
IMA Journal of Numerical Analysis (2015) 35, 1729–1756
doi:10.1093/imanum/dru041
Advance Access publication on October 17, 2014

Some analytical results for an algebraic flux correction scheme for a steady
convection–diffusion equation in one dimension

Gabriel R. Barrenechea

Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street,
Glasgow G1 1XH, UK

gabriel.barrenechea@strath.ac.uk

Volker John

Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstr. 39, 10117 Berlin,
Germany and Free University of Berlin, Department of Mathematics and Computer Science,

Arnimallee 6, 14195 Berlin, Germany
john@wias-berlin.de

and

Petr Knobloch∗

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University,
Sokolovská 83, 18675 Praha 8, Czech Republic

∗Corresponding author: knobloch@karlin.mff.cuni.cz

[Received on 12 December 2013; revised on 29 April 2014]

Algebraic flux correction schemes are nonlinear discretizations of convection-dominated problems. In
this work, a scheme from this class is studied for a steady-state convection–diffusion equation in one
dimension. It is proved that this scheme satisfies the discrete maximum principle. Also, as it is a nonlinear
scheme, the solvability of the linear subproblems arising in a Picard iteration is studied, where positive
and negative results are proved. Furthermore, the nonexistence of solutions for the nonlinear scheme
is proved by means of counterexamples. Therefore, a modification of the method, which ensures the
existence of a solution, is proposed. A weak version of the discrete maximum principle is proved for this
modified method.
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1. Introduction

Scalar convection–diffusion equations model the convective and diffusive transport of a scalar quantity,
such as temperature or concentration. Solutions of convection-dominated convection–diffusion equa-
tions typically possess layers, which cannot be resolved unless the given mesh is sufficiently fine in
layer regions. Standard discretizations, such as central finite differences or the Galerkin finite element
method, cannot cope with this situation and the computed solutions are globally polluted with spurious
oscillations. It is well known that so-called stabilized discretizations have to be applied. There are many
proposals of such discretizations; see the monograph Roos et al. (2008) for an extensive review.

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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1730 G. R. BARRENECHEA ET AL.

In the past few years, comprehensive numerical studies revealed, however, that none of the proposed
stabilized discretizations satisfies the following three requirements: accuracy, efficiency and numeri-
cal solution without spurious oscillations (discrete maximum principle). This statement holds true for
the steady-state equation (John & Knobloch, 2007, 2008; Augustin et al., 2011; Bause & Schwegler,
2012; John & Schumacher, 2014) as well as for the time-dependent equation (Codina, 1998; John &
Schmeyer, 2008; John & Novo, 2012). Indeed, most of the methods fail to satisfy a discrete maximum
principle. However, this property is particularly important in applications, where numerical results, e.g.,
with negative concentrations, will be considered to be worthless. Even if such quantities are not of pri-
mary interest, spurious oscillations have been shown to lead to blow-ups in the simulation of coupled
problems (John et al., 2009). Altogether, the validity of a discrete maximum principle is, in our opinion,
of utmost importance for simulations of applications.

There are few discretizations that satisfy a discrete maximum principle, such as the upwind finite
difference scheme (Roos et al., 2008), a finite volume scheme on Delaunay meshes Fuhrmann &
Langmach (2001) and algebraic flux correction schemes. The first two methods are generally rather
inaccurate, while the algebraic flux correction schemes are usually nonlinear discretizations and their
application might be time consuming. However, applications often lead to nonlinear models, and then
a nonlinear discretization of a linear equation in such a model seems not to be a severe disadvan-
tage. Altogether, from the point of view of applications, algebraic flux correction schemes are very
attractive.

The basic philosophy of flux correction schemes was formulated in the 1970s in Boris & Book
(1973) and Zalesak (1979). Later, the idea was applied in the finite element context, e.g., in Löhner et al.
(1987) and Arminjon & Dervieux (1993). In the last decade, the methods have been further developed
and refined, in particular in Kuzmin & Turek (2004), Kuzmin & Möller (2005) and Kuzmin (2006, 2007,
2008, 2009, 2012). Until not long ago, two limiting techniques within algebraic flux correction schemes
were pursued: so-called flux-corrected transport (FCT) schemes for the time-dependent equation and
total variation diminishing (TVD) schemes for the steady-state equation. Finally, a scheme was pre-
sented in Kuzmin (2012) that can handle both situations. For the time-dependent problem, a linear
variant of an FCT scheme was proposed in Kuzmin (2009).

Despite the attractiveness of algebraic flux correction schemes, there seems to be no rigorous numer-
ical analysis for this class of methods. The main reason lies probably in their construction, which does
not allow the usual tools of the analysis of finite element discretizations to be applied. Unlike almost all
other stabilized methods, which modify the bilinear form of the discrete problem in some way, algebraic
flux correction schemes work on the algebraic level. They manipulate the matrix and the right-hand side
of the algebraic system of equations. A few basic properties of these schemes can be deduced immedi-
ately from their construction, such as mass conservation or the discrete maximum principle for transport
equations (Kuzmin & Möller, 2005).

In this work we study some properties of a nonlinear discrete problem that generalizes the algebraic
flux correction method of TVD type from Kuzmin (2007) applied to the one-dimensional steady-state
convection–diffusion equation. We present both theoretical and computational results; the latter are
obtained by solving the nonlinear discrete problem using a fixed-point iteration. While the linear sub-
problems in the fixed-point iteration are proved to be well posed, the nonlinear problem is shown to
be not solvable in general. However, we prove the solvability for a modified nonlinear discrete prob-
lem. To the authors’ best knowledge, the results concerning the solvability of the linear subproblems
and the nonlinear problem are the first results of this kind for algebraic flux correction schemes. In
addition, the present work represents a basis for analysing algebraic flux correction schemes applied to
multidimensional problems.
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SOME ANALYTICAL RESULTS FOR AN ALGEBRAIC FLUX CORRECTION SCHEME 1731

The paper is organized in the following way. First, the algebraic flux correction method will be
introduced in Section 2. In Section 3, the one-dimensional model problem will be formulated and its
finite element discretization will be presented. The application of the algebraic flux correction method to
this problem is the topic of Section 4. It will be shown there that the discrete operator of this scheme can
be written as a nonlinear finite difference operator with an artificial diffusion vector whose components
are bounded by a data-dependent constant ε̃. In Section 5, the discrete maximum principle for this
operator will be proved for appropriately chosen values of ε̃. Different choices of ε̃, for which the
discrete maximum principle is satisfied, will be studied numerically in Section 6. The unique solvability
of the linear subproblems arising in the fixed-point iteration is studied in Section 7 under more general
conditions on the artificial diffusion vector than from the actual method (Kuzmin, 2007). Some positive
but also a negative result are proved. Section 8 starts with a number of counterexamples concerning the
solvability of the nonlinear discrete problem. Then, the existence of a solution of the nonlinear problem
is proved for a modification of the method. A concrete realization of this modification is proposed in
Section 9, where a weak form of the discrete maximum principle is proved and numerical results are
presented. Finally, a summary and an outlook are given in Section 10.

2. An algebraic flux correction scheme

Consider a linear boundary value problem whose solution is (mainly) determined by convection and
for which the maximum principle holds. Let us discretize this problem by the finite element method.
Then, the discrete solution can be represented by a vector U ∈ RN of its coefficients with respect
to a basis of the respective finite element space. Let us assume that the last N − M components of
U (0 < M < N) correspond to nodes where Dirichlet boundary conditions are prescribed, whereas the
first M components of U are computed using the finite element discretization of the underlying partial
differential equation. Then U ≡ (u1, . . . , uN ) satisfies a system of linear equations of the form

N∑
j=1

aijuj = gi, i = 1, . . . , M , (2.1)

ui = ub
i , i = M + 1, . . . , N . (2.2)

We assume that

aii > 0,
N∑

j=1

aij = 0, i = 1, . . . , M , (2.3)

which is often the case when incompressible convection fields are considered.
Since the original problem satisfies the maximum principle, it is natural to require that this property

is inherited by the discrete problem. Unfortunately, the discrete maximum principle does not hold for
many finite element discretizations of convection-dominated problems, in particular, for the Galerkin
discretization and most stabilized methods; see, e.g., Roos et al. (2008). The aim of algebraic flux
correction approaches is to cure this deficiency by manipulating the algebraic system in such a way that
the solution satisfies the discrete maximum principle and layers are not excessively smeared.

