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This paper analyzes finite element approximations of space averaged flow fields which
are given by filtering, i.e. averaging in space, the solution of the steady state Stokes and
Navier–Stokes equations with a differential filter. It is shown that ‖ū−u

h‖
L2 , the error

of the filtered velocity ū and the filtered finite element approximation of the velocity
u

h, converges under certain conditions of higher order than ‖u − u
h‖

L2 , the error of
the velocity and its finite element approximation. It is also proved that this statement
stays true if the L2-error of finite element approximations of ū and u

h is considered.
Numerical tests in two and three space dimensions support the analytical results.
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1. Introduction

Large eddy simulation (LES) is currently one of the most promising and popular

approaches for modelling turbulence. In LES, one seeks to compute only the large

structures of a flow field whereas the influence of the small (subgrid scale) structures

on the flow field is modelled. The large flow structures are defined by a spatial

average of the flow field. This process is called filtering and many different filters

may be used, see Ref. 15 for an overview. Analyzing LES models requires the

analysis of the underlying filter.

One of the most popular filters and certainly the best analyzed one is the

Gaussian filter. Let u be the function to be filtered and

gδ̂(x) =

(
6

δ̂2π

)d/2

exp

(
− 6

δ̂2
‖x‖2

2

)
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be the Gaussian filter function where d ∈ {2, 3} is the space dimension and ‖x‖2

is the Euclidean norm of x ∈ R
d. The filtered function û is defined by convolving

u and gδ̂: û = gδ̂ ∗ u. All flow structures of size O(δ̂) are the large ones and the

parameter δ̂ is called the filter width. The application of the convolution requires

that u is defined in R
d.

An alternative way of defining a filter ū of u is by using a regularizing partial

differential equation. Let Ω ⊂ R
d, d = 2, 3, be a bounded convex domain with

polygonal or polyhedral boundary ∂Ω, δ ∈ (0, diam(Ω)) be a constant and u ∈
Hk(Ω), k ≥ 0 be given. Consequently, ∂Ω is a Lipschitz boundary. Throughout

this paper, standard notations for Lebesgue and Sobolev spaces are used, e.g., see

Ref. 1. The regularizing equation is given by the elliptic boundary value problem

−δ2∆ū + ū = u in Ω ,

ū = 0 on ∂Ω .
(1.1)

The weak formulation of (1.1) reads as follows: Find ū ∈ H1
0 (Ω) such that

δ2(∇ū,∇v) + (ū, v) = (u, v) ∀ v ∈ H1
0 (Ω) , (1.2)

where (·, ·) denotes the inner product in L2(Ω).

Definition 1.1. The solution ū of (1.2) is called differential filter of u with respect

to the filter width δ.

The differential filter was introduced in Refs. 5 and 6. Since the differential filter

is defined as a solution of a Helmholtz equation, it is sometimes called Helmholtz

filter. In Ref. 16, it is discussed that the differential filter (which is called exponential

filter in Ref. 16) has some advantages over the Gaussian filter, especially a simpler

representation of the so-called subgrid scales u−ū in comparison to u−û. The use of

the differential filter for LES computations in complex 3D domains is recommended

in Ref. 14.

There is a relationship between the Gaussian and the differential filter. Let

Ω = R
d and let the Fourier transform of the Gaussian filter be approximated by

the second-order subdiagonal Padé approximation

F(gδ̂) = exp

(
− δ̂2

24
‖y‖2

2

)
=

1

1 +
‖y‖2

2

24 δ̂2
+ O(δ̂4) .

Then, one obtains

F(gδ̂ ∗ u) = F(gδ̂)F(u) ≈ 1

1 +
‖y‖2

2

24 δ̂2
F(u) = F



(

I − δ̂2

24
∆

)−1

u


 ,

such that

gδ̂ ∗ u ≈
(

I − δ̂2

24
∆

)−1

u . (1.3)
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This shows that the differential filter is an approximation of the Gaussian filter

with δ = δ̂/
√

24.

The effect of applying the Gaussian filter to the solution (u, p) of the steady

state Stokes and Navier–Stokes equations and to the corresponding finite element

solution (uh, ph) was analyzed in Refs. 4 and 10. It was proved that under certain

conditions ‖û − ûh‖L2 converges of higher order than ‖u − uh‖L2 . Thus, there is

additional accuracy for the filtered error.

