

cd = −20
∫

∂�cyl

(
ν(∂yu1 − ∂xu2)ny − pnx

)
ds,

where ∂�cyl is the boundary of the cylinder, u1 and u2 are the components of the velocity field, and (nx, ny)
T is the unit 

normal vector pointing outside �. In our approach, the integral is evaluated with the midpoint rule approximating the cut 
of the circle with the mesh cell � ⊂ ∂�cyl having cut points S1 and S2 with the segment [S1, S2],
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Fig. 13. Example 3.5, computed benchmark coefficients with h = √
2/200, �t = 10−3. The finite element curve is from the reference simulation in [22].

∫
�

(ν(∂yu1 − ∂xu2)ny − pnx) ds ≈ ‖S1 − S2‖2

(
ν(∂yu1 − ∂xu2)ñy − pñx

)
(M),

where M = (S1 + S2)/2, ‖ · ‖2 is the Euclidean norm, the normal vector is approximated by (ñx, ̃ny) = (C − M)/‖C − M‖2
with C = (0.2, 0.2) being the center of the cylinder. To evaluate ∂yu1 and ∂xu2, the bilinear polynomials that interpolate u1
and u2 at the four nodes that define the mesh cell were evaluated (note that the nodes in the cylinder has the value 0 and 
thus are a continuous extension of the boundary condition) and then the spatial derivatives were taken and evaluated at M . 
Two approaches were studied to evaluate the pressure. First the values of the pressure at the vertices of the mesh that do 
not fall inside the circle were considered and the arithmetic mean of these values was taken as an approximation to the 
value of the pressure at M . Alternatively, the value of the pressure node closest to M was used. Both variants to incorporate 
the pressure led qualitatively to the same results, showing quantitatively only insignificant differences. The results presented 
below are those computed with the first approach.

The stabilization parameter in the incremental schemes was chosen to be δ = h2. For δ = 0.1h2, very similar results were 
obtained.

Fig. 12 presents the flow fields for the studied methods at t = 6. It can be seen that all methods predict a vortex street, 
as it is qualitatively correct.

An assessment of the methods can be performed with the results concerning the benchmark coefficients shown in Fig. 13. 
These results were obtained at a grid with mesh size h = √

2/200, leading to around 70 000 velocity degrees of freedom 
and 35 000 pressure degrees of freedom, and a time step of �t = 10−3. All methods give similar results in the sense that 
all coefficients are overpredicted. The incremental schemes show a large overprediction of the drag coefficient and the 
pressure difference. A somewhat smaller overprediction was obtained with the non-incremental schemes. Considering the 
peaks of the lift coefficient, one can conclude that the vortex shedding computed with all schemes is somewhat slower than 
predicted by the reference solution. Altogether, the methods predicted a qualitatively correct behavior of the flow.

The results presented in Fig. 14 will be used to discuss the question if quantitative correct results can be obtained 
with the studied methods. The answer is two-fold. Considering the global flow behavior, which is characterized by the 
vortex shedding, the answer is yes. Using finer meshes in time and space shows that the positions of the peaks of the 
lift coefficient get closer to the corresponding positions of the reference solution, which indicates an increasing accuracy 
of predicting the vortex shedding. Considering local properties, like the lift coefficient, quantitative better results cannot be 
observed. The same statement holds true for the drag coefficient and the pressure difference (not presented for the sake of 
brevity). Concerning these local properties, it should be noted that the pressure at the boundary possesses a strong impact 
on all coefficients. In addition, for a similar example of a flow around a cylinder considerable overpredictions of drag and 
lift coefficients were obtained in [5] also for the incremental Euler scheme in combination with a finite element method. 
Thus, the reason for the discrepancy to the reference benchmark coefficients is in our opinion three-fold: the approximation 
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Fig. 14. Example 3.5, lift coefficients on different meshes: Eul-ninc1, Eul-ninc2, Eul-inc, BDF-inc, RK-inc (left to right, top to bottom). The finite element 
curve is from the reference simulation in [22].

of the domain, the approximations in the calculation of the coefficients, and the problems of projection schemes to compute 
accurate pressure approximations in a vicinity of boundaries.

Results computed with central differences for discretizing the convective term are presented in Fig. 15. It can be seen 
that the coefficients are usually considerably less accurate than those obtained with the WENO scheme (note that some 
ordinates are scaled differently than in Fig. 13). There are also notable oscillations of the pressure difference which cannot 
be observed in the reference curve. This feature indicates spurious oscillations in the flow field. With respect to these 
aspects, the results obtained with the WENO scheme are more accurate. Only the intervals of the vortex shedding were 
computed somewhat more accurately with central differences, with exception of Eul-ninc1.

4. Summary and outlook

This paper studied the use of the WENO finite difference method for the simulation of incompressible flows. Several 
non-incremental and incremental projection schemes were considered. Velocity and pressure were defined on the same 
grid. To account for the violation of the discrete inf-sup condition in the incremental schemes, a PSPG-type stabilization 
was introduced. Numerical studies were performed for examples with different features and different complexity.

In the numerical studies, the proposed methods computed in all cases qualitatively correct solutions. Quantitative dif-
ferences to prescribed solutions or reference solutions were mainly caused by known shortcomings of projection methods, 
e.g., the impact of the splitting error and the usually inaccurate approximation of the pressure in a vicinity of boundaries. 
Nevertheless, differences in the accuracy of the proposed schemes could be observed, e.g., in the period of the solutions in 
the driven cavity example. The computing times for all studied schemes were in all examples similar. In our opinion, among 
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Fig. 15. Example 3.5, computed benchmark coefficients with central differences for discretizing the convective term with h = √
2/200, �t = 10−3. The finite 

element curve is from the reference simulation in [22].

the considered schemes, the incremental schemes with semi-implicit temporal discretization (Eul-inc, BDF-inc) should be 
preferred.

As pointed out in [4], the challenge is to find a scheme for the discretization of the convective term that ensures both 
accuracy and stability. While the stability of first order schemes is very good, their accuracy is poor. On the contrary, second 
order schemes are more accurate but their stability is in general not ensured. From the numerical studies presented in this 
paper and from further studies we performed, it turned out that the WENO finite difference scheme is an attractive choice 
for the convection-dominated regime. The results obtained with this method were never notable less accurate than the 
results obtained with central finite differences, sometimes even considerably more accurate (Example 3.5), and sometimes 
the better stability of the WENO scheme was very important (Example 3.4).

To diminish pressure errors near domain boundaries, the projection methods were reformulated in [29] using boundary 
conditions that allow the pressure to be recovered from the knowledge of the velocity at any fixed time. The application of 
this approach along with WENO schemes will be one of the subjects of future research.
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