
A nonlinear local projection stabilization for
convection-diffusion-reaction equations

Gabriel R. Barrenechea, Volker John, and Petr Knobloch

Abstract We propose a new local projection stabilization (LPS) finiteelement
method for convection-diffusion-reaction equations. Thediscretization contains a
crosswind diffusion term which depends on the unknown discrete solution in a
nonlinear way. Consequently, the resulting method is nonlinear. Solvability of the
nonlinear problem is established and an a priori error estimate in the LPS norm is
proved. Numerical results show that the nonlinear crosswind diffusion term leads to
a reduction of spurious oscillations.

1 Introduction

Let Ω ⊂ R
d, d ∈ {2,3}, be a bounded polygonal (polyhedral) domain with a

Lipschitz-continuous boundary∂Ω and let us consider the steady-state convection-
diffusion-reaction equation

−ε ∆u+b ·∇u+cu= f in Ω , u= ub on ∂Ω . (1)

It is assumed thatε is a positive constant andb∈W1,∞(Ω)d, c∈ L∞(Ω), f ∈ L2(Ω),
andub ∈ H1/2(∂Ω) are given functions satisfying
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σ := c−
1
2

∇ ·b ≥ σ0 > 0 in Ω ,

whereσ0 is a constant. Then the boundary value problem (1) has a unique solution
in H1(Ω).

The numerical solution of (1) is still a challenge if convection dominates diffu-
sion. In the framework of the finite element method, the common approach is to
apply a stabilized method, see [5] for a review. Linear stabilized methods typically
provide approximate solutions that possess spurious oscillations in layer regions.
These oscillations can be suppressed without smearing the layers significantly by
adding an additional artificial diffusion term depending onthe approximate solution
in a nonlinear way, see [2] for a review of various approachesof this type that we
call spurious oscillations at layers diminishing (SOLD) methods.

Here we concentrate on local projection stabilizations (LPS) [1, 3, 4]. In compar-
ison with residual-based methods, the linear LPS has several advantages. In particu-
lar, it does not contain second order derivatives, which maybe costly to implement,
and if applied to systems of PDEs, it does not lead to additional couplings between
various unknowns. To suppress oscillations in layer regions, we design a new non-
linear stabilization term inspired by both the linear LPS and the above-mentioned
nonlinear SOLD methods. Since we assume that the linear LPS adds enough ar-
tificial diffusion in the streamline direction, we introduce only crosswind diffusion
through the nonlinear term. To preserve the above-mentioned advantages of the LPS,
the residual usually appearing in SOLD terms is replaced by afluctuation of the
crosswind derivative of the approximate solution. This makes sense since the addi-
tional stabilization should be added in regions where oscillations in the crosswind
direction appear. For the resulting nonlinear method, we prove the existence of a
solution, without any restriction on the multiplicative factor in the nonlinear term.
Furthermore, we establish an a priori error estimate with respect to the standard LPS
norm. The properties of the new method are illustrated by numerical results. Let us
mention that such results cannot be obtained using a linear crosswind-diffusion term
since then a reduction of spurious oscillations would be possible only at the price of
a considerable smearing of the layers.

The plan of the paper is as follows. Section 2 will summarize the main abstract
hypothesis imposed on the different partitions ofΩ and the finite element spaces
considered. Section 3 presents the method whose well-posedness is analyzed in Sec-
tion 4. An a priori error estimates is derived in Section 5. Finally, numerical results
are presented in Section 6.

2 Assumptions

Given h > 0, let Wh ⊂ W1,∞(Ω) be a finite-dimensional space approximating the
spaceH1(Ω) and setVh =Wh∩H1

0(Ω). Next, letMh be a set consisting of a finite
number of open subsetsM of Ω such thatΩ = ∪M∈Mh M. It will be supposed that,
for anyM ∈ Mh,
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card{M′ ∈ Mh ; M∩M′ 6= /0} ≤C, (2)

hM := diam(M)≤Ch, (3)

hM ≤ChM′ ∀ M′ ∈ Mh, M∩M′ 6= /0. (4)