This paper extends the analysis of Refs. 4 and 10 to the differential filter. It

will be shown that ‖ū−uh‖L2 converges of higher order than ‖u−uh‖L2 if certain

conditions are satisfied. The need of extending the analysis of Refs. 4 and 10 to

obtain this result arises from two important differences between the Gaussian and

the differential filter. First, from (1.3) it was concluded that the differential filter

is an approximation of the Gaussian filter if Ω = R
d. This statement stays valid

for a bounded domain only if the differential filter is equipped with appropriate

boundary conditions. However, to our knowledge, such boundary conditions are

not known. Thus, the use of homogeneous Dirichlet boundary conditions will result

most probably in a considerable difference of the differential filter and the Gaussian

filter near the boundary ∂Ω. Second, whereas û is infinitely smooth under moderate

regularity assumptions on u, e.g. u ∈ L2(Ω), the differential filter ū will be in general

in H2(Ω) if u ∈ L2(Ω). The limited regularity of ū requires additional studies of its

properties which will be presented in Sec. 2.

In general, it will only be possible to compute discrete approximations of the

filtered functions. An important question is if the error of these discrete approxi-

mations possesses the same, possibly higher, order of convergence as ‖ū − uh‖L2 .

This question, which had not been addressed for the Gaussian filter in Refs. 4 and

10, will be answered positively by the analysis given in Sec. 5.

The plan of the paper is as follows. Analytical properties of the differential filter

are studied in Sec. 2. Section 3 provides an estimate of ‖ū−uh‖L2 for the solution

of the Stokes equations. This analysis is extended to the steady state Navier–Stokes

equations in Sec. 4. The error of finite element approximations of the filtered func-

tions is analyzed in Sec. 5. Finally, Sec. 6 presents numerical examples in two and

three dimensions which support the analytical results.

2. Some Properties of the Differential Filter

In this section, some essential properties of the differential filter are proved.

It is well known that (1.2) admits a unique solution ū ∈ H1
0 (Ω). If Ω is convex,

then ū ∈ H2(Ω), see Ref. 8, Theorem 3.2.1.2. The following two lemmas give

estimates for several norms of ū.

Lemma 2.1. For every u ∈ L2(Ω), the solution ū of (1.2) satisfies

δ4‖∆ū‖2
L2 + δ2‖∇ū‖2

L2 + ‖ū‖2
L2 ≤ 5‖u‖2

L2 . (2.1)
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Moreover, there is a constant C(Ω) such that

δ‖ū‖H1 ≤ C(Ω)‖u‖L2 . (2.2)

Proof. Choosing in (1.2) v = ū and applying the Cauchy–Schwarz inequality and

Young’s inequality on the right-hand side give

δ2‖∇ū‖2
L2 + ‖ū‖2

L2 ≤ 1

2
‖u‖2

L2 +
1

2
‖ū‖2

L2 .

Consequently

δ2‖∇ū‖2
L2 + ‖ū‖2

L2 ≤ ‖u‖2
L2 . (2.3)

From the differential equation (1.1), the triangle inequality and (2.3), we obtain

δ2‖∆ū‖L2 = ‖ū− u‖L2 ≤ 2‖u‖L2 .

This proves (2.1).

Estimate (2.2) follows directly from Poincaré’s inequality: there is a constant

C(Ω) such that

‖v‖H1 ≤ C(Ω)‖∇v‖L2 ∀ v ∈ H1
0 (Ω) .

Lemma 2.2. For given u ∈ L2(Ω) there is a constant C(Ω) independent of δ such

that

‖ū‖H2 ≤ C(Ω)δ−2‖u‖L2 . (2.4)

Proof. From (1.1) follows that

−∆ū =
1

δ2
(u − ū) in Ω , (2.5)

i.e. ū is the solution of a Poisson problem with right-hand side (u − ū)/δ2.

The Laplacian operator −∆ : H2(Ω) ∩ H1
0 (Ω) → L2(Ω) is a bounded linear

operator and an isomorphism (one-to-one and onto), see Ref. 8, Theorem 3.2.1.2,

or Ref. 7, Chap. I, Remark 1.2. An application of the open mapping theorem gives

that its inverse

(−∆)−1 : L2(Ω) → H2(Ω) ∩ H1
0 (Ω)

is a linear and continuous operator and hence a bounded operator. Consequently

there exists C = C(Ω) such that

‖v‖H2 ≤ C‖∆v‖L2

for every v ∈ H2(Ω) ∩ H1
0 (Ω). From (2.5) follows now

‖ū‖H2 ≤ C(Ω)

δ2
‖u− ū‖L2 ≤ C(Ω)

δ2
(‖u‖L2 + ‖ū‖L2) .

An application of the previous lemma finishes the proof.
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The following lemma states that the filtering procedure is self-adjoint.

Lemma 2.3. For every u, v ∈ L2(Ω) holds

(ū, v) = (u, v̄) . (2.6)

Proof. Since v̄ ∈ H1
0 (Ω) if v ∈ H1

0 (Ω), one gets from (1.2) and the symmetry of

the bilinear forms

(u, v̄) = δ2(∇ū,∇v̄) + (ū, v̄) = (ū, v) .

