
Comput Geosci (2014) 18:711–728
DOI 10.1007/s10596-014-9418-y

ORIGINAL PAPER

On classical iterative subdomain methods
for the Stokes–Darcy problem

Alfonso Caiazzo · Volker John · Ulrich Wilbrandt

Received: 18 December 2013 / Accepted: 20 March 2014 / Published online: 22 April 2014
© Springer International Publishing Switzerland 2014

Abstract Within classical iterative subdomain methods, the
problems in the subdomains are solved alternately by only
using data on the interface provided from the other subdo-
mains. Methods of this type for the Stokes–Darcy problem
that use Robin boundary conditions on the interface are
reviewed. Their common underlying structure and their
main differences are identified. In particular, it is clarified
that there are different updating strategies for the interface
conditions. For small values of fluid viscosity and hydraulic
permeability, which are relevant in applications from geo-
sciences, it is shown in numerical studies that only one
of these updating strategies leads to an efficient numeri-
cal method, if it is used with appropriate parameters in the
Robin conditions.

Keywords Stokes–Darcy problem · Classical iterative
subdomain methods · Robin boundary conditions · Finite
element methods · Continuous and discontinuous updating
strategy · Applications from geosciences

1 Introduction

Consider a bounded domain Ω ⊂ R
d , d ∈ {2, 3}, and a

decomposition Ω = Ωf ∪ ΓI ∪Ωp into two disjoint subdo-
mains Ωf and Ωp, denoting a free flow domain and a porous
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medium, respectively, and possessing a common interface
ΓI, i.e., Ωf∩Ωp = ∅ and Ωf∩Ωp = ΓI. Assuming a moder-
ate flow velocity in the free flow domain, the fluid dynamics
in Ωf can be modeled with the incompressible Stokes equa-
tions for the velocity uf : Ωf → R

d [m/s] and the pressure
Pf : Ωf → R [Pa]

∇ · T
(

uf,
Pf

ρ

)
= ff in Ωf, (1)

∇ · uf = 0 in Ωf. (2)

In Eq. (1), ρ [kg/m3] represents the fluid density, and the
fluid stress tensor T(uf, pf) [m2/s2] is defined by

T(uf, pf) : Ωf → R
d×d, T = 2νD(uf)− pfI,

where D(uf) = (∇u + ∇uT )/2 : Ωf → R
d×d [1/s] is the

velocity deformation tensor, pf = Pf/ρ [m2/s2], and ν :
Ωf → R [m2/s] denotes the kinematic viscosity of the fluid.
Outer forces acting on the free flow are modeled by ff :
Ωf → R

d [m/s2].
The dynamics in the porous medium is described by the

Darcy law:

K∇ϕp + up = 0 in Ωp, (3)

∇ · up = fp in Ωp, (4)

in terms of ϕp : Ωp → R [m], called Darcy pressure or
piezometric head, and of the Darcy velocity up : Ωp → R

d

[m/s]. In Eq. (3), K : Ωp → R
d×d [m/s] is the hydraulic

conductivity tensor. Generally, it is assumed that K = K
T ,

K > 0. Here, only the case K = KI, K > 0, will be
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considered. In Eq. (4), the function fp : Ωp → R [1/s]
describes sinks and sources. System (3)–(4) is called the
mixed form of the Darcy problem. An alternative formu-
lation is obtained by taking the divergence of Eq. (3) and
using (4),

−∇ · (K∇ϕp) = fp in Ωp, (5)

which is called the primal form of the Darcy problem.
The mixed form is often more important for applications,

as it recovers the Darcy velocity up directly. However, we
will focus on the primal formulation because of its simplic-
ity. For the studied numerical methods, there are still open
questions for this formulation.

System (1), (2), and (5) must be completed with appro-
priate boundary conditions and with proper interface con-
ditions at the Stokes–Darcy interface ΓI. Denote by nf

and np the unit outward normal vectors on ∂Ωf and ∂Ωp,
respectively, and by τ i , i = 1, . . . , d − 1, pairwise orthog-
onal unit tangential vectors on the interface ΓI. Note that
nf = −np on ΓI. Two standard coupling conditions on ΓI

model the conservation of mass and the balance of normal
stresses

uf · nf = −K∇ϕp · nf on ΓI, (6)

−nf · T(uf, pf) · nf = gϕp on ΓI, (7)

where g [m/s2] is the gravitational acceleration. A classical
third coupling condition is the so-called Beavers–Joseph–
Saffman condition [19, 25] (also Beavers–Joseph–Saffman–
Jones condition), which is based on experimental findings
relating the tangential velocity along the interface to the
fluid stresses:

uf ·τ i+ατ i ·T(uf, pf)·nf = 0 on ΓI, i = 1, . . . , d−1, (8)

where i = 1, . . . , d − 1, α = α0
√
(τ i ·K · τ i )/(νg) [s/m],

and α0 > 0 is a nondimensional parameter depending on
properties of the porous medium. A simplification is based
on the observation that both terms on the left-hand side of
Eq. (8) are small, leading to

uf · τ i = 0 on ΓI, i = 1, . . . , d − 1. (9)

The coupled problem defined by Eqs. (1), (2), and (5) with
the conditions (6), (7), and (8) (or (9)) has been studied
extensively in the literature both theoretically; see, among
others, [1, 6, 17, 21], and numerically, e.g., in [5, 9, 12–14,
16, 20, 24, 28].

Numerical methods for solving the coupled problem
might be divided into two main classes. Direct, mono-
lithic, or single-domain methods aim at solving the cou-
pled system in a single step. Proposals of finite element-
based approaches in this class can be found, e.g., in [2–4,
16, 22, 26, 27]. As an alternative, decoupled, domain-
decomposition, or multidomain approaches solve the cou-
pled problem with a subdomain iterative procedure based,

at each iteration, on the solution of the Stokes and
Darcy problem separately. On the one hand, an itera-
tive method requires multiple solutions of the subprob-
lems. On the other hand, these techniques allow to use
specialized solvers for Stokes and Darcy problems and
to tailor the algorithms according to their mathematical
and physical properties, which might result in efficient
procedures. Furthermore, iterative approaches are gener-
ally preferred if efficient solvers for the subproblems are
available.

Our interest in the Stokes–Darcy problem comes from
the numerical simulation of the fluid dynamics in water
basins and river beds. These problems are characterized by
complex geometries, and their discretization might lead to
large systems. For this reason, and also since an efficient
code for the simulation of incompressible free flows and
scalar elliptic problems is available [18], the use of iterative
strategies is our preferred option. The classical approach of
iterative subdomain methods consists in solving the equa-
tion in one subdomain, provide data on the interface for
the other subdomain, do the same for the other subdomain,
and repeat this procedure until convergence is achieved. An
extension of this strategy consists in embedding the classical
approach into a Krylov method for an appropriate interface
equation, as it is often done in domain decomposition meth-
ods. We think that, because of its simplicity, the classical
approach is more likely to be adopted from practitioners in
geosciences who are developing their own software. There-
fore, we will concentrate in this paper on the classical
approach.