The starting point of the algebraic flux correction algorithm is the finite element matrix A = (aij)
N
i,j=1

corresponding to the above finite element discretization in the case where homogeneous natural bound-
ary conditions are used instead of the Dirichlet ones. We introduce the symmetric artificial diffusion
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matrix D = (dij)
N
i,j=1 possessing the entries

dij = − max{aij, 0, aji} ∀i |= j, dii = −
∑
j |= i

dij.

Then, the matrix Ã := A + D has nonpositive off-diagonal entries and each of its row sums vanishes.
A vector U ∈ RN being a solution of a linear system with the matrix Ã satisfies the discrete maximum
principle in the sense that for any i ∈ {1, . . . , M } the following holds:

(ÃU)i � 0 ⇒ ui � max
j |= i,ãij |= 0

uj.

This property immediately follows from the fact that, using (2.3), one gets

ãiiui � −
∑
j |= i

ãijuj = ãiic −
∑
j |= i

ãij(uj − c) � ãiic ∀ c � max
j |= i, ãij |= 0

uj.

Going back to the solution of system (2.1), this system is equivalent to

(ÃU)i = gi + (DU)i, i = 1, . . . , M . (2.4)

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑
j |= i

fij, i = 1, . . . , N ,

where fij = dij(uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . Now, the idea of the algebraic flux cor-
rection schemes is to limit those antidiffusive fluxes fij that would otherwise cause spurious oscillations.
To this end, system (2.1) (or, equivalently (2.4)) is replaced by

(ÃU)i = gi +
∑
j |= i

αijfij, i = 1, . . . , M , (2.5)

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original system (2.1) is recovered.
Hence, intuitively, the coefficients αij should be as close to 1 as possible to limit the modifications of
the original problem.

The coefficients αij can be chosen in various ways but their definition is always based on the above
fluxes fij; see Kuzmin (2006, 2007, 2008, 2009, 2012) for examples. In this work we consider coeffi-
cients αij proposed in Kuzmin (2007). This definition relies on the values P+

i , P−
i , Q+

i , Q−
i computed

for i = 1, . . . , N in the following way. First, one initializes all these quantities with 0. Then one goes
through all pairs of indices i, j ∈ {1, . . . , N} and if aji � aij, one performs the updates

P+
i := P+

i + max{0, fij}, P−
i := P−

i − max{0, fji}, (2.6)

Q+
i := Q+

i + max{0, fji}, Q−
i := Q−

i − max{0, fij}, (2.7)

Q+
j := Q+

j + max{0, fij}, Q−
j := Q−

j − max{0, fji}. (2.8)
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After having computed the values P+
i , P−

i , Q+
i , Q−

i , i = 1, . . . , N , one sets

R+
i = min

{
1,

Q+
i

P+
i

}
, R−

i = min

{
1,

Q−
i

P−
i

}
, i = 1, . . . , N .

Finally, the coefficients αij are defined by

αij =
{

R+
i if fij > 0,

R−
i if fij < 0,

i, j = 1, . . . , N .

3. Finite element discretization of a one-dimensional convection–diffusion equation

To better understand the algebraic flux correction method described in the previous section, we shall
apply it to a finite element discretization of a scalar one-dimensional convection–diffusion equation. In
this section we formulate the one-dimensional problem, introduce its discretization, and for complete-
ness, we review its main characteristics.

We consider the boundary value problem

− εu′′ + bu′ = g in (0, 1), u(0) = uL, u(1) = uR, (3.1)

where, for simplicity, ε and b are assumed to be positive constants. Moreover, g is supposed to belong
to L2(0, 1) and uL, uR are any real numbers. If g is constant, then the solution of (3.1) is given by the
formula

u(x) = uL + g

b
x + γ

e−(1−x)b/ε − e−b/ε

1 − e−b/ε
(3.2)

with γ := uR − uL − g/b. Thus, for γ |= 0 and ε 	 b, the solution of (3.1) possesses a boundary layer
at the right-hand boundary point.

Let us divide the interval [0, 1] into n + 1 subintervals [xi, xi+1], i = 0, . . . , n, with xi = ih and h =
1/(n + 1). We define the finite element space

Wh = {vh ∈ C([0, 1]); vh|[xi,xi+1] ∈ P1([xi, xi+1]), i = 0, . . . , n}

consisting of continuous piecewise linear functions and set

Vh = {vh ∈ Wh; vh(0) = vh(1) = 0}.

Then the Galerkin finite element discretization of (3.1) reads, find uh ∈ Wh such that uh(0) = uL, uh(1) =
uR and

ε(u′
h, v′

h) + (bu′
h, vh) = (g, vh) ∀ vh ∈ Vh, (3.3)

where (·, ·) denotes the inner product in L2(0, 1).
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Let us denote by ϕ1, . . . , ϕn ∈ Vh the usual basis functions of Vh, i.e., ϕi(xj) = δij for i, j = 1, . . . , n.
We define

gi = 1

h
(g, ϕi), i = 1, . . . , n.

Setting ui = uh(xi), i = 0, . . . , n + 1, then (3.3) is equivalent to the system

− ε
ui−1 − 2ui + ui+1

h2
+ b

ui+1 − ui−1

2h
= gi, i = 1, . . . , n. (3.4)

This system can be also obtained by discretizing (3.1) using the central finite difference method. Then,
however, gi = g(xi).

Let us introduce the Péclet number

Pe = bh

2ε

and let g be constant. If Pe = 1, then (3.4) reduces to

b
ui − ui−1

h
= g, i = 1, . . . , n,

and hence ui = uL + (g/b)xi, i = 0, . . . , n. Thus, in this case,

uh(x) = uL + g

b
x, x ∈ [0, 1 − h].

If Pe |= 1, then

ui = g

b
xi + A + B

(
1 + Pe

1 − Pe

)i

, i = 0, . . . , n + 1, (3.5)

where A and B are determined by the conditions u0 = uL and un+1 = uR. We observe that, for Pe < 1,
the discrete solution is the sum of two monotone grid functions but, for Pe > 1, the discrete solution ui

generally possesses spurious oscillations. This shows that the Galerkin discretization is not appropriate
for solving (3.1) numerically if Pe > 1.

4. The algebraic flux correction scheme applied to the one-dimensional problem

To suppress the spurious oscillations in the solutions of the Galerkin finite element discretization of
(3.1) given by (3.3), we shall apply the algebraic flux correction scheme described in Section 2. We
shall assume that Pe > 1, which is the interesting case in practice.

The Galerkin discretization of (3.1) introduced in the previous section corresponds to the system
from Section 2 with N = n + 2 but with a different numbering of the nodes. The matrices A and D are
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tridiagonal (n + 2) × (n + 2) matrices with entries (cf. (3.4))

a0,0 = ε

h2
− b

2h
, a0,1 = − ε

h2
+ b

2h
,

ai,i−1 = − ε

h2
− b

2h
, ai,i = 2ε

h2
, ai,i+1 = − ε

h2
+ b

2h
, i = 1, . . . , n,

an+1,n = − ε

h2
− b

2h
, an+1,n+1 = ε

h2
+ b

2h
,

di,i+1 = ε

h2
− b

2h
, i = 0, . . . , n. (4.1)

The vector U in (2.5) is given by U = (u0, u1, . . . , un+1)
T. Note that the assumption (2.3) is satisfied.

Now let us compute the values αij in (2.5). The values αij are needed only for i = 1, . . . , n and
|i − j| = 1, and they are not important if fij = 0. Since fij |= 0 only if |i − j| = 1, and ai+1,i < ai,i+1 for
i = 0, . . . , n, the updates (2.6–2.8) have to be computed only for j = i + 1, i = 0, . . . , n. This readily
gives

P+
i = max{0, fi,i+1}, P−

i = − max{0, fi+1,i},
Q+

i = max{0, fi−1,i} + max{0, fi+1,i}, Q−
i = − max{0, fi,i−1} − max{0, fi,i+1}

for i = 1, . . . , n. Thus, for i = 1, . . . , n, one obtains

αi,i−1 =

⎧⎪⎪⎨
⎪⎪⎩

min

{
1,

max{0, fi+1,i}
max{0, fi,i+1}

}
if fi,i−1 > 0,

min

{
1,

max{0, fi,i+1}
max{0, fi+1,i}

}
if fi,i−1 < 0,

αi,i+1 =

⎧⎪⎪⎨
⎪⎪⎩

min

{
1,

max{0, fi−1,i}
fi,i+1

}
if fi,i+1 > 0,

min

{
1,

max{0, fi,i−1}
fi+1,i

}
if fi,i+1 < 0.