As δ tends to 0 the average ū approaches u in L2(Ω). This property of the

differential filter is proved in the following lemma and theorem. Note that this

result does not require compatibility conditions on traces of u and ū on ∂Ω.

Lemma 2.4. For every u ∈ H1
0 (Ω) ∩ H2(Ω) and δ > 0 holds

‖ū − u‖L2 ≤ δ2‖∆u‖L2 .

Proof. We denote by Tδ the bounded linear operator

Tδ : L2(Ω) → H1
0 (Ω) ∩ H2(Ω) ⊂ L2(Ω) , u 7→ ū ,

i.e. Tδu = (I − δ2∆)−1(u). Estimate (2.3) implies that the sequence of operators

{Tδ}δ is uniformly bounded

‖Tδ‖L(L2,L2) = sup
u∈L2(Ω),u6=0

‖ū‖L2

‖u‖L2

≤ 1 (2.7)

for every δ > 0.

Let u ∈ H1
0 (Ω) ∩ H2(Ω). Since Tδ is the inverse of (I − δ2∆), we have

(I − δ2∆)Tδu = u

and consequently

ū − u = Tδu − u = δ2∆Tδu .

From this equation follows that ∆Tδu ∈ H1
0 (Ω)∩H2(Ω) since ū−u belongs to this

space. In particular, ∆Tδu vanishes on ∂Ω.

The operators Tδ and ∆ commute for all u ∈ H1
0 (Ω) ∩ H2(Ω). We have ∆u ∈

L2(Ω) since u ∈ H2(Ω). The unique solution of (1.2) with right-hand side ∆u is

Tδ∆u. If u ∈ H2(Ω), we can apply the Laplacian to (1.1). The resulting equation

also has the right-hand side ∆u and its unique solution with homogeneous Dirichlet

boundary conditions is ∆Tδu. Hence Tδ∆u = ∆Tδu. Using this identity and (2.7),

the proof of the lemma is concluded as follows:

‖ū− u‖L2 = ‖δ2Tδ∆u‖L2 ≤ δ2‖Tδ‖L(L2,L2)‖∆u‖L2 ≤ δ2‖∆u‖L2

for all u ∈ H1
0 (Ω) ∩ H2(Ω).
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Lemma 2.4 shows that the sequence of operators {Tδ}δ converges to the iden-

tity on a dense subset of L2(Ω). This sequence is also uniformly bounded and

consequently it converges pointwise to the identity:

Theorem 2.1. For every u ∈ L2(Ω)

‖ū − u‖L2 → 0

as δ → 0.

3. The Filtered Solution of the Stokes Equations

In this section, an L2-estimate of the filtered error between the solution of the

continuous Stokes problem and its finite element approximation is proved. It turns

out that the filtered error converges of higher order than the non-filtered error

provided the solution of a dual Stokes problem is sufficiently regular and the filter

width is chosen appropriately.

Let V = (H1
0 (Ω))d, Q = L2

0(Ω) and f ∈ (L2(Ω))d. We consider the Stokes

problem

−∆u + ∇p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 on ∂Ω ,∫

Ω

p dx = 0 .

(3.1)

Its variational formulation reads as follows: Find (u, p) ∈ V × Q such that

(∇u,∇v) − (p,∇ · v) + (q,∇ · u) = (f ,v) ∀ (v, q) ∈ V × Q . (3.2)

Let T h denote a decomposition of Ω into mesh cells. We denote by hK the dia-

meter of a mesh cell K and we set h = maxK∈T h{hK}. Each family of triangulations

is assumed to be admissible and shape regular in the usual sense, e.g., see Ref. 3.

With the mesh T h, we can construct conforming velocity-pressure finite element

spaces V h×Qh with V h ⊂ V and Qh ⊂ Q. These spaces are assumed to satisfy the

inf–sup or Babuška–Brezzi condition, i.e. there exists a constant β > 0 independent

of the triangulation such that

inf
qh∈Qh

sup
vh∈V h

(qh,∇ · vh)

‖∇vh‖L2‖qh‖L2

≥ β > 0 . (3.3)

We assume the following regularity of the solution of (3.2)

u ∈ (Hk+1(Ω))d ∩ V , p ∈ Hk(Ω) ∩ Q , k ≥ 1 , (3.4)

and the approximation properties of the finite element spaces

V h contains piecewise polynomials of degree k ,

Qh contains piecewise polynomials of degree k − 1 .
(3.5)
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For a wide variety of velocity-pressure finite element spaces satisfying (3.3), the

following optimal a priori error estimate has been proved under the assumptions

(3.4) and (3.5), see, e.g. Ref. 7,

‖∇(u− uh)‖L2 + h−1‖u− uh‖L2 + ‖p− ph‖L2 ≤ Chk(‖u‖Hk+1 + ‖p‖Hk) . (3.6)

Moreover, the approximation properties

inf
vh∈V h

(‖u− vh‖L2 + h‖∇(u− vh)‖L2) ≤ Chk+1‖u‖Hk+1 , (3.7)

inf
qh∈Qh

‖p − ph‖L2 ≤ Chk‖p‖Hk (3.8)

are valid, if the finite element spaces are defined on meshes which are obtained by

regular refinement from an initial mesh. They are not valid for general quadrilateral

and hexahedral meshes, see Refs. 2 and 12.