Surveying the literature on iterative methods, one finds
different strategies concerning the splitting of the interface
conditions. This splitting defines the boundary condition
on ΓI for the individual Stokes and Darcy problems. A
first approach, called here Neumann–Neumann coupling,
consists in solving Neumann problems in both subdo-
mains. It is reported to perform well for large values of
viscosity and hydraulic conductivity, ν ≈ 1, K ≈ 1.
However, it has been shown in [14] that it converges very
slowly on fine meshes for small ν and K , a configu-
ration which is of utmost importance for applications in
geosciences, where, e.g., ν = 10−6 [m2/s] (water) and
K ∈ [10−9, 10−3] [m/s] (clay, sand, gravel) are values of
interest.

To overcome these problems, it was first proposed in
[14] to use Robin problems rather than Neumann prob-
lems. The numerical results in [14], obtained with a classical
subdomain iteration, are very promising, showing that the
Robin–Robin coupling is robust and efficient in the param-
eter range that is of interest for geoscientific applications.
This coupling introduces two parameters γf and γp, which
specify the linear combination of the essential and natu-
ral boundary condition for the Stokes and Darcy problems,
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respectively. As shown in [14], these parameters have to be
tuned in order to achieve fast convergence of the iterative
scheme. After the pioneering work of [14], more variants
of Robin–Robin iterative methods have been proposed and
analyzed (see, e.g., [5, 6, 9]).

The motivation of our work is the fact that the choice of
the two parameters γf and γp is to some extent unclear. The
numerical analysis in [14] suggests that the Robin parame-
ters should satisfy γf > γp, at least for ν, K � 1. On the
other hand, in [9], it is shown that the convergence is fast
only for γf ≤ γp at least for ν ≈ 1, K ≈ 1. This puzzling
situation is of course unsatisfactory and makes the
usage of a Robin–Robin coupling prohibitive in prac-
tical applications. In particular, several questions
remain to be addressed, concerning the dependence
of the numerical parameters on the coefficients of the
problem.

In this paper, a unified presentation of the considered
algorithms will be given, thereby identifying the common
underlying structure and highlighting their differences. It
will be clarified that different updating strategies for the
Robin conditions on the interface can be applied. One
of them, called here continuous Robin–Robin (C-RR), is
based on rewriting the Neumann–Neumann formulation
as a Robin–Robin formulation, whereas the other one,
called discontinuous Robin–Robin (D-RR), directly uses
a Robin–Robin formulation of the coupled problem. The
algorithms will be assessed for problems whose coefficients
are of the magnitude which is relevant for applications
from geosciences. It will turn out that only one of the
updating strategies leads to efficient methods, if it is used
with appropriately chosen parameters in the Robin con-
ditions. A detailed numerical study and some arguments
concerning the norm of the iteration matrices provide new
insight in the choice of γf and γp. In particular, it will
be shown that the parameters can be chosen such that
γf/γp is considerably larger than proposed so far in the
literature.

The paper is organized as follows. Section 2 introduces
the variational and the finite element formulations of the
coupled problems, while Section 3 focuses on the classical
iterative strategies considered in the paper. Computational
results are presented in Section 4, and a summary and an
outlook are given in Section 5.

2 Weak formulation of the Stokes–Darcy problem

This section introduces the weak formulation of the Stokes–
Darcy problem together with different strategies for includ-
ing the interface conditions.

For an open set ω ⊂ R
d , let Hm(ω) denote the standard

Sobolev spaces, and let L2(ω) = H 0(ω). In addition, (·, ·)ω

denotes the L2(ω) inner product, and 〈·, ·〉ΓI
stands for the

inner product in L2(ΓI).

2.1 Weak formulation

It will be assumed, without loss of generality, that the
Eqs. (1), (2), and (5) and the interface conditions (6), (7),
and (8) (or (9)) are nondimensionalized with unity charac-
teristic scales such that the nondimensional equations have
exactly the same form. As usual, the Stokes pressure is
defined such that it incorporates the density. For simplic-
ity of presentation, it will not be distinguished between
dimensional and nondimensional quantities.

Besides interface conditions on ΓI, also boundary condi-
tions on the external boundaries (∂Ωf ∪ ∂Ωp) \ ΓI have to
be specified. In what follows, homogeneous conditions will
be considered. However, the presented arguments can be
extended also to the nonhomogeneous case. The boundary
parts where essential conditions are prescribed are denoted
by Γf,e and Γp,e, respectively, and it will be assumed that
|Γf,e| > 0 and |Γp,e| > 0.

For the derivation of a weak formulation, the essen-
tial boundary conditions are incorporated into the func-
tion spaces. Hence, the space for the Stokes velocity is
defined by

Vf =
{

v ∈
(
H 1(Ωf)

)d : v = 0 on Γf,e

}
.

The pressure is sought in Qf = L2(Ωf). For the Darcy
problem, the space for the piezometric head is given by

Qp =
{
ψ ∈ H 1(Ωp) : ψ = 0 on Γp,e

}
.

The weak formulations of the Stokes and the Darcy equa-
tions are derived in a standard way by multiplying (1), (2),
and (5) with appropriate test functions and applying integra-
tion by parts. Due to the choice of the boundary conditions,
all integrals on (∂Ωf ∪ ∂Ωp) \ ΓI vanish. One obtains the
following weak form of the Stokes–Darcy problem: Find
(uf, pf, ϕp) ∈ Vf × Qf × Qp such that for all (v, q, ψ) ∈
Vf ×Qf ×Qp

(T(uf, pf),D(v))Ωf
+(∇ · uf, q)Ωf

−〈T(uf, pf) · nf, v〉ΓI

= (ff, v)Ωf
, (10)(

K∇ϕp,∇ψ
)
Ωp

+ 〈
K∇ϕp · nf, ψ

〉
ΓI

= (
fp, ψ

)
Ωp

. (11)

The Beavers–Joseph–Saffman condition (8) can be
included naturally into the weak formulation (10).
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Decomposing the integral over ΓI in (10) into normal and
tangential components gives

af(uf, v)+bf(v, pf)−bf(uf, q)− 〈nf · T(uf, pf)·nf, v·nf〉ΓI

= (ff, v)Ωf
, (12)

ap(ϕp, ψ)+ 〈
K∇ϕp · nf, ψ

〉
ΓI

= (
fp, ψ

)
Ωp

, (13)

with af : Vf × Vf → R, bf : Vf × Qf → R, and ap :
Qp ×Qp → R defined by

af(u, v) = (2νD(u),D(v))Ωf
+

d−1∑
i=1

1

α
〈u · τ i , v · τ i〉ΓI

,

bf(v, p) = − (∇ · v, p)Ωf
,

ap(ϕ, ψ) = (K∇ϕ,∇ψ)Ωp
.

For the simplified interface condition (9), one obtains
equations of the same form as (12)–(13) with

af(u, v) = (2νD(u),D(v))Ωf
.