It is not completely clear how to interpret the definition of αi,i−1 when the denominator vanishes. In this
case we always set αi,i−1 = 1. This leads to

αi,i−1 = αi,i+1 = 0 if fi,i−1fi,i+1 > 0,

αi,i−1 = 1, αi,i+1 = min

{
1,

fi−1,i

fi,i+1

}
if fi,i−1fi,i+1 � 0.

Setting

βi =
⎧⎨
⎩1 if fi,i+1 |= 0 and

fi−1,i

fi,i+1
< 1,

0 otherwise,
i = 1, . . . , n,
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system (2.5) is equivalent to

u0 = uL,

(AU)i + βi(fi,i−1 + fi,i+1) = gi, i = 1, . . . , n,

un+1 = uR.

The definition of the coefficients βi can be written also in the form

βi =
⎧⎨
⎩1 if ui |= ui+1 and

ui − ui−1

ui+1 − ui
< 1,

0 otherwise,
i = 1, . . . , n. (4.2)

Finally, applying

fi,i−1 + fi,i+1 =
(

ε

h2
− b

2h

)
(ui−1 − 2ui + ui+1), i = 1, . . . , n,

and setting

ε̃ = bh

2
− ε = ε(Pe − 1), (4.3)

one arrives at the following final version of the algebraic flux correction scheme.
Find u0, . . . , un+1 such that

u0 = uL, un+1 = uR, (4.4)

and

− (ε + βiε̃)
ui−1 − 2ui + ui+1

h2
+ b

ui+1 − ui−1

2h
= gi, i = 1, . . . , n. (4.5)

Since definitions of βi other than (4.2) may be convenient also (see the end of this section), we shall
analyse the flux correction scheme (4.4), (4.5) for a class of functions βi satisfying

βi ∈ {0, 1}, βi = 1 if (ui − ui−1)(ui+1 − ui) < 0, i = 1, . . . , n. (4.6)

Note that functions βi defined by (4.2) satisfy (4.6).

Remark 4.1 Some comments on this method are in order.

1. Condition (4.6) ensures that artificial diffusion is added to the equation at the node xi whenever
the discrete solution has a local extremum at xi.

2. If βi = 1, then the corresponding equation in (4.5) reduces to

b
ui − ui−1

h
= gi. (4.7)

Thus, in this case the method transforms (locally) the original Galerkin method into an upwinded
discretization of the hyperbolic equation bu′ = g.
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3. There are alternative ways to define the matrix D. For example, if it is defined with respect to the
convection matrix only, i.e., setting ε = 0 in (4.1), one obtains (4.5) with

ε̃ = bh

2
. (4.8)

If βi = 1, then scheme (4.5) becomes

− ε
ui−1 − 2ui + ui+1

h2
+ b

ui − ui−1

h
= gi, (4.9)

which is the usual upwind discretization of (3.1) at the node xi. This approach was used, e.g., in
Kuzmin (2012). The definition of D using the whole matrix A, as it was considered in this section,
makes the implementation of the method simpler (and more economical) and was used, e.g., in
John & Schmeyer (2008) and Augustin et al. (2011). Furthermore, another possible alternative to
define the matrix D is to use the sum of the convection matrix and the diffusion matrix multiplied
by a constant from the interval (0, 1). This approach leads to (4.5) with ε̃ ∈ ((bh/2) − ε, bh/2),
i.e., a method that can be viewed as intermediate with respect to the two upwinding strategies
expressed by (4.7) and (4.9).

Let us now present two choices of βi different from (4.2). For simplicity, we shall assume that
ui = u(xi), i = 0, . . . , n + 1. If u is increasing and strictly convex in [0, 1] or decreasing and strictly
concave in [0, 1], then definition (4.2) gives βi = 1, i = 1, . . . , n. Thus, artificial diffusion may be added
in regions where it is not needed at all, i.e., where no layer occurs. A partial remedy is to set βi = 1 only
at nodes where the increase or decrease of u sufficiently accelerates. For example, one can set

βi =
⎧⎨
⎩1 if ui |= ui+1 and

ui − ui−1

ui+1 − ui
< L,

0 otherwise,
i = 1, . . . , n, (4.10)

with a constant L ∈ (0, 1), e.g., L = 0.5.
Unfortunately, the relation (4.10) does not prevent the method from adding artificial diffusion in

regions where the solution is nearly constant with respect to its global behaviour. For example, for
u(x) = 1 + x5 and any n > 5, the definition (4.10) with L = 0.5 leads to β1 = · · · = β5 = 1 and βi = 0
for i > 5, i.e., artificial diffusion is added on the interval [0, x5]. However, u(x) ∈ [1, 1.001] and u′(x) ∈
[0, 0.02] for x ∈ [0, 0.25], whereas u(x) ∈ [1, 2] and u′(x) ∈ [0, 5] for x ∈ [0, 1], so that u can be regarded
as nearly constant in [0, 0.25]. Hence artificial diffusion is not needed at nodes near to 0. This suggests
replacing (4.10) by

βi =

⎧⎪⎪⎨
⎪⎪⎩

1 if (ui − ui−1)(ui+1 − ui) < 0,

or
|ui+1 − ui|

h
> D and

ui − ui−1

ui+1 − ui
< L,

0 otherwise,

i = 1, . . . , n, (4.11)

with some suitable threshold D, e.g.,

D = κ
Δu

Δx
, κ = 0.5, (4.12)
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where Δx is a characteristic length scale and Δu a corresponding characteristic variation of u. For
the above example of u, one gets D = 0.5 and βi = 0, i = 1, . . . , n, if h � 0.1. Note that if (4.10)
leads to βi = 0, then so does (4.11) and if the values of βi provided by (4.10) and (4.11) differ, then
|ui − ui−1|/h < DL.

As another example, let us consider the function u(x) = e−(1−x)b/ε, x ∈ [0, 1] (cf. (3.2)), which pos-
sesses a boundary layer at the point 1 for large values of b/ε. For any i ∈ {1, . . . , n}, one obtains

ui − ui−1

ui+1 − ui
= e−2 Pe,

ui+1 − ui

h
= u(xi)

e2 Pe − 1

h
,

so that (4.2) gives β1 = · · · = βn = 1. Definition (4.10) gives either the same result or β1 = · · · = βn = 0
if L � e−2 Pe. However, using (4.11) with L = 0.5 and D = 0.5, one always has βn = 1 and possibly βi = 1
at some further nodes near to 1, depending on ε, b and h. At the remaining nodes, βi = 0. In particular,
for n � 4, one obtains βi = 0 for i � (n + 1)/2. Thus, artificial diffusion is added only near the layer
region, as desired.

5. Discrete maximum principle

From the last point in Remark 4.1, one can see that it makes sense to consider (4.5) with any

ε̃ ∈
[

bh

2
− ε,

bh

2

]
. (5.1)

In this section we prove that then the method satisfies the discrete maximum principle and we formulate
various consequences of this fact.

Theorem 5.1 Consider any ε̃ � (bh/2) − ε. Then any solution of the nonlinear problem (4.4–4.6) sat-
isfies the discrete maximum principle, i.e., for any i ∈ {1, . . . , n}, one has

gi � 0 ⇒ ui � max{ui−1, ui+1}, (5.2)

gi � 0 ⇒ ui � min{ui−1, ui+1}. (5.3)

Moreover, for any k, l ∈ {0, 1, . . . , n + 1} with k + 1 < l, one has

gi � 0, i = k + 1, . . . , l − 1 ⇒ ui � max{uk , ul}, i = k, . . . , l, (5.4)

gi � 0, i = k + 1, . . . , l − 1 ⇒ ui � min{uk , ul}, i = k, . . . , l. (5.5)

Proof. Let the values u0, u1, . . . , un+1 satisfy (4.4–4.6). Consider any i ∈ {1, . . . , n} and let gi � 0.
If ui > max{ui−1, ui+1}, then βi = 1 and hence

0 � gih
2 = −

(
ε + ε̃ + bh

2

)
ui−1 + 2(ε + ε̃)ui −

(
ε + ε̃ − bh

2

)
ui+1

> −
(

ε + ε̃ + bh

2

)
ui + 2(ε + ε̃)ui −

(
ε + ε̃ − bh

2

)
ui = 0,

which is a contradiction. Therefore, ui � max{ui−1, ui+1}.
Now consider any k, l ∈ {0, 1, . . . , n + 1} with k + 1 < l and let gi � 0 for i = k + 1, . . . , l − 1. Let

j ∈ {k, . . . , l} be such that uj � ui for i = k, . . . , l. If j ∈ {k, l}, then the right-hand side of implication (5.4)
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holds. Thus, let k < j < l. If uj > uj+1, then uj−1 = uj in view of (5.2). If uj = uj+1, then it follows from
(4.5) that

0 � gj =
(

ε + βjε̃

h2
+ b

2h

)
(uj − uj−1) � 0

and hence again uj−1 = uj. Repeating the above argument, one deduces that uj = uj−1 = · · · = uk so that
the right-hand side of (5.4) is satisfied.