The finite element approximation of the solution of (3.2) is given by: Find

(uh, ph) ∈ V h × Qh such that

(∇uh,∇vh) − (ph,∇ · vh) + (qh,∇ · uh) = (f ,vh) ∀ (vh, qh) ∈ V h × Qh . (3.9)

Let φ ∈ (L2(Ω))d, then the filter φ̄ ∈ (H2(Ω))d ∩ V since Ω is assumed to be

convex. For the error analysis, we have to consider the dual problem of (3.1) with

the right-hand side φ̄

−∆ψ + ∇(−λ) = φ̄ in Ω

∇ · ψ = 0 in Ω

ψ = 0 on ∂Ω∫

Ω

λ dx = 0 .

Its weak formulation is: Find (ψ, λ) ∈ V × Q such that

(∇ψ,∇v) + (λ,∇ · v) − (q,∇ · ψ) = (φ̄,v) (3.10)

for all (v, q) ∈ V ×Q. The solution (ψ, λ) of (3.10) exists uniquely. We assume that

the stability estimate

‖ψ‖Hk̂+1 + ‖λ‖Hk̂ ≤ C‖φ̄‖Hk̂−1 (3.11)

holds for k̂ ∈ {1, 2, 3}.
The following theorem gives an estimate of the error between the filtered con-

tinuous velocity ū and the filter uh of its finite element approximation uh.

Theorem 3.1. Let δ ≥ h be given, let (u, p) be the solution of the Stokes equations

(3.2) and (uh, ph) be its finite element approximation defined in (3.9). Assuming

that (u, p) possesses the regularity given in (3.4), the solution of the dual problem
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satisfies the stability estimate (3.11), the finite element spaces have the approxima-

tion properties (3.7), (3.8) and the a priori error estimate (3.6) is valid, then there

exists a constant C independent of u, p, h and δ such that

‖ū− uh‖L2 ≤ Chk+1

(
h

δ

)k̂−1

(‖u‖Hk+1 + ‖p‖Hk) (3.12)

with k̂ ≤ k.

Proof. The estimate of ū−uh is derived with the help of the dual problem (3.10).

Using the self-adjointness property (2.6) of differential filters gives

(ū − uh,φ) = (u − uh, φ̄) . (3.13)

The errors u− uh and p − ph satisfy the Galerkin orthogonality

(∇(u − uh),∇vh) − (p − ph,∇ · vh) + (qh,∇ · (u − uh)) = 0 (3.14)

for every (vh, qh) ∈ V h × Qh. Choosing v = u− uh, q = p − ph in (3.10), subtract

(3.14) from the obtained equation and using (3.13) give

(ū − uh,φ)

= (∇(ψ − vh),∇(u − uh)) + (λ − qh,∇ · (u − uh)) − (p − ph,∇ · (ψ − vh))

≤ (‖∇(u − uh)‖L2 + ‖p− ph‖L2)‖∇(ψ − vh)‖L2 + ‖λ − qh‖L2‖∇(u− uh)‖L2

for every (vh, qh) ∈ V h × Qh. We pick (vh, qh) to be the best approximation of

(ψ, λ) in V h × Qh. Using the approximation assumptions (3.7), (3.8) for k̂ ≤ k,

where we exploit the regularity of (ψ, λ), and applying the stability estimate (3.11)

yield

(ū − uh,φ) ≤ Chk̂(‖∇(u − uh)‖L2 + ‖p − ph‖L2)‖φ̄‖Hk̂−1

for k̂ ∈ {1, 2, 3}. Now the right-hand side can be estimated by the inequalities for

the filter proved in Lemmas 2.1 and 2.2 which gives

(ū − uh,φ) ≤ C
hk̂

δk̂−1
(‖∇(u − uh)‖L2 + ‖p − ph‖L2)‖φ‖L2 ,

k̂ ∈ {1, 2, 3}. Dividing by ‖φ‖L2 , taking the supremum over all φ ∈ (L2(Ω))d with

‖φ‖L2 6= 0 and applying the a priori error estimate (3.6) finish the proof.