2.2 Neumann–Neumann coupled formulation

For completeness of presentation and for highlighting
the differences to the Robin–Robin approach, first the
Neumann–Neumann coupled formulation is reviewed.
Inserting the interface conditions (7) and (6) into (12)–(13)
yields the Stokes–Darcy weak formulation

af(uf, v)+ bf(v, pf)− bf(uf, q)+
〈
gϕp, v · nf

〉
ΓI

= (ff, v)Ωf
, (14)

ap(ϕp, ψ)− 〈uf · nf, ψ〉ΓI
= (

fp, ψ
)
Ωp

. (15)

Here, the coupling is based on Neumann interface con-
ditions for both the Stokes and the Darcy problem, and
(14)–(15) will be therefore called a Neumann–Neumann
coupled problem.

In order to describe better the different coupled formula-
tions arising from the Stokes–Darcy problem, it is helpful to
rewrite (14)–(15) in a more abstract form. Let Vf = (Vf,Qf)

be the function space in which the solution (velocity and
pressure) to the Stokes problem is sought, and let V ′

f denote
its dual space. Similarly, let Q′

p denote the dual of Qp.
Define the operators S : Vf → V ′

f and D : Qp → Q′
p such

that

(Dϕ, ψ) := ap(ϕ, ψ),

(Ss, t) := af(u, v)+ bf(v, p)− bf(u, q),

for all s = (u, p), t = (v, q) ∈ Vf, and ϕ, ψ ∈ Qp, and the
coupling operator C : Vf → Q′

p by

(Cs, ψ) := 〈u · nf, ψ〉ΓI
.

Then, the Neumann–Neumann coupled problem (14)–(15)
can be equivalently written as follows: Find ϕ ∈ Qp and
s = (u, p) ∈ Vf such that

( D −C
gC� S

)(
ϕ

s

)
=
(Fp

Ff

)
. (16)

The operator C� : Qp → V ′
f is the adjoint of C, and the

right-hand sides Ff ∈ V ′
f and Fp ∈ Q′

p are defined by

(Fp, ψ) := (
fp, ψ

)
Ωp

, (Ff, t) := (ff, v)Ωf
,

for all t = (v, q) ∈ Vf and all ψ ∈ Qp. An equivalent form
of the Stokes–Darcy system can be obtained using Lagrange
multipliers ηf and ηp on the interface ΓI. This approach for-
mally decouples the Stokes and the Darcy subproblems by
considering the system

⎛
⎜⎜⎝

D −Ep

Rp −I
−Ef S

Rf −I

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ϕ

ηf
s

ηp

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
Fp

0
Ff

0

⎞
⎟⎟⎠ , (17)

where I is the identity operator,

(Efηf, t) = 〈ηf, v · nf〉ΓI
and

(Epηp, ψ
) = 〈

ηp, ψ
〉
ΓI

correspond to extension operators into the Stokes and Darcy
domain, respectively, and

Rp : ψ �→ −gψ
∣∣
ΓI

and Rf : t �→ v
∣∣
ΓI
· nf,

are restriction operators from the two subdomains. Formu-
lation (17) is equivalent to (16) since, by definition,

gC� = −EfRp and C = EpRf.

2.3 Robin–Robin coupled formulation (D-RR)

Instead of the interface conditions (6) and (7), one can as
well consider two linear combinations

γfuf · nf + nf · T(uf, pf) · nf = −γfK∇ϕp · nf − gϕp (18)

γpK∇ϕp · nf − gϕp = −γpuf · nf

+ nf · T(uf, pf) · nf (19)

on ΓI where γf ≥ 0 and γp > 0 are constant. The conditions
(18) and (19) correspond to Robin boundary conditions for
the Stokes and Darcy subproblems, respectively. Inserting
them into (12)–(13) leads to

af(uf, v)+bf(v, pf)−bf(uf, q)+〈γfuf · nf, v · nf〉ΓI

+〈gϕp, v · n
〉
ΓI
+〈γfK∇ϕp · nf, v · nf

〉
ΓI
=(ff, v)Ωf

,

(20)
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ap(ϕp, ψ)+
〈

1

γp
gϕp, ψ

〉
ΓI

− 〈uf · nf, ψ〉ΓI

+
〈

1

γp
nf · T(uf, pf) · nf, ψ

〉
ΓI

= (fp, ψ)Ωp,

(21)

which will be called the Robin–Robin coupled formulation.
The restrictions γf ≥ 0 and γp > 0 guarantee positiveness
of the bilinear forms. Introducing the operators SΓI , DΓI , Cp,
and C�f defined by(SΓIs, t

) = 〈u · nf, v · nf〉ΓI
,(DΓIϕ, ψ

) = 〈
gϕp, ψ

〉
ΓI
,(

C�f ϕ, t
)
= 〈K∇ϕ · nf, v · nf〉ΓI

,(Cps, ψ
) = 〈nf · T(u, p) · nf, ψ〉ΓI

,

for all s = (u, p) ∈ Vf, t = (v, q) ∈ Vf, ϕ, ψ ∈ Qp, one
can rewrite (20)–(21) as(Fp

Ff

)
=
(Drob Crob

C�rob Srob

)(
ϕ

s

)

:=
(( D −C

gC� S
)
+
(
γ−1

p
γf

)(DΓI Cp

C�f SΓI

))(
ϕ

s

)
. (22)

Comparing with Eq. (16), one sees that the second term rep-
resents the additional operators in the Robin–Robin prob-
lem (20)–(21) in comparison with the Neumann–Neumann
formulation (14)–(15).

Similarly to the Neumann–Neumann case, the introduc-
tion of the interface variables ηf and ηp leads to⎛
⎜⎜⎝

Drob −Ep

Rp,rob −I
−Ef Srob

Rf,rob −I

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ϕ

ηf
s

ηp

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
Fp

0
Ff

0

⎞
⎟⎟⎠ . (23)

Then, one defines for all t = (v, q) ∈ Vf and all ψ ∈ Qp:

Rp,rob : ψ �→ (−gψ − γfK∇ψ · nf)
∣∣
ΓI
,

Rf,rob : t �→
(

v − γ−1
p nf · T(v, q)

) ∣∣
ΓI
· nf.

By construction, (23) is equivalent to Eq. (22), since

C�rob = −EfRp,rob and Crob = −EpRf,rob.

For standard finite element discretizations, it turns out
that ηf and ηp are discontinuous functions; see Section 3.2.
Therefore, this approach is called D-RR (discontinuous
Robin–Robin).

2.4 A Robin–Robin formulation for the Neumann–
Neumann problem (C-RR)

The Robin problems (20)–(21) require the computation of
derivatives on ΓI. In the context of finite element meth-
ods, this step usually reduces the approximation order, and

it might result in a suboptimal accuracy. An alternative
weak formulation, equivalent to the Neumann–Neumann
formulation (16), but based on the solution of two Robin
problems in the subdomains Ωf and Ωp, which overcomes
this difficulty, was proposed in [9, 14]. Using the framework
introduced above, this coupled formulation can be written
in the form

⎛
⎜⎜⎝
D + γ−1

p DΓI −γ−1
p Ep

−bRp −I aI
−Ef S + γfSΓI

cI dRf −I

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ϕ

ηf
s

ηp

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
Fp

0
Ff

0

⎞
⎟⎟⎠,

(24)

where the factors a, b, c, and d have to be determined in
order to obtain a formulation equivalent to Eq. (16) (and
to Eq. (17)). The choice of the form (24) is motivated by
two reasons. Firstly, it prevents the subproblems to be cou-
pled directly (first and third rows). An indirect coupling is
enforced only through the interface functions ηf and ηp. Sec-
ondly, each interface function can be computed from the
solution in a single subdomain (empty blocks in the second
and fourth rows). The signs of the operators and the posi-
tions of γf and γp are chosen such that the resulting scheme
coincides with the ones presented in [9, 14]. System (24) is
equivalent to Eq. (16) if

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηp = γpu · nf + gϕ in Λ′
p,

ηf = bgϕ + aηp in H 1/2(ΓI),

ηf = γfu · nf − gϕ in Λ′
f,

ηp = du · nf + cηf in H 1/2(ΓI),

(25)

with the interface (trace) spaces

Λf := Vf · nf
∣∣
ΓI

= {
v|ΓI · nf : v ∈ Vf

}
,

Λp := Qp
∣∣
ΓI

= {
ψ |ΓI : ψ ∈ Qp

}
.