Implications (5.3) and (5.5) follow analogously. �

Corollary 5.2 Consider any ε̃ � (bh/2) − ε. Let u0, . . . , un+1 be a solution of the nonlinear prob-
lem (4.4–4.6) with gi � 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj � ui, i = 0, . . . , n + 1. Then the
solution increases monotonically until uj and, after that, it decreases monotonically, i.e.,

u0 � u1 � · · · � uj, uj � uj+1 � · · · � un+1. (5.6)

If gi = 0, i = 1, . . . , n, then the solution is monotone, i.e.,

u0 � u1 � · · · � un+1 or u0 � u1 � · · · � un+1. (5.7)

Proof. If 0 < i < j, then ui � min{uj, ui−1} = ui−1. If j < i < n + 1, then ui � min{uj, ui+1} = ui+1.
Therefore, (5.6) holds. If gi = 0, i = 1, . . . , n, then uj = max{u0, un+1} according to (5.4) so that (5.7)
follows from (5.6). �

Corollary 5.3 Consider any ε̃ > (bh/2) − ε. Let u0, . . . , un+1 be a solution of the nonlinear problem
(4.4–4.6) with gi � 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj � ui, i = 0, . . . , n + 1. If j < n, i ∈
{j + 1, . . . , n}, and gi > 0, then ui > ui+1 and βi = 1. If gi = 0 for some i ∈ {1, . . . , n}, then either ui−1 =
ui = ui+1 or

ui − ui−1

ui+1 − ui
< 1.

Finally, if uL > uR, one obtains

gi = 0, i = 1, . . . , n ⇒ u0 > u1 > · · · > un+1, β1 = β2 = · · · = βn = 1.

Proof. According to (4.5), one has(
ε + βiε̃ + bh

2

)
(ui − ui−1) +

(
ε + βiε̃ − bh

2

)
(ui − ui+1) = gih

2 (5.8)

for i = 1, . . . , n. If i > j, then ui−1 � ui � ui+1 due to (5.6) and hence the first term on the left-hand side
of (5.8) is nonpositive. Therefore, (5.8) can be satisfied with gi > 0 only if the second term on the left-
hand side of (5.8) is positive, which implies that ui > ui+1 and βi = 1. Furthermore, for any i ∈ {1, . . . , n}
such that gi = 0 and ui |= ui+1, one deduces from (5.8) that

ui − ui−1

ui+1 − ui
= ε + βiε̃ − bh/2

ε + βiε̃ + bh/2
< 1. (5.9)

If gi = 0 and ui = ui+1, then obviously also ui = ui−1.
Finally, let gi = 0, i = 1, . . . , n. If uk = uk+1 for some k ∈ {0, . . . , n}, then according to (5.8) with

i = k and i = k + 1, one obtains uk = uk−1 (if k > 0) and uk+1 = uk+2 (if k < n). Thus, one deduces that
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u0 = u1 = · · · = un+1. Therefore, if uL > uR, one gets ui |= ui+1 for i = 0, . . . , n and hence (5.7) implies
that u0 > u1 > · · · > un+1. Consequently, for any i ∈ {1, . . . , n}, the left-hand side of (5.9) is positive and
therefore βi = 1. �

Corollary 5.4 Let ε̃ = (bh/2) − ε. Let u0, . . . , un+1 be a solution of the nonlinear problem (4.4–
4.6) with gi � 0, i = 1, . . . , n. Let j ∈ {0, . . . , n + 1} satisfy uj � ui, i = 0, . . . , n + 1. Then either j � n
or gj+1 = · · · = gn = 0 and uj = uj+1 = · · · = un.

If i ∈ {1, . . . , n} and gi = 0, then either ui−1 = ui = ui+1 or ui = ui−1 and βi = 1. Consequently,

gi = 0, i = 1, . . . , n ⇒ ui = uL, i = 1, . . . , n.

Proof. Let j < n and i ∈ {j + 1, . . . , n}. Then the left-hand side of (5.8) is nonpositive due to (5.6) and
hence (5.8) cannot hold with gi > 0. Therefore, gj+1 = · · · = gn = 0. If gi = 0 for some i |= j, then it
follows from (5.6) and (5.8) that ui = ui−1, which completes the proof of the first statement of the
corollary. If j ∈ {1, . . . , n} and gj = 0, then uj = uj−1 since otherwise uj > uj−1 and, in view of (5.8),
uj > uj+1 and βj = 0, which is in contradiction with (4.6). Thus, for any i ∈ {1, . . . , n} such that gi = 0,
one has ui = ui−1 and it follows from (5.8) that ui = ui+1 or βi = 1. �

Remark 5.5 Let uL > uR and gi = 0 for i = 1, . . . , n. It follows from Corollaries 5.3 and 5.4 that if
a solution of the nonlinear problem (4.4–4.6) exists, then it is determined uniquely. It is the solution
of (3.4) with ε replaced by ε + ε̃. Thus, the nonlinear problem is solvable if this solution leads to
β1 = · · · = βn = 1 in the case ε̃ > (bh/2) − ε, and to βn = 1 in the case ε̃ = (bh/2) − ε. If
ε̃ = (bh/2) − ε, this means that βi = 1 for ui−1 = ui |= ui+1. This is the case for (4.2) and (4.10) but not
necessarily for (4.11). If ε̃ > (bh/2) − ε, the solution is given by (3.5) with g = 0 and Pe replaced by

Pe∗ = bh

2(ε + ε̃)
.

Then, for any i ∈ {1, . . . , n},
ui − ui−1

ui+1 − ui
= 1 − Pe∗

1 + Pe∗ <
1

3
for ε̃ ∈

(
bh

2
− ε,

bh

2

]
.

Thus, the nonlinear problem is solvable if βi is defined by (4.2) or by (4.10) with L ∈ [ 1
3 , 1). On the

other hand, if βi satisfies (4.6) and βi = 0 for (ui − ui−1)(ui+1 − ui) � 0, then the nonlinear problem
is not solvable for any data. Unfortunately, the favourable choice (4.11) does not lead to a solvable
nonlinear problem in general either. We shall return to this choice in Section 9, where it will be used for
deriving a convenient definition of βi.

6. The solution of the nonlinear system and the choice of ε̃

In this section we report some numerical results obtained by solving the nonlinear problem (4.4), (4.5).
We start by briefly describing the solution algorithm. Problem (4.4), (4.5) was solved by a fixed-point
iteration: one chooses an initial guess u0 for the solution u := {ui}n+1

i=0 and computes a sequence {uk}
where each uk with k = 1, 2, . . . solves the linearized problem (4.4), (4.5) with βi determined by means
of the already known discrete solution uk−1. In our case, the initial guess u0 was computed as the
solution of (4.4), (4.5) with βi = 1, i = 1, . . . , n. We shall prove in Section 7 that the linear problems
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defining this fixed-point algorithm are well posed. The iteration was stopped if the coefficients βi did
not change.

Since this section focuses on the choice of ε̃, we shall present results obtained for βi defined by
(4.2) only. To suppress the influence of the rounding errors on the validity of the conditions in (4.2) for
setting βi = 1, we replaced (4.2) by

βi =

⎧⎪⎨
⎪⎩

1 if ui + τ < ui+1 and 2ui + τ < ui−1 + ui+1

or ui − τ > ui+1 and 2ui − τ > ui−1 + ui+1,

0 otherwise,

(6.1)

with a suitable positive constant τ . In the computations presented in this section, we used τ = 10−12.
For τ = 0, the relations (4.2) and (6.1) are equivalent.