The spaceWh is assumed to satisfy the inverse inequality|vh|1,M ≤Ch−1
M ‖vh‖0,M for

anyvh ∈ Wh, M ∈ Mh. For anyM ∈ Mh, a finite-dimensional spaceDM ⊂ L∞(M)
is introduced. It is assumed that there exists a positive constantβLP independent of
h such that

sup
v∈VM

(v,q)M

‖v‖0,M
≥ βLP‖q‖0,M ∀ q∈ DM, M ∈ Mh ,

whereVM = {vh ∈ Vh ; vh = 0 in Ω \M}. Furthermore, for anyM ∈ Mh, a finite-
dimensional spaceGM ⊂ L∞(M) containing the spaceDM is introduced such that
(∂vh/∂xi)|M ∈ GM for anyvh ∈Wh, i = 1, . . . ,d, and it is assumed that

‖q‖0,∞,M ≤Ch
− d

2
M ‖q‖0,M ∀ q∈ GM, M ∈ Mh . (5)

To characterize the approximation properties of the spacesWh andDM, it is as-
sumed that there exist interpolation operatorsih ∈ L (H2(Ω),Wh)∩L (H2(Ω)∩
H1

0(Ω),Vh) and jM ∈L (H1(M),DM), M ∈Mh, such that, for some constantsl ∈N

andC> 0 and for any setM ∈ Mh, it holds

|v− ihv|1,M +h−1
M ‖v− ihv‖0,M ≤Chk

M |v|k+1,M ∀ v∈ Hk+1(M), k= 1, . . . , l , (6)

‖q− jMq‖0,M ≤Chk
M |q|k,M ∀ q∈ Hk(M), k= 1, . . . , l . (7)

We refer to [3] for examples of spacesWh and DM possessing the properties
formulated in this section.

3 A local projection discretization

The weak form of problem (1) is: Findu∈ H1(Ω) such thatu= ub on ∂Ω and

a(u,v) = ( f ,v) ∀ v∈ H1
0(Ω) , (8)

where(·, ·) denotes the inner product inL2(Ω) and the bilinear forma is given by

a(u,v) = ε (∇u,∇v)+(b ·∇u,v)+(cu,v) .

For anyM ∈Mh, a continuous linear projection operatorπM is introduced which
maps the spaceL2(M) onto the spaceDM. It is assumed that‖πM‖

L (L2(M),L2(M)) ≤C
for any M ∈ Mh. Using this operator, the fluctuation operatorκM := id − πM is
defined, whereid is the identity operator onL2(M). Then, clearly
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‖κM‖
L (L2(M),L2(M)) ≤C ∀ M ∈ Mh . (9)

SinceκM vanishes onDM, it follows from (9) and (7) that

‖κM q‖0,M ≤Chk
M |q|k,M ∀ q∈ Hk(M), M ∈ Mh, k= 0, . . . , l . (10)

An application ofκM to a vector-valued function means thatκM is applied compo-
nentwise.

For anyM ∈ Mh, a constantbM ∈ R
d is chosen such that

|bM| ≤ ‖b‖0,∞,M , ‖b−bM‖0,∞,M ≤ChM |b|1,∞,M . (11)

A typical choice forbM is the value ofb at one point ofM, or the integral mean
value ofb overM. In addition, a functioñubh ∈Wh is introduced such that its trace
approximates the boundary conditionub.

We are now ready to present the finite element method to be studied: Finduh ∈Wh

such thatuh− ũbh ∈Vh and

a(uh,vh)+sh(uh,vh)+dh(uh;uh,vh) = ( f ,vh) ∀ vh ∈Vh , (12)

where

sh(u,v) = ∑
M∈Mh

τM (κM(bM ·∇u),κM(bM ·∇v))M ,

dh(w;u,v) = ∑
M∈Mh

(τsold
M (w)κM(PM∇u),κM(PM∇v))M ,

(·, ·)M is the inner product inL2(M) andPM : Rd → R
d is the orthogonal projection

onto the line (plane) orthogonal tobM. The stabilization parameters are given by

τM = τ0 min

{
hM

‖b‖0,∞,M
,
h2

M

ε

}
,

τsold
M (uh) =





β hM |bM|
hd

M |κM(PM∇uh)|
2

|uh|
2
1,M

if |uh|1,M 6= 0,

0 if |uh|1,M = 0,

whereτ0 andβ are positive constants.