Remark 1 If the interface spaces Λf and Λp coincide, one
can solve (25) for a, b, c, and d , obtaining

a = γf

γp
, b = −1 − a, c = −1, d = γf + γp,

as done in [9].

Remark 2 The difference between the two Robin–Robin
formulations is that (22) is derived starting from two
Robin conditions in strong form, i.e., (18)–(19), while (24)
is equivalent to two Robin problems obtained from the
Neumann–Neumann form (14)–(15).
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Remark 3 The formal differences of the methods are evi-
dent in comparison with (17), (23), and (24). Note that the
Robin–Robin formulation (24) can only be written in an
operator form using the Lagrange multipliers, as the inter-
face variables ηf and ηp are coupled to each other; see
Eq. (25).

It will be explained in Section 3.2 that standard finite
element methods lead to continuous functions for ηf and
ηp. Hence, this approach will be called C-RR (continuous
Robin–Robin).

3 Robin–Robin subdomain iterative methods

In the literature, one finds the so-called sequential and paral-
lel Robin–Robin subdomain iterative methods. This section
starts by presenting the principal form of these algorithms.
Then, the important issue of the definition of the bound-
ary data at the interface will be considered. Finally, some
details concerning the implementation of the algorithms will
be presented, and possible stopping criteria of the iterative
process will be discussed.

3.1 Sequential and parallel approaches

The considered sequential form of the iterative method was
proposed and studied, e.g., in [12, 14].

Algorithm S. (Sequential or Gauss–Seidel-type iteration)

0. Given η0
p, η

0
f ∈ L2(ΓI), γf ≥ 0, γp > 0, θ ∈ (0, 1]. Set

k = 0.
1. Solve a Darcy problem with Robin data ηkp yielding

ϕk+1
p .

2. Update ηk+1
f using ηkf , ηkp, ϕk+1

p , and θ .

3. Solve a Stokes problem with Robin data ηk+1
f yielding(

uk+1
f , pk+1

f

)
.

4. Update ηk+1
p using ηkp, ηk+1

f , uk+1
f , pk+1

f , and θ .
5. If not converged, increase k by 1 and go to step 1.

A straightforward modification of Algorithm S into a
version where the subproblems are solved in parallel was
studied in [9].

Algorithm P. (Parallel or Jacobi-type iteration)

0. Given η0
f , η

0
p ∈ L2(ΓI), γf ≥ 0, γp > 0, θ ∈ (0, 1]. Set

k = 0.
1. Do in parallel:

(a) Solve a Darcy problem with Robin data ηkp yielding

ϕk+1
p .

(b) Solve a Stokes problem with Robin data ηkf yielding(
uk+1

f , pk+1
f

)
.

2. Do in parallel:

(a) Update ηk+1
f using ηkf , ηkp, ϕk+1

p , and θ .

(b) Update ηk+1
p using ηkp, ηkf , uk+1

f , pk+1
f , and θ .

3. If not converged, increase k by 1 and go to step 1.

The Robin problems to be solved in Algorithms S and P
have the following form:

– Darcy: Find ϕk+1
p ∈ Qp such that for all ψ ∈ Qp

ap

(
ϕk+1

p , ψ
)
+
〈

1

γp
gϕk+1

p , ψ

〉
ΓI

= (
fp, ψ

)
Ωp

+
〈

1

γp
ηkp, ψ

〉
ΓI

,

– Stokes: Find
(

uk+1
f , pk+1

f

)
∈ Vf ×Qf such that for all

(v, q) ∈ Vf ×Qf

af

(
uk+1

f , v
)
+ bf

(
v, pk+1

f

)
− bf

(
uk+1

f , q
)

+
〈
γfu

k+1
f · nf, v · nf

〉
ΓI

= (ff, v)Ωf
+
〈
ηk̃f , v · nf

〉
ΓI
,

where in Algorithm S it is k̃ = k + 1 and in Algorithm P it
is k̃ = k.

The matrix-vector representations of the two Robin–
Robin formulations (23) and (24) possess the structure

(
A11 A12

A21 A22

)⎛⎜⎜⎝

(
ϕ

ηf

)
(
s

ηp

)
⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(Fp

0

)
(Ff

0

)
⎞
⎟⎟⎠ .

It can be seen that Algorithm S is a block Gauss–Seidel
method (with a forward solve) for this system, whereas
Algorithm P is a block Jacobi method; both methods are
not damped. Both algorithms solve the subproblems involv-
ing the diagonal blocks Aii , i ∈ {1, 2}, with one damped
Gauss–Seidel step. Note that Aii , i ∈ {1, 2}, are lower tri-
angular two-by-two block matrices themselves, with one
diagonal block typically much bigger than the other one.
Hence, Algorithm P is, strictly speaking, a nested Jacobi and
Gauss–Seidel algorithm.

With the introduced framework, a discussion of the
expectations for the convergence of the subdomain iterative
schemes with respect to small values of ν and K is possible.
Considering the Jacobi and Gauss–Seidel method as fixed
point iterations, then for the Neumann–Neumann coupling
(16) (or (17)), the iteration matrices are given by

GJ :=
(

0 D−1C
−S−1gC� 0

)
,

GGS :=
(

0 D−1C
0 −S−1gC�D−1C

)
, (26)
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respectively. Let us use ‖GJ‖∞ and ‖GGS‖∞ as a guidance
for the asymptotic behavior of the iteration matrices as ν

and K become small. A straightforward calculation of the
inverse of S shows that ‖S−1‖∞ = O(ν−1). It is clear that
‖D−1‖∞ = O(K−1). Since the matrices C and gC� do not
depend on ν and K , one gets ‖GJ‖∞ = (K−1 + ν−1) and
‖GGS‖∞ = (K−1(1+ν−1)). Hence, the norms are large for
small values of ν and K , and one cannot expect convergence
in this situation.