As we pointed out in the previous section, any ε̃ satisfying (5.1) can be used in (4.5). Then, a natural
question is which choice of ε̃ is most convenient. It is well known that if all the coefficients βi in (4.5)
are set to 1, then

ε̃ = bh

2

(
coth Pe − 1

Pe

)
(6.2)

is optimal in the sense that, for constant g, the discrete solution is nodally exact, i.e., ui = u(xi) for
i = 1, . . . , n; see Christie et al. (1976). On the other hand, in general the parameter ε̃ cannot be chosen in
such a way that the discrete solution is nodally exact if the coefficients βi are defined by (4.2). However,
it is well known that the performance of most stabilized methods is primarily affected by the amount
of artificial diffusion introduced near the numerical layers, and quite insensitive to the changes on it far
away from them. Thus, since we expect that βi = 1 in numerical boundary layers, it may be of advantage
to use ε̃ given by (6.2) also when the coefficients βi are defined by (4.2). Then what is required is that
the exact solution solves scheme (4.5) for the nodes xi where βi = 1. Note that the parameter ε̃ defined
in (6.2) is larger than ε̃ from (4.3) and smaller than ε̃ from (4.8).

In what follows, we shall compare solutions of the problem given by (4.4), (4.5), (6.1) for ε̃ defined
by (4.3), (4.8) and (6.2). We shall consider

b = g = 1, uL = uR = 0, (6.3)

and various choices of ε and n.
First, we notice that if ε̃ is defined by (4.3), it is easy to verify that, for the data (6.3) and any ε and n,

ui = ih, i = 0, . . . , n, un+1 = 0

is a solution of (4.4), (4.5) with βi given by (6.1) or any βi satisfying (4.6) (it is the only solution of
the respective nonlinear problem). In this case, βn = 1 and if βi is defined by (6.1) or (4.2), one has
βi = 0 for i = 1, . . . , n − 1. Since the discrete solution is independent of ε, one cannot expect a good
approximation of the exact solution for the whole range of values of ε. Indeed, according to (3.2), the
error in the discrete solution satisfies

ui − u(xi) = e−(1−xi)/ε − e−1/ε

1 − e−1/ε
, i = 0, . . . , n, (6.4)
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Fig. 1. Dependence of the errors of the solutions of (4.4), (4.5), (6.1) on h for ε̃ defined by (4.3), (6.2) and (4.8), and for ε = 10−2

(left) and ε ∈ {10−4, 10−6} (right).
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Fig. 2. Comparisons of the exact solution and solutions of (4.4), (4.5), (6.1) for ε = 0.03, n = 15, and ε̃ defined by (4.3), (6.2) and
(4.8).

so that the largest error appears at node xn and, for ε � 0.1, one has

un − u(xn) = e−h/ε − e−1/ε

1 − e−1/ε
> 0.135 for Pe → 1.

To see the impact of the nonlinear artificial diffusion in (4.5) on the discrete solutions, we computed
the errors (

1

n

n∑
i=1

(u(xi) − ui)
2

)1/2

(6.5)

for different values of h, the three definitions of ε̃ (cf. (4.3), (6.2), and (4.8)), and for ε ∈
{10−2, 10−4, 10−6}. If ε̃ is defined by (4.3), we set ε̃ = 0 for Pe � 1 (this situation occurs only for
ε = 10−2). The results are depicted in Fig. 1, where we observe that the best results are obtained for
ε̃ defined by (6.2). For large Péclet numbers, comparable errors are also obtained for ε̃ defined by (4.3).
The choice (4.8) always adds too much artificial diffusion and leads to the worst results. To further
stress this, Fig. 2 depicts the discrete solutions corresponding to Pe = 25

24 and clearly demonstrates the
differences between the three choices of ε̃.

One final comment is required for the case where ε̃ is given by (4.3). In this case, according to (6.4),
the error (6.5) is bounded by e−h/ε. This shows that, for ε = 10−6 (and partly also for ε = 10−4), the
errors depicted in Fig. 1 are the results of rounding errors and are much larger than the actual values of
the errors.
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7. Solvability of the linear subproblems

At the beginning of the previous section, the solution of the nonlinear problem (4.4), (4.5) using a fixed-
point iteration was described. In this section, we shall discuss under which conditions the corresponding
linear subproblems are uniquely solvable.

We shall consider the following more general problem: given positive numbers d1, . . . , dn, find
u1, . . . , un such that

− di(ui−1 − 2ui + ui+1) + ui+1 − ui−1 = g̃i, i = 1, . . . , n, (7.1)

where u0 = uL and un+1 = uR. This problem corresponds to (4.5) for di = 2(ε + βiε̃)/(bh) and g̃i =
2hgi/b.

The following theorem proves the unique solvability of problem (7.1) in the case that the coefficients
di are allowed to take the values 1 and d with d > 0. As a consequence, the unique solvability of the
linearized problem (4.5) with ε̃ given by (4.3) follows.

Theorem 7.1 Let d1, . . . , dn ∈ {1, d} with an arbitrary d > 0. Then problem (7.1) has a unique solution.

Proof. It suffices to show that the homogeneous problem corresponding to (7.1) has only the trivial
solution, i.e., that if

− di(ui−1 − 2ui + ui+1) + ui+1 − ui−1 = 0, i = 1, . . . , n, (7.2)

with u0 = un+1 = 0, then
u1 = u2 = · · · = un = 0. (7.3)

Let 1 � K � L � n and dK = dK+1 = · · · = dL = d. Multiplying the ith equation in (7.2) by ui and
summing over i = K, . . . , L, one obtains

du2
K + d

L−1∑
i=K

(ui − ui+1)
2 + du2

L − (1 + d)uK−1uK + (1 − d)uLuL+1 = 0. (7.4)

Thus, if d1 = d2 = · · · = dn = d, one may set K = 1 and L = n, and (7.4) readily implies (7.3). Of course,
this result also follows from the equivalence between (3.3) and (3.4) and the fact that (3.3) is uniquely
solvable.

It remains to investigate the case when the values of di are not all equal. Let K ∈ {1, . . . , n} be the
smallest index such that dK = d and let L ∈ {K, . . . , n} be the largest index such that dK = dK+1 = · · · =
dL = d. Then, for any i ∈ {1, . . . , K − 1}, one has di = 1 and hence ui = ui−1. Consequently, ui = 0 for
i = 0, . . . , K − 1. Furthermore, if L < n, then dL+1 = 1 and hence uL+1 = uL, which implies that du2

L +
(1 − d)uLuL+1 � 0. This inequality is satisfied also if L = n since then uL+1 = 0. Thus, one deduces
from (7.4) that

du2
K + d

L−1∑
i=K

(ui − ui+1)
2 � 0,

which gives 0 = uK = uK+1 = · · · = uL. Repeating the above arguments until L = n, one obtains (7.3).
�

The following theorem proves the unique solvability of (7.1) for a more general choice of d1, . . . , dn.
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Theorem 7.2 Let d1, . . . , dn ∈ (0, 1] or d1, . . . , dn ∈ [δ, 1 + δ] with δ ∈ (0, 1]. Then problem (7.1) has a
unique solution. However, for any δ > 0, there are d1, . . . , dn ∈ (0, 1 + δ] such that problem (7.1) is not
uniquely solvable.

Proof. We introduce the n × n matrices

B = diag(d1, d2, . . . , dn), C = tridiag(−1, 2, −1), E = tridiag(−1, 0, 1).

Then the matrix corresponding to (7.1) is BC + E. This matrix will be transformed by operations which
preserve full rank such that it becomes possible to see that its determinant does not vanish.

Let G = (gij)
n
i,j=1 be a symmetric matrix given by

gij = (n − i + 1)j, j = 1, . . . , i, i = 1, . . . , n.

Then CG = (n + 1)I, where I is the identity matrix. Setting Q = (BC + E)G, one obtains a matrix with
the entries

qij = −2j + 2(n + 1), for i = 1, . . . , j − 1,

qjj = −2j + (n + 1)(1 + dj),

qij = −2j, for i = j + 1, . . . , n,

where j = 1, . . . , n. Now, let us define the matrix Z = (zij)
n
i,j=1 by

zij = 1

n + 1
(qij − qi+1,j), i = 1, . . . , n − 1, znj = 1

n + 1

(
2qnj +

n−1∑
i=1

qij

)
,

where j = 1, . . . , n. Then det(BC + E) |= 0 if and only if det Z |= 0 and one has

zii = 1 + di, zi,i+1 = 1 − di+1, zij = 0 for j �∈ {i, i + 1}, i = 1, . . . , n − 1,

znj = −1 + dj, j = 1, . . . , n − 1, znn = 2dn.