Remark 3.1. Choosing δ = Chα, α ∈ [0, 1] yields the order of convergence k +1+

(1−α)(k̂ − 1) in (3.12). This is better than the order of convergence of ‖u−uh‖L2

given in (3.6) if α < 1 and k̂ > 1. If α = 1, then the filter width is proportional

to the mesh width. Since flow structures smaller than the mesh width cannot be

approximated, it is consistent to obtain in this case the same order of convergence

as for ‖u−uh‖L2 . Thus, the essential condition which must be fulfilled for a higher

order convergence is a higher order regularity of the solution of the dual problem.



March 11, 2004 13:37 WSPC/103-M3AS 00337

Finite Element Error Analysis of Space Averaged Flow Fields 611

4. The Filtered Solution of the Navier Stokes Equations

This section extends the analysis of the Stokes equations to the Navier–Stokes

equations.

The steady state Navier–Stokes equations are given by

−ν∆u + (u · ∇)u + ∇p = f in Ω ,

∇ · u = 0 in Ω ,

u = 0 on ∂Ω ,∫

Ω

p dx = 0 ,

(4.1)

where ν is the kinematic viscosity and f ∈ (L2(Ω))d is given. The variational

formulation of (4.1) reads as follows: Find (u, p) ∈ V × Q such that

(ν∇u,∇v) + b(u,u,v) − (p,∇ · v) + (q,∇ · u) = (f ,v) ∀ (v, q) ∈ V × Q (4.2)

with the trilinear form

b(u,v,w) = ((u · ∇)v,w) .

We assume that there is a unique solution (u, p) of (4.2). This is known to be true

if ν is sufficiently large or ‖f‖H−1 is sufficiently small, see Ref. 7, Chap. IV.

We consider the Galerkin finite element approximation of (4.2): Find (uh, ph) ∈
V h × Qh such that

(ν∇uh,∇vh) + b(uh,uh,vh) − (ph,∇ · vh) + (qh,∇ · uh) = (f ,vh) (4.3)

for all (vh, qh) ∈ V h × Qh. If ν is sufficiently large, optimal error estimates of the

form (3.6) can be proved for this finite element method. For the error analysis of

‖ū−uh‖L2 , we have to consider a linearized adjoint problem of (4.1). The variational

formulation of this linearized adjoint problem is: Find (ψ, λ) ∈ V × Q such that

(ν∇ψ,∇v) + b(u,v,ψ) + b(v,u,ψ) + (λ,∇ · v) − (q,∇ · ψ) = (φ̄,v) (4.4)

for all (v, q) ∈ V × Q. We assume that the solution of (4.4) exists uniquely and

fulfils a stability estimate of form (3.11).

The following theorem shows that an error estimate of form (3.12) holds also

for the Navier–Stokes equations.

Theorem 4.1. Let δ ≥ h be given, let (u, p) be the solution of the Navier–Stokes

equations (4.2) and (uh, ph) be its finite element approximation defined in (4.3).

Assuming that (u, p) possesses the regularity given in (3.4), the solution of the

linearized dual problem (4.4) satisfies the stability estimate (3.11), the finite element

spaces have the approximation properties (3.7), (3.8) and the a priori error estimate

(3.6) is valid, then there exists a constant C independent of u, p, h and δ such that

‖ū− uh‖L2 ≤ Chk+1

(
h

δ

)k̂−1

(‖u‖Hk+1 + ‖p‖Hk) (4.5)

with k̂ ≤ k.
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Proof. Starting as in the proof of Theorem 3.1, one obtains

(ū− uh,φ) = (ν∇(ψ − vh),∇(u − uh)) + b(u,u− uh,ψ) + b(u− uh,u,ψ)

− b(u,u,vh) + b(uh,uh,vh) + (λ − qh,∇ · (u − uh))

− (p − ph,∇ · (ψ − vh)) (4.6)

for every (vh, qh) ∈ V h × Qh. A direct calculation gives

b(u,u,vh) − b(uh,uh,vh) = b(u,u − uh,vh) + b(u− uh,u,vh)

− b(u− uh,u − uh,vh) . (4.7)

This is substituted into (4.6). The terms in (4.6) which also appear in the Stokes

equations are estimated analogously as in the proof of Theorem 3.1.

We consider now the trilinear terms. Let (vh, qh) be the best approximation of

(ψ, λ) in V h × Qh. Using Hölder’s inequality, the Sobolev imbeddings H1(Ω) →
L6(Ω) and H1/2(Ω) → L3(Ω), the interpolation of H1/2(Ω) between L2(Ω) and

H1(Ω) (see Ref. 1, Theorem 4.17) and the interpolation error estimate (3.7) for

k̂ ≤ k give

|b(u,u− uh,ψ − vh)| ≤ ‖u‖L6‖∇(u − uh)‖L2‖ψ − vh‖L3

≤ C‖∇u‖L2‖∇(u− uh)‖L2‖ψ − vh‖H1/2

≤ C‖∇u‖L2‖∇(u− uh)‖L2‖ψ − vh‖1/2
L2 ‖∇(ψ − vh)‖1/2

L2

≤ Chk̂+1/2‖∇u‖L2‖∇(u− uh)‖L2‖ψ‖Hk̂+1

and in the same way

|b(u − uh,u,ψ − vh)| ≤ Chk̂+1/2‖∇u‖L2‖∇(u − uh)‖L2‖ψ‖Hk̂+1 .