For the D-RR method, the iteration matrices are of form
(26) with the blocks given in Eq. (22). Inserting these blocks
and using, e.g.,S−1

rob = O((ν+γf)
−1), Crob = O(1+γ−1

p (1+
ν)) and so on, one obtains

‖GGS‖∞ = O
((

1 − νK

ν + γf
+K

)

×
(

1 −K + γ−1
p ν

K + γ−1
p

+ 1

))
. (27)

The first factor becomes very small if γf is chosen to be very
large. For the second factor, one obtains at best O(1), for
instance, for γp = O(1) or γp small. Altogether, for small
values of ν and K , one can expect a fast convergence if 0 <

γp ≤ O(1) and γf � O(1).
For the C-RR method, the iteration matrices can be

derived from (24) in straightforward, but somewhat lengthy,
calculations, which will be omitted here for the sake of
brevity. Both iteration matrices possess terms with (S +
γfSΓI )

−1. Hence, for the iteration matrix not to depend on
ν−1, one has to choose γf = O(1) or larger. The smallness
of other terms requires γf to be small, such that γf = O(1)
seems to be a good compromise. Also for γp, one gets con-
tradictory conditions if the smallness of the norm of the
iteration matrices is required; hence, a good compromise is
γp = O(1). These choices fit to the recommendations from
[12, p. 398] on the size of the Robin parameters. The argu-
ments used in this paper provide also the proposal to choose
γp < γf. Altogether, for the C-RR updating strategy, there
is no particular asymptotic choice of the Robin parameters
which ensures the norm of the iteration matrix to be small
for small ν and K .

3.2 The boundary conditions at the interface

A main issue of the algorithms is updating the Robin data
ηk+1

f and ηk+1
p , steps 2 and 4 of Algorithm S, and step 2 of

Algorithm P.
In [9, 12, 14], the following approach was considered,

with θ = 1,

ηk+1
f = (1 − θ)ηkf + θ

(
γf

γp
ηkp − γp + γf

γp
gϕk+1

p

)
, (28)

ηk+1
p = (1 − θ)ηkp + θ

(
−ηk̃f + (γp + γf)u

k+1
f · nf

)
. (29)

This updating strategy is a damped version of applying
the second and fourth lines in Eq. (25), i.e., it originates
from the Robin–Robin formulation (24) for the Neumann–
Neumann coupled problem (14)–(15). Using conforming
finite element spaces, ϕk+1

p and uk+1
f are continuous func-

tions. Thus, if η0
f and η0

p are also continuous, then the
updating strategy (28)–(29) gives also continuous Robin
data at the interface. For this reason, it is denoted C-RR
(continuous Robin–Robin) in this paper.

A different updating strategy consists in applying

ηk+1
f = (1 − θ)ηkf + θ

(
−gϕk+1

p − γfK∇ϕk+1
p · nf

)
, (30)

ηk+1
p = (1 − θ)ηkp

+ θ
(
γpuk+1

f · nf − nf · T(uk+1
f , pk+1

f ) · nf

)
. (31)

This strategy corresponds to the second and fourth rows of
Eq. (23), together with a damping, i. e., it comes from a
Robin–Robin formulation. Note that for continuous finite
element spaces, ∇ϕk+1

p and T

(
uk+1

f , pk+1
f

)
are in general

discontinuous functions, such that Eqs. (30) and (31) lead
to discontinuous Robin data ηf and ηp. Thus, this strategy is
denoted D-RR (discontinuous Robin–Robin).

For θ = 1, the updating strategy C-RR with Algo-
rithm S is the Robin–Robin method that was analyzed in
[14]. Together with Algorithm P, it was proposed and ana-
lyzed in [9]. Although both approaches are rather similar,
the corresponding algorithms rely on completely different
choices of the Robin parameters: γf > γp for small ν and
K in [14] and γf < γp for unitary ν and K in [9]. In both
cases, it was reported that the opposite choice would not
lead to an efficient strategy. On the one hand, both papers
[14] and [9] study different regimes of the coefficients of the
Stokes–Darcy problem, but on the other hand, a dependence
of the Robin parameters on these coefficients is not consid-
ered. Altogether, it remains still unclear how to choose the
Robin–Robin parameters for given ν and K in general situ-
ations. We could find the use of the D-RR updating strategy
only in [11], within Algorithm S.

3.3 Implementation aspects, stopping criteria

The matrices corresponding to the Darcy and Stokes prob-
lem do not change during the iterative processes in both
Algorithms S and P. Therefore, one assembly prior to
the iteration suffices and a factorization can be computed.

Furthermore, the interface contribution
〈
ηk+1

f , v · n
〉
ΓI

(cor-

responding to Ef in Eqs. (23) and (24), which is added to
the right-hand side of the Stokes system, is linear in ηf and
can be computed by a matrix-vector multiplication. Simi-
lar ideas apply to the update of the right-hand side in the
Darcy problem, i. e., to the operator Ep, and to the restriction
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operators Rp, Rf, Rp,rob, and Rf,rob in Eqs. (23) and (24),
respectively. Hence, no further assembling is needed during
the iteration.

The simplified condition (9) is imposed weakly, penaliz-
ing the tangential component of the velocity on the interface
by a Nitsche technique [15, 23], rather than enforcing it
directly in the velocity function space.

Standard stopping criteria, e.g., the ones used in [12, 14],
depend on the absolute or relative differences between suc-
cessive iterates, computed on pressure or velocity solution
vectors or on interface variables, i. e., based on terms of the
form

∥∥∥sk+1
h − skh

∥∥∥
�2

or

∥∥∥sk+1
h − skh

∥∥∥
�2∥∥skh∥∥�2

,

where skh stands for uk
f,h, pk

f,h, ϕk
p,h, ηkp,h, or ηkf,h. In [12,

14], the relative increment of the discrete normal velocity on
the interface uf,h · nf|ΓI was used. Another possibility con-
sists in checking the accuracy of the coupling conditions (6)
and (7). However, these stopping criteria only measure the
progress of the iteration and not the quality of the solution,
i. e., they are not able to detect whether the computed iter-
ate is indeed close to the solution of the discrete problem or
if the iteration sticks at an early stage. Therefore, we con-
sidered a further stopping criterion based on the residual of
(the discrete versions of) Eq. (16) or (22), i.e.,

Rk :=
∥∥∥∥∥
(Dh Ch
C�h Sh

)(
ϕk+1

p,h

sk+1
f,h

)
−
(Ff,h

Fp,h

)∥∥∥∥∥
�2

.

If not stated otherwise, in the simulations presented in
Section 4, the iterative procedure has been stopped when
the following conditions were satisfied for a prescribed
threshold eps > 0⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rk < eps and∥∥∥uk+1
f,h − uk

f,h

∥∥∥
�2∥∥∥uk

f,h

∥∥∥
�2

+
∥∥∥pk+1

f,h − pk
f,h

∥∥∥
�2∥∥∥pk

f,h

∥∥∥
�2

+
∥∥∥ϕk+1

p,h − ϕk
p,h

∥∥∥
�2∥∥∥ϕk

p,h

∥∥∥
�2

< eps.

(32)

In the second condition, we omitted the denominator when-
ever it was smaller than one.

4 Computational results

The goal of the numerical studies consists in assessing
Algorithms S and P in combination with the updating strate-
gies C-RR and D-RR with respect to their efficiency. Since
in all methods the numerical costs per iteration are very

similar, the efficiency will be measured in terms of the
number of iterations for reaching convergence. Because
of our motivation to study applications in computational
geosciences, the algorithms will be assessed especially for
physical parameters which are relevant in this context.