Let Zij be the (n − 1) × (n − 1) matrix obtained from Z by removing the ith row and jth column. Then

det Znj =
j−1∏
k=1

(1 + dk)

n∏
l=j+1

(1 − dl). (7.5)

Let n be odd and denote

z̃nj =
n∑

i=1
i is odd

zij, j = 1, . . . , n.

Then, for j = 1, . . . , n, one has

z̃nj = 2dj if j is odd, z̃nj = 0 if j is even.
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Thus,

det Z = 2
n∑

j=1
j is odd

dj det Znj. (7.6)

If d1, . . . , dn ∈ (0, 1], then det Znj � 0, j = 1, . . . , n − 1, and det Znn > 0 so that det Z > 0. If n is even,
then

det Z = (1 + d1) det Z11 + (1 − d1) det Zn1. (7.7)

Since Z11 has the same structure as Z and has an odd number of rows and columns, one has det Z11 > 0
for d1, . . . , dn ∈ (0, 1]. Moreover, det Zn1 � 0 in view of (7.5) and hence again det Z > 0, which proves
the first part of the theorem.

Now let d1, . . . , dn ∈ [δ, 1 + δ] with δ ∈ (0, 1]. We denote

As =
s∏

k=1

(1 + dk), Bs =
n∏

l=s

(1 − dl), s = 1, . . . , n,

and we set A0 = 1. If Bs < 0, then, for some k ∈ {1, . . . , n}, we have |1 − dk| � δ. Therefore, since
|1 − dl| � 1 for any l ∈ {1, . . . , n}, one gets

Bs � −δ, s = 1, . . . , n. (7.8)

First, let n be odd and let us prove that, for any odd m ∈ {1, . . . , n}, the matrices Znj satisfy

n∑
j=m

j is odd

dj det Znj � dnAm−1. (7.9)

In view of (7.5), this inequality holds for m = n. Let us assume that (7.9) holds for a given odd m ∈
{3, . . . , n}. Then, again in view of (7.5),

n∑
j=m−2
j is odd

dj det Znj � dnAm−1 + dm−2Am−3Bm−1

> dnAm−3 + dm−2Am−3[dn(1 + dm−1) + Bm−1] > dnAm−3

since dn(1 + dm−1) > δ and Bm−1 � −δ; see (7.8). Thus, (7.9) holds for any odd m ∈ {1, . . . , n} and
hence, setting m = 1 and using (7.6), one gets det Z � 2dn. If n is even, then det Z11 � 2dn and hence,
according to (7.7), det Z = (1 + d1) det Z11 + B1 > 2dn + B1 � dn.

Finally, let us consider any δ > 0 and set

d1 = d2 = · · · = dn−2 = 1, dn−1 = 1 + δ, dn = δ

3δ + 4
.

Then d1, . . . , dn ∈ (0, 1 + δ] and

det Z = 2n−2 det

(
1 + dn−1 1 − dn

−1 + dn−1 2dn

)
= 0.
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Consequently, the matrix corresponding to (7.1) is singular and hence problem (7.1) is not uniquely
solvable. �

The following corollary states the unique solvability of the linearized problem (4.4), (4.5) for any ε̃

satisfying (5.1).

Corollary 7.3 Consider any ε̃ ∈ [0, bh/2] and any β1, . . . , βn ∈ [0, 1]. Then the linear problem (4.4),
(4.5) has a unique solution.

Proof. Since (4.5) is equivalent to (7.1) with d1, . . . , dn ∈ [1/Pe, 1 + 1/Pe], the statement follows
immediately from Theorem 7.2. �

8. Solvability of the nonlinear problem

The computations reported in Section 6 were those for which convergence of the fixed-point iteration
was achieved. However, some other computations we performed did not converge at all. In some cases,
convergence was obtained after changing the value of τ in (6.1) (although we realized that the iter-
ative process was still very sensitive to rounding errors). For some other cases though, we were not
able to find any way to achieve convergence and hence no solution at all was found. The ultimate
conclusion of these numerical experiments was that the nonlinear problem (4.4–4.6) is not solvable
in general. In this section we first describe examples of data for which the nonlinear problem has no
solution, thus proving the above claim. This lack of solvability is due to the discontinuous charac-
ter of the coefficients βi. As a matter of fact, at the end of the present section we shall prove that
problem (4.4), (4.5) is solvable if one considers coefficients βi depending on the discrete solution in a
continuous way.

Let us start with the following remark. If the nonlinear problem (4.4), (4.5) with some functions βi

satisfying (4.6) has a solution, then there are numbers β̄1, . . . , β̄n ∈ {0, 1} such that, after having com-
puted the solution u = {ui}n+1

i=0 of (4.4), (4.5) with βi = β̄i, i = 1, . . . , n, one has βi(u) = β̄i, i = 1, . . . , n.
Since there are only 2n admissible choices of β̄1, . . . , β̄n, one can easily check (at least for small n)
whether the nonlinear problem is solvable. In what follows, we shall consider the three choices of ε̃

tested in Section 6 and, for each of them, we shall present an example of data such that the nonlinear
problem (4.4), (4.5) is not solvable for any functions βi satisfying (4.6) and

βi = 0 if ui |= ui+1 and
ui − ui−1

ui+1 − ui
> 1. (8.1)

These requirements are met by all three choices (4.2), (4.10) and (4.11). In all cases, we shall use

n = 4, uL = uR = 0. (8.2)

First, let us study problem (4.4), (4.5), (4.2) with ε̃ defined by (4.3). We consider the data

ε = 0.03, b = 1, g1 = 6, g2 = −6, g3 = 3, g4 = −2. (8.3)

As explained above, for each of the 16 possible choices of β̄1, . . . , β̄4, we compute the solution
u = {ui}5

i=0 of (4.4), (4.5) with βi = β̄i, i = 1, . . . , 4. These solutions together with the values of
β1(u), . . . , β4(u) computed according to (4.2) are shown in Figs 3 and 4. Since (β1(u), . . . , β4(u))

always differs from (β̄1, . . . , β̄4), one concludes that the nonlinear problem (4.4), (4.5), (4.2) does not

 at W
eierstrass-Institut fuer A

ngew
andte A

nalysis und Stochastik on O
ctober 14, 2015

http://im
ajna.oxfordjournals.org/

D
ow

nloaded from
 

http://imajna.oxfordjournals.org/


SOME ANALYTICAL RESULTS FOR AN ALGEBRAIC FLUX CORRECTION SCHEME 1747

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

0  0.2  0.4  0.6  0.8 1
0

 0.2

 0.4

 0.6

 0.8

1

 1.2

0  0.2  0.4  0.6  0.8 1

0

 0.5

1

 1.5

2

 2.5

3

 3.5

0  0.2  0.4  0.6  0.8 1
0

 0.5

1

 1.5

2

 2.5

3

 3.5

0  0.2  0.4  0.6  0.8 1

Fig. 3. Solutions u of (4.4), (4.5) with βi = β̄i, i = 1, . . . , 4 for the data (8.2), (8.3) and ε̃ defined by (4.3). The numbers on the left
of ‘→’ represent β̄1, . . . , β̄4, the numbers on the right of ‘→’ represent β1(u), . . . , β4(u) corresponding to the respective solution
according to (4.2).

have any solution. Note that, for all choices of β̄1, . . . , β̄4 except β̄1 = · · · = β̄4 = 1, there always exists
j ∈ {1, 2, 3, 4} such that β̄j = 0 and the solution u has an extremum at the node xj so that βj(u) = 1 as
soon as (4.6) holds. If β̄1 = · · · = β̄4 = 1, one observes that β4(u) = 0 as soon as (8.1) holds. This shows
that problem (4.4), (4.5) is not solvable for any functions βi satisfying (4.6) and (8.1).