The last trilinear term in (4.7) is split into two parts

b(u− uh,u − uh,vh) = b(u − uh,u− uh,vh −ψ) + b(u − uh,u− uh,ψ) ,

where the first one can be estimated in the same way as above:

|b(u − uh,u− uh,vh −ψ)| ≤ Chk̂+1/2‖∇(u − uh)‖2
L2‖ψ‖Hk̂+1 .

The estimate of the second term uses the Sobolev imbedding H k̂+1(Ω) → L∞(Ω),

k̂ ≥ 1,

|b(u − uh,u− uh,ψ)| ≤ ‖u− uh‖L2‖∇(u− uh)‖L2‖ψ‖L∞

≤ C‖u− uh‖L2‖∇(u − uh)‖L2‖ψ‖Hk̂+1 .

Collecting all estimates, using the stability (3.11), the estimates for the filter

given in Lemmas 2.1 and 2.2 and the a priori error estimate (3.6) give

‖ū− uh‖L2

≤ C

(
h

δ

)k̂−1

hk+1(1 + h1/2‖∇u‖L2 + hk+1/2 + h2k+1)(‖u‖Hk+1 + ‖p‖Hk) .
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Since ‖∇u‖L2 < ∞ by the smoothness assumptions on u, it can be seen that the

terms coming from the trilinear forms are of higher order.

5. The Finite Element Approximation of the Filtered Functions

In general, it will be possible to compute only finite-dimensional approximations

ũ and ũh of the filtered functions ū and uh, respectively. This section provides an

estimate of ‖ũ− ũh‖L2 and shows that the order of convergence is the same as for

‖ū− uh‖L2 .

We pick a finite element space V H ⊂ V which is connected with a triangulation

T H and a mesh parameter H . Let ũ ∈ V H be the Galerkin approximation of ū

satisfying

δ2(∇ũ,∇vH) + (ũ,vH) = (u,vH ) ∀vH ∈ V H (5.1)

and ũh ∈ V H be the Galerkin approximation of uh satisfying

δ2(∇ũh,∇vH ) + (ũh,vH) = (uh,vH) ∀vH ∈ V H . (5.2)

Lemma 5.1. Let (u, p) be the solution of the Stokes equations (3.2) or of the

Navier–Stokes equations (4.2), respectively. Let the a priori error estimate (3.6) be

fulfilled, then

‖(ū − uh) − (ũ − ũh)‖L2 ≤ C

(
H

δ

)2

hk+1‖u‖Hk+1 . (5.3)

Proof. Subtraction of (5.1) and (5.2) gives

δ2(∇(ũ − ũh)),∇vH ) + (ũ − ũh,vH) = (u − uh,vH )

for all vH ∈ V H . This is the Galerkin finite element formulation of

−δ2∆Θ + Θ = u− uh in Ω ,

Θ = 0 on ∂Ω
(5.4)

in V H . The solution of this problem is Θ = ū − uh. Since u,uh ∈ (H1
0 (Ω))d, we

have at least Θ ∈ (H2(Ω))d. The standard finite element estimate for (5.4) gives

‖Θ− (ũ − ũh)‖L2 = ‖(ū− uh) − (ũ − ũh)‖L2 ≤ CH2‖ū− uh‖H2 . (5.5)

Note that for δ → 0, (5.1) and (5.2) are just the standard L2-projections of u and

uh into V H . From the L2-stability of the L2-projection, which holds with C = 1,

follows that the constant C in (5.5) tends to one for δ → 0. Thus, it can be chosen

independently of δ.

The proof is finished by applying (2.4) to the right-hand side of (5.5) and by

using the a priori estimate (3.6).

The triangle inequality applied to (5.3) and the error estimates (3.12) and (4.5)

give
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Theorem 5.1. Let the assumptions of Theorem 3.1 for the Stokes equations or of

Theorem 4.1 for the Navier–Stokes equations be fulfilled. Then, the L2-error of the

finite element approximations ũ and ũh can be estimated as follows

‖ũ− ũh‖L2 ≤ Chk+1

((
h

δ

)k̂−1

+

(
H

δ

)2
)

(‖u‖Hk+1 + ‖p‖Hk) (5.6)

with k̂ ≤ k.