For all numerical examples, the P2/P1 Taylor–Hood pair
of finite element spaces was used for the velocity and pres-
sure in the Stokes subdomain, while the P2 element was
used for the piezometric head. This choice of spaces is the
same as, e.g., in [9, 12, 14]. The Robin–Robin updating
strategies were applied with θ = 1. All simulations were
performed with the code MOONMD [18]. The linear sys-
tems of equations were solved with the sparse direct solver
UMFPACK [10].

To verify the implementation, the solver was bench-
marked considering a solution belonging to the finite ele-
ment spaces. In these studies, the final errors for ν = 1 and
K = I were of the order of the machine accuracy, but they
increased with ν−1 and K

−1. This observation reflects the
fact that for small ν and K, the condition numbers of the
finite element linear systems increase.

As already mentioned above, a motivation for the present
study is the unclear situation concerning the choice of the
Robin parameters γf and γp. To address this question, we
validated our implementation against two examples taken
from [9, 12, 14], to reproduce the published results using the
algorithms considered in the respective paper. In addition,
all other algorithms were also assessed for these examples.
Finally, an example related to a geoscientific application
will be studied [7, 8]. For this example, a detailed investiga-
tion of the impact of the Robin parameters on the number of
iterations will be presented.

4.1 Example 1

This example was used in [9] for illustrating the behavior
of Algorithm P with the C-RR updating strategy for the vis-
cosity ν = 1 and the hydraulic conductivity K = I. Since
the main goal of this example is the validation of our results
against the results from [9], only the same coefficients will
be considered.

Let Ωp = (0, π) × (−1, 0), Ωf = (0, π) × (0, 1), and
ΓI = (0, π)× {0}. The hydraulic conductivity has the form
K = KI and the solution of the coupled problem (1), (2),
(5) is given by

uf(x, y) =
(
v′(y) cos(x)
v(y) sin(x)

)
, pf(x, y) = 0,

ϕp(x, y) = ey sin(x),

where

v(y) = −K − gy

2ν
+
(
− αg

4ν2
+ K

2

)
y2 .
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Fig. 1 Example 1: initial grid (level 0) with Ωf in blue (top) and Ωp
in red (bottom)

On the outer boundaries, i. e., Γf,e = ∂Ωf \ ΓI and Γp,e =
∂Ωp \ ΓI, essential boundary conditions were prescribed.
This example considers the Beavers–Joseph–Saffman con-
dition, i.e., the coupling conditions at the interface are given
by Eqs. (6), (7), and (8). Numerical simulations were per-
formed on meshes obtained by uniformly refining an initial
coarse grid (level 0) consisting of eight triangles; see Fig. 1.
Note that no information about the mesh is available in
[9], such that our setup might be different in this respect.
The initial iterate was always set to be zero. The iterative
algorithm was stopped according to criterion (32) with a tol-
erance eps = 10−10. The use of this stopping criterion is
another difference to [9].

Figure 2 shows the evolution of the relative discrete
errors of the iterates of the Stokes velocity for different
choices of the Robin parameters. In all cases, the curves
are in agreement with the results reported in [9, Fig. 6.1].
Details concerning the needed iterations are provided in
Table 1. For the updating strategy D-RR, Algorithm S con-
verged faster than Algorithm P. Moreover, for all methods,
the number of iterations is independent of the level. As
stated also in [9], one can see in Fig. 2 a very fast con-
vergence if γf < γp, a slow convergence if γf = γp, and
divergence in the case γf > γp. The speed of convergence
depends essentially on the ratio γf/γp. In this example, the
smallest number of iterations was needed for γp = 1. One
can observe the same convergence behavior for the Stokes
pressure and the piezometric head.

In summary, the results from [9] could be reproduced
very well.

4.2 Example 2

This example was used in [12, 14] for assessing Algorithm S
with the C-RR updating strategy for different values of the
kinematic viscosity ν and the hydraulic conductivity K .

Let Ωp = (0, 1)2 and Ωf = (0, 1) × (1, 2), with
the interface ΓI = ∂Ωp ∩ ∂Ωf = (0, 1) × {1}, the

hydraulic conductivity of the form K = KI, and the solution
given by

uf(x, y) =
(
y2 − 2y + 1

x2 − x

)
,

pf(x, y) =2ν(x + y − 1)+ g

3K
,

ϕp(x, y) = 1

K

(
x(1 − x)(y − 1)+ y3

3
− y2 + y

)

+ 2ν

g
x.

(33)

The Dirichlet boundary conditions were imposed on ∂Ωf \
ΓI and on the bottom boundary (0, 1)× {0}. On the remain-
ing parts, Neumann boundary conditions were prescribed.
Furthermore, (6) and (7) together with the simplified
Beavers–Joseph–Saffman condition (9) were considered.
We used unstructured grids with 98 (mesh 1), 470 (mesh 2),
1,914 (mesh 3), and 8,216 (mesh 4) cells with a total of 406
(mesh 1), 1,690 (mesh 2), 6,553 (mesh 3), and 27,402 (mesh
4) degrees of freedom. The initial iterate was always chosen
to be zero.

Using values for the parameters ν and K relevant for
geoscientific applications, which are typically very small,
the pressure and the piezometric head in Eq. (33) con-
sist of two parts, a very small contribution scaled with ν

and a very large part due to the scaling with K−1. This
second part leads to values of pf and ϕp which are unreal-
istic in applications. In this respect, this example has some
deficiencies.

To reproduce the results from [12, 14], we first used as
stopping criterion only

‖uk+1
f − uk

f ‖
‖uk

f ‖
< 10−6, (34)

similarly as it has been applied in [12, 14], where the relative
increment of the discrete normal velocity on the interface
and a somewhat smaller tolerance were used. Note that uf is
the only part of the solution that does not scale with K−1.
Because of the large condition number of the linear system
of equations for small ν and K , which was already men-
tioned above, one generally has to relax the tolerances of
stopping criteria in this case compared with the case ν = 1,
K = 1.

Table 2 reports the results with Robin parameters γp =
1, γf = γp/3, which was the most efficient choice in
Example 1, in combination with the stopping criterion (34).
Clearly, all algorithms failed for those parameters in the case
of small ν and small K .