Similar nonexistence studies were performed for the case in which ε̃ is defined by (6.2) and (4.8).
For both cases we were able to find various right-hand sides for which the discrete problem does not
have a solution. For example, if ε̃ is defined by (6.2), then the nonlinear problem with any βi satisfying
(4.6) and (8.1) is not solvable for the following data:

ε = 0.09, b = 1, g1 = 6, g2 = g3 = g4 = 1. (8.4)

Finally, if ε̃ is defined by (4.8), then the nonlinear problem with any βi satisfying (4.6) and (8.1) is not
solvable, e.g., for

ε = 0.064, b = 1, g1 = g2 = g3 = g4 = 1. (8.5)

We have verified that the nonexistence of a solution to the nonlinear problem (4.4), (4.5) in the cases
presented in this section is not caused by rounding errors.
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Fig. 4. Solutions u of (4.4), (4.5) with βi = β̄i, i = 1, . . . , 4 for the data (8.2), (8.3) and ε̃ defined by (4.3). The numbers below the
graphs represent β̄1, . . . , β̄4. For all solutions, formula (4.2) gives β1(u) = β2(u) = β3(u) = β4(u) = 1.

Now, as we have already stated, we present a result ensuring the solvability of the nonlinear prob-
lem (4.4), (4.5) under the hypothesis of continuity of the coefficients βi.

Theorem 8.1 Let βi : Rn+2 → [0, 1], i = 1, . . . , n be continuous functions and let ε̃ ∈ [0, bh/2]. Then
there exists a solution of the nonlinear problem (4.4), (4.5).

Proof. We set β(u) := {βi(u)}n
i=1 with u = {ui}n+1

i=0 . We also denote by M(β) ∈ Rn×n the matrix corre-
sponding to system (4.5) for a particular choice of the coefficients β ∈ Rn. Then the nonlinear problem
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(4.4), (4.5) can be written as, find u ≡ {ui}n
i=1 such that

M(β(u))u = g̃(u), (8.6)

where u = {ui}n+1
i=0 with u0 = uL, un+1 = uR and g̃(u) = {g̃i(u)}n

i=1 with g̃i(u) = gi for i = 2, . . . , n − 1,
and

g̃1(u) = g1 + (ε + β1(u)ε̃)
uL

h2
+ b

uL

2h
, g̃n(u) = gn + (ε + βn(u)ε̃)

uR

h2
− b

uR

2h
.

Since |βi(u)| � 1 for i = 1, . . . , n, one has

‖g̃(u)‖ � ‖g‖ + ε + bh

h2
(|uL| + |uR|) ∀ u ∈ Rn+2, (8.7)

where ‖ · ‖ denotes the Euclidean norm on Rn and g = {gi}n
i=1.

Corollary 7.3 guarantees that the matrix M(β) is invertible for all β belonging to the hypercube
[0, 1]n. Then, since the determinant of a matrix is a continuous function of its entries, there exists σ0 > 0
such that

| det M(β)| � σ0 ∀ β ∈ [0, 1]n.

Hence, the function β 
→ [M(β)]−1 is continuous on [0, 1]n, and there exists C > 0 such that

‖[M(β)]−1‖ � C ∀ β ∈ [0, 1]n, (8.8)

where we use the matrix norm induced by the Euclidean norm on Rn. Consequently, there exists a
constant C0 > 0 such that

∀ β ∈ [0, 1]n, v ∈ Rn, u ∈ Rn+2 : M(β)v = g̃(u) ⇒ ‖v‖ � C0. (8.9)

In view of (8.7) and (8.8), the constant C0 depends on the data of (3.1) and, possibly, on h, but it does
not depend on u.

Now let T : Rn → Rn be the mapping defined by

Tu := [M(β(u))]−1g̃(u) ∀ u ≡ {ui}n
i=1 ∈ Rn,

where u = {ui}n+1
i=0 with u0 = uL and un+1 = uR. Then T is continuous and, according to (8.9), it maps the

closed ball B(0, C0) := {v ∈ Rn; ‖v‖ � C0} into itself. Applying Brouwer’s fixed-point theorem, there
exists u ∈ B(0, C0) such that Tu = u, i.e., u satisfies (8.6). �

9. An example of continuous βi and properties of the resulting solvable nonlinear discrete
problem

In this section we propose a definition of continuous coefficients βi that, according to Theorem 8.1,
leads to a solvable nonlinear discrete problem, prove a corresponding (weaker) variant of the discrete
maximum principle and present a few numerical results.
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For i = 1, . . . , n, let us denote the derivatives of the discrete solution to the left and to the right of a
point xi by

u′
i− = ui − ui−1

h
, u′

i+ = ui+1 − ui

h
,

respectively. If βi are defined by (4.2), then

βi =
{

1 if u′
i+ > max{0, u′

i−} or u′
i+ < min{0, u′

i−},
0 if min{0, u′

i−} � u′
i+ � max{0, u′

i−},

for i = 1, . . . , n; see Fig. 5. Note that βi is discontinuous along the lines u′
i− = u′

i+ and u′
i+ = 0. Similarly,

βi is discontinuous if it is defined by (4.10) or (4.11).
Our aim is to introduce continuous coefficients βi to guarantee the solvability of the nonlinear prob-

lem (4.4), (4.5). Based on the relation (4.11) and the discussion at the end of Section 4 and in Remark 5.5,
we propose to set (cf. Fig. 6)

βi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (u′
i+ � Δ + max{0, 2u′

i−} or u′
i+ � −Δ + min{0, 2u′

i−}),
and (u′

i−, u′
i+) �∈ (−Δ, D/2) × (0, D + Δ),

and (u′
i−, u′

i+) �∈ (−D/2, Δ) × (−D − Δ, 0),

0 if min{0, 2u′
i−} � u′

i+ � max{0, 2u′
i−},

or (u′
i−, u′

i+) ∈ [0, D/2] × [0, D],

or (u′
i−, u′

i+) ∈ [−D/2, 0] × [−D, 0],

(9.1)

with positive parameters Δ � D. Furthermore, we require that βi is continuous and that it is linear in
each of the eight dark shadow subregions in Fig. 6. These requirements define the function βi uniquely.
The parameters D and Δ should be proportional to a characteristic derivative Δu/Δx; see (4.12).

Unfortunately, with the new definition of the coefficients βi, we cannot guarantee the validity of the
discrete maximum principle formulated in Theorem 5.1. Nevertheless, the following result shows that

Fig. 5. Dependence of values of βi from (4.2) on u′
i− and u′

i+.
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Fig. 6. Definition of continuous βi according to (9.1).

a possible violation of the discrete maximum principle is not significant if the parameter D or the mesh
width h are small. The constant δ in the following theorem is related to the above definition of βi by
δ = D + Δ.

Theorem 9.1 Consider any ε̃ satisfying (5.1). Let u0, . . . , un+1 be a solution of the nonlinear problem
(4.4), (4.5) with any functions β1, . . . , βn ∈ [0, 1] satisfying

βi = 1 if ui < min{ui−1, ui+1 − δh} or ui > max{ui−1, ui+1 + δh}

for some δ > 0 and i = 1, . . . , n. Then

gi � 0 ⇒ ui � max{ui−1, ui+1} or ui � min{ui−1, ui+1} + δh,

gi � 0 ⇒ ui � min{ui−1, ui+1} or ui � max{ui−1, ui+1} − δh,

for i = 1, . . . , n. Moreover, for any k, l ∈ {0, 1, . . . , n + 1} with k + 1 < l, one has

gi � 0, i = k + 1, . . . , l − 1 ⇒ ui < max{uk , ul} + δh, i = k, . . . , l,

gi � 0, i = k + 1, . . . , l − 1 ⇒ ui > min{uk , ul} − δh, i = k, . . . , l.