The most convenient choice is V H = V h because one can use the same mesh

for computing the solution of the Stokes or Navier–Stokes equations and the fi-

nite element approximations of the filters. Estimate (5.6) shows that this choice is

sufficient to retain the same order of convergence as given in Remark 3.1.

6. Numerical Studies

This section presents numerical examples which support the analytical results. This

will be done only for the Navier–Stokes equations since we obtained similar results

for the Stokes equations.

The finite element spaces V h = Qk, Qh = P disc
k−1, k ∈ {2, 3} were used for the

computations on the quadrilateral and hexahedral grid. That means, the velocity

is approximated by a continuous function of order k and the pressure by a discon-

tinuous function of order k − 1. These finite element spaces are conforming. On

the triangular and tetrahedral grid, the computations were carried out with the

Taylor–Hood finite element V h = P2, Q
h = P1. All used pairs of finite element

spaces fulfil the inf–sup condition (3.3), see Refs. 7 and 13. The finite element space

for approximating the filter was chosen to be V H = V h. The computations were

performed with the code MooNMD, see Refs. 9 and 11.

Example 6.1. 2d example supporting the error estimate (5.6). We consider the

Navier–Stokes equations (4.1) in Ω = (0, 1)2 with ν = 0.1 and with the prescribed

solution u = (u1, u2) and p given by

u1 = 2π sin3(πx) sin(πy) cos(πy) ,

u2 = −3π sin2(πx) cos(πx) sin2(πy) ,

p = cos(πx) + cos(πy) .

This problem fits exactly into the framework of the analysis presented in this paper.

Tables 1–3 present results for finite element discretizations with velocity spaces

of order k and pressure spaces of order k − 1, k ∈ {2, 3} and different values of

δ. The computations were carried out on quadrilateral and triangular grids. The

initial grids are presented in Fig. 1. Because of their irregularity, higher order rates

of convergence as an effect of superconvergence can be excluded. The number of

degrees of freedom on the finest level is nearly 725, 000 for the Q2/P disc
1 finite

element, nearly 400, 000 for the Q3/P disc
2 finite element and about 665, 000 for the
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Table 1. Example 6.1, Q2/Pdisc
1

finite element discretization, order of convergence
for different choices of δ.

Level ‖u − u
h‖

L2 ‖ũ − ũ
h‖

L2 , δ = h0.5 ‖ũ − ũ
h‖

L2 , δ = 0.5

0 1.145145e-1 2.055072e-2 2.654022e-2

1 1.377608e-2 3.055 1.800340e-3 3.513 1.603269e-3 4.049

2 1.741729e-3 2.984 1.568772e-4 3.521 1.040759e-4 3.945

3 2.184065e-4 2.995 1.226431e-5 3.677 6.596570e-6 3.980

4 2.732056e-5 2.999 8.850454e-7 3.793 4.138766e-7 3.994

5 3.415639e-6 3.000 6.077102e-8 3.864 2.589344e-8 3.999

6 4.269705e-7 3.000 4.060803e-9 3.904 1.618760e-9 4.000

Theory 3.000 3.500 4.000

Table 2. Example 6.1, P2/P1 finite element discretization, order of convergence for
different choices of δ.

Level ‖u − u
h‖

L2 ‖ũ − ũ
h‖

L2 , δ = h0.5 ‖ũ − ũ
h‖

L2 , δ = 0.5

0 1.084089e-1 1.691105e-2 2.400509e-2

1 1.927985e-2 2.491 4.175891e-3 2.018 3.771400e-3 2.670

2 2.584938e-3 2.899 4.400397e-4 3.246 3.094694e-4 3.607

3 3.281124e-4 2.978 3.492728e-5 3.655 2.019232e-5 3.938

4 4.130777e-5 2.990 2.571142e-6 3.764 1.276136e-6 3.984

5 5.181897e-6 2.995 1.820701e-7 3.820 8.011974e-8 3.993

6 6.488892e-7 2.997 1.262811e-8 3.850 5.018199e-9 3.997

Theory 3.000 3.500 4.000

Table 3. Example 6.1, Q3/Pdisc
2

finite element discretization, order of convergence
for different choices of δ.

Level ‖u − u
h‖

L2 ‖ũ − ũ
h‖

L2 , δ = h0.5 ‖ũ − ũ
h‖

L2 , δ = 0.5

0 1.125285e-2 9.517286e-4 1.271797e-3

1 9.467422e-4 3.571 4.810401e-5 4.306 4.022989e-5 4.982

2 6.054851e-5 3.967 1.342504e-6 5.163 6.530215e-7 5.945

3 3.809419e-6 3.990 3.806302e-8 5.140 1.030669e-8 5.985

4 2.384798e-7 3.998 1.108255e-9 5.102 1.613809e-10 5.997

5 1.491051e-8 3.999 3.305694e-11 5.067 2.524241e-12 5.998

Theory 4.000 5.000 6.000

P2/P1 finite element. The discrete Navier–Stokes problems were solved up to a

Euclidean norm of the residual vector less than 10−12.