Indeed, following [12, 14] and the considerations at the
end of Section 3.1, one would expect efficient simulations
for a different choice of the Robin parameters, for instance,
for γp = 0.1, γf = 3γp. In this case, one obtains the
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results presented in Table 3. One can see that the algorithms
with the updating strategy D-RR converged for all choices
of physical parameters. We observed a similar behavior of
the algorithms with the D-RR updating strategy also for

γf = 3γp with γp ∈ {1, 10, 50, 100, 200}. The results are
similar to those reported in [12, 14] for the updating strat-
egy C-RR. In our simulations, however, the C-RR updating
strategy was less successful for many studied choices of the

Table 1 Example 1: number
of iterations for γp = 1 and
γf = γp/3

Updating Algorithm Level

strategy 1 2 3 4

C-RR Algorithm P 19 19 19 20

C-RR Algorithm S 19 19 19 20

D-RR Algorithm P 34 36 36 36

D-RR Algorithm S 19 19 19 20

Fig. 2 Example 1: relative

discrete errors

∥∥∥uk+1
f,h −uf,h

∥∥∥
�2

‖uf,h‖�2
of

Algorithm S with ν = 1 and
K = 1, different values of γp
and γf, refinement level 4
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Table 2 Example 2: number
of iterations for γp = 1 and
γf = γp/3, stopping criterion
(34)

Updating strategy Algorithm ν K Mesh 1 Mesh 2 Mesh 3 Mesh 4

C-RR Algorithm P 1 1 7 7 7 7

10 10−1 25 25 25 25

10−2 10−2 – – – –

Algorithm S 1 1 7 7 7 7

10 10−1 11 11 11 11

10−2 10−2 – – – –

D-RR Algorithm P 1 1 9 9 11 11

10 10−1 18 20 20 20

10−2 10−2 +++ +++ +++ +++
Algorithm S 1 1 5 6 7 7

10 10−1 10 11 11 11

10−2 10−2 – – – –

Neumann–Neumann Both 10−3 10−2 – – – –

10−4 10−3 – – – –

C-RR, D-RR 10−6 10−4 – – – –

10−6 10−7 – – – –

“+++” means did not converge
within 100 iterations and “–”
means diverged

Robin parameters, which is in agreement with the consider-
ations at the end of Section 3.1, and we could not reproduce
the results from [12, 14]. Consulting the Ph.D. thesis [11],
one gets the impression that in [12, 14], the C-RR updating
strategy is presented and analyzed, but the numerical stud-
ies in these papers were performed with the D-RR updating
strategy.

In Table 3, one can see that Algorithm P was (for the
D-RR updating strategy) more efficient than Algorithm S
for very small values of the physical coefficients. For both

algorithms, the number of iterations is independent of the
mesh.

Next, the convergence properties of the algorithms using
the harder stopping criterion (32), also with eps = 10−6,
were investigated. One can observe in Fig. 3 that for
γp = 0.1 and γf = 3γp (we obtained similar results for
γp ∈ { 1

30 ,
1
3 , 1}), even if criterion (34) is satisfied, the

residual of the complete coupled problem is far from being
small. Figure 3 shows also that the relative changes of the
pressure and the piezometric head are still large. For further

Table 3 Example 2: number
of iterations for γp = 0.1 and
γf = 0.3, stopping criterion
(34)

Type Algorithm ν K Mesh 1 Mesh 2 Mesh 3 Mesh 4

C-RR Algorithm P 10−4 10−3 – – – –

10−6 10−4 – – – –

10−6 10−7 – – – –

Algorithm S 10−4 10−3 207 51 27 21

10−6 10−4 274 12 12 12

10−6 10−7 12 12 12 12

D-RR Algorithm P 10−4 10−3 15 15 17 17

10−6 10−4 7 9 9 9

10−6 10−7 7 9 9 9

Algorithm S 10−4 10−3 11 11 11 11

10−6 10−4 12 12 12 12

10−6 10−7 12 12 12 12
“–” means diverged
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comparisons, we computed the solution of the mono-
lithic discrete Stokes–Darcy problem by applying a direct
solver to the coupled finite element problem (an approach
which is not feasible in many applications). Then, one

can see that the iterates for the pressure and the piezo-
metric head still differ considerably from the discrete
solution. These observations confirm that the stopping cri-
terion (34) is not sufficient to assess the properties of the

Fig. 3 Example 2: evolution of the residual, discrete errors, and rela-
tive differences for Algorithm S, mesh 4, D-RR updating strategy with
γp = 0.1, γf = 3γp, ν = 10−4, and K = 10−3

Fig. 4 Example 2: evolution of the residual, discrete errors, and rela-
tive differences for Algorithm S, mesh 4, D-RR updating strategy with
γp = 100, γf = 3γp, ν = 10−4, and K = 10−3
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Table 4 Example 2: number
of iterations for γp = 100 and
γf = 300, stopping criterion
(32)

Type Algorithm ν K Mesh 1 Mesh 2 Mesh 3 Mesh 4

C-RR Algorithm P 10−4 10−3 – – – –

10−6 10−4 – – – –

10−6 10−7 – – – –

Algorithm S 10−4 10−3 – – – –

10−6 10−4 432 422 413 –

10−6 10−7 +++ +++ +++ +++
D-RR Algorithm P 10−4 10−3 76 74 72 71

10−6 10−4 841 823 805 787

10−6 10−7 +++ +++ +++ +++
Algorithm S 10−4 10−3 32 32 32 32

10−6 10−4 326 316 307 298

10−6 10−7 +++ +++ +++ +++
“+++” means did not converge
within 1,000 iterations, “–”
means diverged

iterative algorithms, and the number of iterations given
in Table 3 might provide a wrong impression of their
efficiency.

Further numerical studies revealed that a considerable
speedup of the algorithms with the D-RR updating strat-
egy could be achieved by increasing the Robin parameters,
thereby keeping the relation γf = 3γp; see Fig. 4 and
Table 4. Similar results were obtained for γp ∈ {50, 200}.
We think that the slow convergence in the case K = 10−7

is due to the unrealistic large values for the pressure and the
hydraulic head. One can see in Table 4 that Algorithm S per-
formed better than Algorithm P. The number of iterations is
independent of the mesh.

In summary, despite the shortcomings of the used exam-
ple, it was clarified that for the case of small viscosity
and small hydraulic conductivity, the use of the D-RR
updating strategy and the choice γf > γp of the Robin
parameters are important to obtain an efficient subdomain
iteration.

4.3 Example 3: water flow over a porous river bed

As a final example, a model of a unidirectional steady
water flow over a porous bed is considered, separated by a
nonstraight interface. In the context of computational geo-
sciences, this model has been proposed for the study of the
hydrodynamic interactions between the water flow and the
underlying river bed [7, 8].

In order to simulate the water flow over two triangular
dunes, consider a rectangular domain

Ω = [0, 2L] × [0, Hf +Hp],

where Hf and Hp denote the heights of the water flow
domain and the porous river bed at x ∈ {0, L, 2L}.
The interface, representing the dune, is composed of
two triangles, whose highest points are located at x ∈
{lD, L+ lD}, while the maximum height of the dunes, with
respect to the entrance porous bed, is denoted by hD; see
Fig. 5.

The boundary conditions and the values of the physical
parameters have been chosen as in the numerical simula-
tions presented in [7, 8]. In particular, the lower boundary
is considered impermeable (no flux boundary condition),
while no-slip conditions are imposed at the upper boundary
(note that the arrows in Fig. 6 are unscaled). For inlet and
outlet boundaries, the following inhomogeneous periodic

Fig. 5 Example 3: computational domain, triangulated with mesh 1
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Fig. 6 Example 3: numerical
solution for v = 10−6 and
K = 10−7, velocity field uf and
∇ϕp (unscaled arrows, top),
velocity streamlines (middle),
pressure elevation (bottom);
color is always pf and ϕp
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Table 5 Example 3:
information concerning the
meshes

Mesh Interface edges Mesh cells Degrees of freedom

Stokes Darcy Stokes Darcy

1 32 277 1,009 1,392 2,098

2 68 1,285 4,513 6,093 9,196

3 138 5,234 18,322 24,181 36,987

boundary conditions for the Stokes and the Darcy problem
have been imposed:

uinlet = uoutlet,

T(uinlet, pinlet) · nf = −T(uoutlet, poutlet) · nf + p0nf,

ϕinlet = ϕoutlet + p0,

−K∇ϕinlet · nf = K∇ϕoutlet · nf .