Proof. Consider any i ∈ {1, . . . , n} and let gi � 0. If ui − ui+1 �∈ [0, δh], then ui � max{ui−1, ui+1} since
the proof of Theorem 5.1 can be repeated without any changes. For ui − ui+1 ∈ [0, δh] it will be shown
that ui � min{ui−1, ui+1} + δh. To this end, assume that ui > min{ui−1, ui+1} + δh. Then

ui+1 + δh � ui � ui+1, ui > ui−1 + δh.
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Therefore, using (5.8) and noting that (ui − ui+1) is estimated either from below or from above depend-
ing on the sign of the term in front of it, one derives

0 � gih
2 =
(

ε + βiε̃ + bh

2

)
(ui − ui−1) +

(
ε + βiε̃ − bh

2

)
(ui − ui+1)

>

(
ε + βiε̃ + bh

2

)
δh + min

{
0, ε + βiε̃ − bh

2

}
δh > 0,

which is a contradiction. Therefore, ui � min{ui−1, ui+1} + δh.
Now consider any k, l ∈ {0, 1, . . . , n + 1} with k + 1 < l and let gi � 0 for i = k + 1, . . . , l − 1. First,

we shall prove that, for any i ∈ {k + 1, . . . , l − 1}, the following implication holds:

ui−1 � ui and ui > ui+1 ⇒ uk > ui+1. (9.2)

Thus, consider any i ∈ {k + 1, . . . , l − 1} such that the left-hand side of (9.2) is satisfied. Let m ∈
{k, . . . , i − 1} be such that us � us+1 for s = m, . . . , i − 1. We assume that m cannot be further decreased,
i.e., either m = k or um−1 > um. According to (5.8), one has

0 �
(

ε + βiε̃ + bh

2

)
(ui − ui−1) +

(
ε + βiε̃ − bh

2

)
(ui − ui+1)

>

(
ε + bh

2

)
(ui − ui−1) − bh

2
(ui − ui+1). (9.3)

If m < i − 1, then for s = m + 1, . . . , i − 1, in view of (5.8) one derives

0 �
(

ε + βsε̃ + bh

2

)
(us − us−1) +

(
−ε − βsε̃ + bh

2

)
(us+1 − us)

�
(

ε + bh

2

)
(us − us−1) − ε(us+1 − us). (9.4)

Summing inequalities (9.3) and (9.4), one obtains

0 >

(
ε + bh

2

) i∑
s=m+1

(us − us−1) − ε

i−1∑
s=m+1

(us+1 − us) − bh

2
(ui − ui+1)

=
(

ε + bh

2

)
(ui − um) − ε(ui − um+1) − bh

2
(ui − ui+1) � bh

2
(ui+1 − um).

Therefore, um > ui+1, which is true also if m = i − 1 according to (9.3). If m = k or us > us+1

for s = k, . . . , m − 1, then the right-hand side of (9.2) holds. Otherwise m � k + 2 and there is
i′ ∈ {k + 1, . . . , m − 1} for which the left-hand side of (9.2) is satisfied and ui′+1 > ui+1 holds. Hence the
inequality uk > ui+1 follows by induction. For proving the statement of the theorem, let j ∈ {k, . . . , l} be
such that uj = max{uk , uk+1, . . . , ul} and let uj > max{uk , ul}. Then uj > uj+1 since otherwise uj = uj−1 in
view of (5.8) and hence uj = uk by induction. Thus, one has uk > uj+1 according to (9.2). Finally, apply-
ing the first part of the theorem, one obtains uj � min{uj−1, uj+1} + δh < uk + δh � max{uk , ul} + δh.

The implications for gi � 0 follow analogously. �
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Theorem 9.1 shows that if the discrete maximum principle is violated then the discrete solution is
locally near to a constant function provided that δ or h is sufficiently small. Globally, the violation of
the discrete maximum principle is smaller than or equal to δh.

Remark 9.2 Using a similar construction to above, one could modify definition (4.11) in such a way
that the resulting function βi is continuous and equals 1 whenever the discrete solution attains an
extremum at the node xi. Then the statements of Theorem 9.1 hold with δ = 0. However, the resulting
method then adds artificial diffusion of magnitude ε̃ in regions where the discrete solution is constant,
which is not desirable. Moreover, due to rounding errors, an approximation of a constant solution u
typically possesses a lot of negligible extrema that also should not lead to adding a significant amount
of artificial diffusion. The continuous function βi defined at the beginning of this section satisfies this
requirement.

Now let us report a few numerical results for βi defined by (9.1). We used Δ = D = 0.5 so that
δ = 1. For decreasing δ, we encountered increasing difficulty with the solution of the nonlinear problem,
whereas the resulting approximate solution was not affected significantly. We again applied the fixed-
point iteration described at the beginning of Section 6 that was terminated if absolute values of all
components of the residual vector were smaller than 5 × 10−14.

First, we repeated the computations of Section 6 and realized that all results are very similar for the
continuous βi, at least for Pe � 1 (for Pe < 1, a difference stems from using L = 0.5 instead of L = 1;
cf. the end of Section 4). Then, we considered the counterexamples from Section 8 for which the discrete
problems with discontinuous βi were not solvable. Now, solutions could be computed and we obtained
the following values of β1, . . . , β4:

data (8.3): β1 = 1, β2 = 1, β3 = 1, β4 = 0.041172246777;

data (8.4): β1 = 0, β2 = 0, β3 = 0.016194286589, β4 = 1;

data (8.5): β1 = 0, β2 = 0, β3 = 0.018436266748, β4 = 1.

Finally, we investigated numerically a possible violation of the discrete maximum principle by the
method (4.4), (4.5) if βi are defined by (9.1). We used ε̃ from (6.2) and considered problem (3.1) with
the data

b = 1, g = 0, uL = 1, uR = 0, (9.5)

and various values of ε > 0. According to (3.2), the exact solution of this problem is a decreasing
function with values in the interval [0, 1]. For small ε, the solution is nearly constant except for a small
neighbourhood of the right boundary point. Therefore, this problem is suitable for testing the validity of
the discrete maximum principle by comparing the maximum value of the approximate solution

umax
h = max

i=0,...,n+1
ui

with the value 1. We used several values of ε and, for each of them, we computed approximate solutions
for all values of h ≡ 1/(n + 1) � 0.25 leading to Pe � 1. It turns out that it is reasonable to consider
moderate Péclet numbers and large Péclet numbers separately. More precisely, we considered Pe ∈
[1, 20) and Pe ∈ [20, ∞) separately. We denote by MAX the maximum of umax

h − 1 over all h for which
the Péclet number belongs to the respective interval, by RMAX the maximum of (umax

h − 1)/h and by
PeRMAX the value of Pe for which the maximum RMAX is attained. The results are summarized in
Table 1. We observe that the results are in agreement with Theorem 9.1 and that the largest violations of
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Table 1 Violation of the discrete maximum principle for the data (9.5) and continuous βi given by (9.1)

Pe ∈ [1, 20) Pe ∈ [20, ∞)

ε MAX RMAX PeRMAX MAX RMAX PeRMAX

10−1 6.62−3 2.65−2 1.25 No Pe � 20
10−2 3.55−3 9.27−2 1.85 No Pe � 20
10−3 7.14−4 1.28−1 2.79 4.88−15 4.88−14 25.0
10−4 1.06−4 1.40−1 3.77 5.60−14 9.23−13 21.6
10−5 1.41−5 1.47−1 4.80 4.81−13 5.59−10 21.6
10−6 1.77−6 1.51−1 5.84 6.06−12 6.92−8 22.9

the discrete maximum principle appear for small Péclet numbers, i.e., when the mesh width approaches
the thickness of the boundary layer. The numerical results also suggest that the violation of the discrete
maximum principle is bounded by 0.2 min{h, ε ln(1/ε)} and is often significantly smaller, so that it is
negligible in the most cases. The results presented for Pe ∈ [20, ∞) are influenced by rounding errors
and hence differ from values that would be obtained in exact arithmetic.

10. Conclusions and outlook

An algebraic flux correction scheme of TVD type, generalizing the one proposed in Kuzmin (2007),
was studied in this work for one-dimensional steady-state convection–diffusion equations. The discrete
operator was reformulated as a nonlinear finite difference operator with a parameter vector. Possible
choices of this parameter vector were studied numerically. A fixed-point iteration was used for solving
the nonlinear problem. The main results of this work concern properties of the nonlinear problem and
the linear subproblems (discrete maximum principle, solvability). The unique solvability of the linear
subproblems was studied under rather general conditions on the parameter vector of the scheme. Coun-
terexamples concerning the existence of a solution of the nonlinear problem were provided. A modifica-
tion of the scheme was proposed for which the existence of a solution and a weak variant of the discrete
maximum principle were proved. Numerical experiments suggested that a good choice of the maximum
artificial diffusion is ε̃ = bh(coth Pe − 1/Pe)/2. Then the modified nonlinear scheme is solvable and, in
all numerical experiments, the approximate solutions were not smeared and the violation of the discrete
maximum principle was negligible.

Future work will study alternative algebraic flux correction schemes proposed, e.g., in Kuzmin
(2012). As a first step, it has to be ensured that a solution of these nonlinear schemes exists. If this
point is positively clarified, it makes sense to investigate the (order of) convergence to a solution. Of
course, a numerical analysis for multidimensional problems is of utmost interest. From our experience
so far, we think that such an analysis should initially consider model problems, simple domains and
structured grids.
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