The order of convergence depends on the regularity k̂ of the dual problem given

in (3.11). In the case of a polygonal domain, one can expect in general only k̂ =

1. However, the regularity might be higher for particular examples. The order of

convergence obtained in the numerical studies suggest that k̂ = 3 in Example 6.1,
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Fig. 1. Example 6.1, initial grids (level 0).

see also Ref. 4. Let δ = chα, α ∈ [0, 1], then the order of convergence for ‖ũ− ũh‖L2

which can be expected from (5.6) is h4−α if k = 2 and h6−2α if k = 3.

The numerical studies presented in Tables 1–3 show that the expected and the

computed order of convergence coincide very well in the case of constant δ. For

δ = hα, α ∈ (0, 1), the computed order of convergence is in some cases higher than

its expected asymptotic value. The asymptotic range might not be reached yet.

If the grids are refined further, we observed that the influence of round off errors

becomes visible. In all cases, the order of convergence of the filtered error is higher

than the order of ‖u− uh‖L2 .

Example 6.2. 3d example. This example shows also that in 3d the filtered L2-error

might converge faster than the L2-error.

Let Ω = (0, 1)3 and let u = (u1, u2, u3) and p given by

u1(x, y, z) = sin(πx) sin(πy) sin(πz) + x4 cos(πy)

u2(x, y, z) = cos(πx) cos(πy) cos(πz) − 3y3z

u3(x, y, z) = cos(πx) sin(πy) cos(πz) + cos(πx) sin(πy) sin(πz)

− 4x3z cos(πy) + 4.5y2z2

p(x, y, z) = 3x − sin(y + 4z) + c .

The constant c is chosen such that p ∈ L2
0(Ω) and the right-hand side f is chosen

such that (u, p) fulfil the Navier–Stokes equations (4.1) with ν = 0.1. In contrast

to Example 6.1, we have here a solution with nonhomogeneous Dirichlet boundary

conditions.

The computations were carried out with the Q2/P disc
1 finite element discretiza-

tion on a hexahedral grid and with the P2/P1 finite element discretization on a

tetrahedral grid. The initial hexahedral grid (level 0) consists of eight cubes of

edge length 0.5. On level 5, there are nearly 7.5 million degrees of freedom. The

initial tetrahedral grid consists of six tetrahedra. On level 5, the system has about

6.7 million degrees of freedom.
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Table 4. Example 6.2, Q2/Pdisc
1

finite element discretization, order of convergence for
different choices of δ.

Level ‖u − u
h‖

L2 ‖ũ − ũ
h‖

L2 , δ = h0.5 ‖ũ − ũ
h‖

L2 , δ = 0.5

0 3.742528e-2 5.150531e-3 9.744671e-3
1 4.478076e-3 3.063 5.664402e-4 3.185 7.137835e-4 3.771

2 5.343528e-4 3.067 4.930463e-5 3.522 4.687405e-5 3.929

3 6.569613e-5 3.024 3.848715e-6 3.679 2.994656e-6 3.968

4 8.173159e-6 3.007 2.787300e-7 3.787 1.883923e-7 3.991

5 1.020367e-6 3.002 1.920575e-8 3.859 1.179532e-8 3.997

Theory 3.000 3.500 4.000

Table 5. Example 6.2, P2/P1 finite element discretization, order of convergence for
different choices of δ.

Level ‖u − u
h‖

L2 ‖ũ − ũ
h‖

L2 , δ = h0.4 ‖ũ − ũ
h‖

L2 , δ = 0.5

0 1.636325e-1 1.953558e-2 4.525972e-2

1 2.324915e-2 2.815 3.776680e-3 2.371 5.918700e-3 2.935

2 2.744844e-3 3.082 4.247209e-4 3.153 4.806004e-4 3.622

3 3.297820e-4 3.057 3.835012e-5 3.469 3.430517e-5 3.808

4 4.055963e-5 3.023 3.023162e-6 3.665 2.270324e-6 3.917

5 5.037018e-6 3.009 2.192793e-7 3.785 1.450954e-7 3.968

Theory 3.000 3.600 4.000

The computational results presented in Tables 4 and 5 suggest that the

regularity of the dual problem is k̂ ≥ 2.

For both finite element discretization, the expected and the computed orders of

convergence coincide very well if δ is constant. For δ = hα, α < 1, the computed

order of convergence is somewhat higher than the predicted asymptotic value. There

is always a higher order of convergence of the filtered errors than of ‖u− uh‖L2 .
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