Note that the pressure is unique only up to an additive con-
stant in this example. We fixed this constant by forcing
one pressure node to be zero. Furthermore, the simulation
parameters are

L = 1, Hf = 0.5, Hp = 1.5, lD = 0.9, hD = 0.1,

p0 = 10−3, ff = 0, fp = 0.

Figure 6 depicts the numerical solution for ν = 10−6 and
K = 10−7. The prescribed pressure drop p0 induces a flow
from left to right, which partially penetrates the porous bed
due to the inclination of the interface. However, the impact
of the water flow onto the porous media (and vice versa)
remains local, i. e., the flow remains unperturbed and uni-
directional away from the interface. Note the pressure drop
arising behind the dunes, which locally causes a flow in the
opposite direction underneath the dunes.

Three different unstructured meshes were considered
in the numerical simulations; see Fig. 5 for an exam-
ple and Table 5 for detailed information. Based on the
results obtained in Example 2, we decided to employ
the updating strategy D-RR in combination with Algo-
rithm S. The obtained number of iterations for all combi-
nations of K ∈ {10−7, 10−6, 10−5, 10−4, 10−3} and ν ∈
{10−6, 10−5, 10−4} are presented in Fig. 7. Several values
of γp and ratios γf/γp were considered. It can be seen that
for very small values of ν and K, the number of iterations
is independent of the mesh size. For fixed γp, the larger the

ratio γf/γp is, the smaller the number of iterations becomes.
One can observe two situations where the convergence of
the method is slow. In the first situation, where γp is small
(left-hand side pictures of Fig. 7), the condition γf ≥ O(1)
is not satisfied. The other situation can be observed in the
pictures on the right-hand side of Fig. 7, where γp is large.
From Eq. (27), one gets that for K and ν small, the norm of
the iteration matrix scales like O(K(1+1/(K+γ−1

p ))). As
long as γp is small, this term is O(K), whereas it becomes
O(1) if γp approaches K−1. In summary, if ν and K are
small, then for a fast convergence, a large ratio γf/γp is of
advantage, which is much larger than proposed so far in
the literature. From Fig. 7, one can deduce that a suitable
choice which works for all considered values of ν and K is
γp = O(1).

One should be aware on the impact of the values of
the Robin parameters on the computational results of the
D-RR updating strategy. These parameters determine the
approximation quality of the interface conditions (6) and
(7), relative to each other, by the numerical solution. In
Fig. 8, the results on mesh 3 are presented; for the two other
meshes, qualitatively the same results were obtained. One
can observe that the ratio of the error in the flux condition
‖uf · nf + K∇ϕp · nf‖L2(ΓI)

and the normal stress condi-
tion ‖nf · T(uf, pf) · nf + gϕp‖L2(ΓI)

depends on γf/γp. For
fixed γp, the larger γf/γp is, the smaller is the flux error
compared with the normal stress error. In addition, the ratio
of the errors depends also on the actual choice of γp. For
fixed γf/γp, one finds that the larger γp, the smaller the
flux error becomes compared with the normal stress error.
Choosing both γf and γp large favors (6) over (7), which
can be already deduced from (18)–(19). Thus, if for a con-
sidered application the accurate approximation of one of the
interface conditions (6) or (7) is more important than the
other, one has to take this aspect into account for the choice
of the Robin parameters. Note that the incorporation of the
residual Rk into the stopping criterion (32) guarantees a cer-
tain accuracy of the solution with respect to both interface
conditions.
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Fig. 7 Example 3: number of iterations on mesh 1, 2, 3 (top to bottom), Algorithm S with D-RR updating strategy: γf = 1.5γp (blue), γf = 3γp
(red), γf = 10γp (yellow), γf = 1,000γp (green). Note the different scaling of the z-axes; 1,000 iterations means did not converge
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5 Summary and outlook

This paper reviewed some classical iterative subdomain
methods for solving the Stokes–Darcy problem which use
Robin boundary conditions at the interface. In particular,
it was clarified that there are different updating strategies
for the Robin boundary conditions. For coefficients in the
Stokes–Darcy problem that are relevant for applications
from geosciences, the use of the updating strategy D-RR, in
combination with an appropriate choice of the Robin param-
eters, turned out to be crucial for designing an efficient
numerical method. A detailed numerical study, together
with some considerations on the asymptotic of the norm of
the iteration matrices for small viscosity and hydraulic con-
ductivity, gave new insight into appropriate choices for the
Robin parameters. In particular, it was shown that efficient
methods can be obtained for ratios γf/γp which are much
larger than proposed so far in the literature. Finally, it was
observed that the serial update of the interface conditions,
Algorithm S, needed often less iterations than the parallel
update, Algorithm P.

Altogether, the main goal of our studies was accom-
plished: the identification of an efficient iterative subdomain
method for the Stokes–Darcy problem with coefficients that
are relevant in geosciences.

Further research includes studies of classical iterative
subdomain methods for the Navier–Stokes–Darcy prob-
lem and a detailed investigation for the dual formulation
of the Darcy problem, focusing on relevant situations for
geoscientific applications. Another goal is the derivation
of algorithms which embed the subdomain iteration with

Robin interface conditions into Krylov subspace methods
for a system defined on the interface.
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dingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36,
9–15 (1971). Collection of articles dedicated to Lothar Collatz on
his 60th birthday

24. Riviére, B., Yotov, I.: Locally conservative coupling of Stokes and
Darcy flows. SIAM J. Numer. Anal. 42, 1955–1977 (2005)

25. Saffman, P.: On the boundary condition at the interface of a porous
medium. Stud. Appl. Math. 50, 93–101 (1971)

26. Urquiza, J., N’Dri, D., Garon, A., Delfour, M.: Coupling Stokes
and Darcy equations. Appl. Numer. Mathe 58(5), 525–538 (2008)

27. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods
for Darcy-Stokes-Brinkman models. J. Comput. Math. 26, 437–
455 (2008)

28. Zunino, P., D’Angelo, C.: Robust numerical approximation of
coupled Stokes’ and Darcy’s flows applied to vascular hemody-
namics and biochemical transport. ESAIM Math. Model. Numer.
Anal. 45(3), 447–476 (2011)


	On classical iterative subdomain methodsfor the Stokes–Darcy problem
	Abstract
	Introduction
	Weak formulation of the Stokes–Darcy problem
	Weak formulation
	Neumann–Neumann coupled formulation
	Robin–Robin coupled formulation (D-RR)
	A Robin–Robin formulation for the Neumann–Neumann problem (C-RR)

	Robin–Robin subdomain iterative methods
	Sequential and parallel approaches
	The boundary conditions at the interface
	Implementation aspects, stopping criteria

	Computational results
	Example 1
	Example 2
	Example 3: water flow over a porous river bed

	Summary and outlook
	Acknowledgements
	References