Remark 1.Using (11), (9), and‖PM‖2 = 1, one obtains

‖τsold
M (v)‖0,1,M ≤Ch1+d

M ‖b‖0,∞,M ∀ v∈ H1(Ω), M ∈ Mh . (13)

In the analysis, the error will be measured using the following mesh-dependent
norm

‖v‖LPS :=
(

ε |v|21,Ω +‖σ1/2v‖2
0,Ω +sh(v,v)

)1/2
.
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Note that integrating by parts gives

a(v,v)+sh(v,v) = ‖v‖2
LPS ∀ v∈ H1

0(Ω) . (14)

4 Well-posedness of the nonlinear discrete problem

This section studies the existence of solutions for the nonlinear discrete problem
(12). Let us define the nonlinear operatorTh : Vh →Vh by

(Thzh,vh) = a(zh+ ũbh,vh)+sh(zh+ ũbh,vh)+dh(zh+ ũbh;zh+ ũbh,vh)− ( f ,vh)

for anyzh,vh ∈Vh. Thenuh ∈Wh is a solution of (12) if and only ifuh|∂Ω = ũbh|∂Ω
andTh(uh− ũbh) = 0. Thus, our aim is to prove that the operatorTh has a zero inVh.
To this end, we shall use the following simple consequence ofBrouwer’s fixed-point
theorem.

Lemma 1. Let X be a finite-dimensional Hilbert space with inner product (·, ·) and
norm‖ · ‖. Let P: X → X be a continuous mapping and K> 0 a real number such
that (Px,x) > 0 for any x∈ X with ‖x‖ = K. Then there exists x∈ X such that
‖x‖ ≤ K and Px= 0.

Proof. See [6, p. 164, Lemma 1.4].

Theorem 1. The problem (12) has a solution.

Proof. In view of (14), for anyzh ∈Vh, it holds

(Thzh,zh) = ‖zh‖
2
LPS+dh(zh+ ũbh;zh,zh)

+a(ũbh,zh)+sh(ũbh,zh)+dh(zh+ ũbh; ũbh,zh)− ( f ,zh).

According to (13), one has

|dh(u;v,z)| ≤C ∑
M∈Mh

h1+d
M ‖b‖0,∞,M ‖κM(PM∇v)‖0,∞,M ‖κM(PM∇z)‖0,∞,M

for anyu,v,z∈W1,∞(Ω). Thus, applying (5), (9), the equivalence of norms on finite-
dimensional spaces, the Cauchy-Schwarz inequality, and the Young inequality, one
deduces that

(Thzh,zh)≥
1
2
‖zh‖

2
LPS−C0 (‖ũbh‖

2
0,Ω +‖ f‖2

0,Ω ) ,

whereC0 > 0 depends onε, b, c, σ0, h, andWh but not onzh. Consequently,

(Thzh,zh)≥C1‖zh‖
2
0,Ω −C2 ∀ zh ∈Vh ,

whereC1, C2 are positive constants. Thus, in view of Lemma 1 with anyK >√
C2/C1, the operatorTh has a zero and hence the problem (12) has a solution.
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5 Error estimate

Lemma 2. There exists an operatorρh : L2(Ω) → Vh such that, for any v,w ∈
L2(Ω), the following estimates hold

|(v−ρhv,w)| ≤C ∑
M∈Mh

‖v‖0,M ‖κMw‖0,M , (15)

|ρhv|21,M +h−2
M ‖ρhv‖2

0,M ≤C ∑
M′ ∈ Mh,
M∩M′ 6= /0

h−2
M′ ‖v‖2

0,M′ ∀ M ∈ Mh . (16)

Proof. See [4, Lemma 1].

Using the operatorsih andρh, we introduce the operatorrh ∈ L (H2(Ω),Wh)∩
L (H2(Ω)∩H1

0(Ω),Vh) by rhv := ihv+ρh(v− ihv). To formulate the interpolation
properties ofrh, it is convenient to introduce the mesh dependent norm

‖v‖1,h =

(

∑
M∈Mh

{|v|21,M +h−2
M ‖v‖2

0,M}

)1/2

.

Then, using (16), (2), (3), and (6), one obtains

‖v− rhv‖1,h ≤C‖v− ihv‖1,h ≤ C̃hk |v|k+1,Ω ∀ v∈Hk+1(Ω), k= 1, . . . , l . (17)

Lemma 3. Let u∈ Hk+1(Ω) for some k∈ {1, . . . , l}, and letη := u− rhu. Then, for
any vh ∈Vh\{0}, the following estimate holds

‖η‖LPS+
a(η ,vh)+sh(η ,vh)−sh(u,vh)

‖vh‖LPS

≤C
(
ε +h‖b‖0,∞,Ω +h2‖σ‖0,∞,Ω +h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω . (18)

Proof. See [4].

Lemma 4. For any wh ∈Wh and u∈ Hk+1(Ω) with k∈ {1, . . . , l}, it holds

dh(wh; rhu, rhu)≤C‖b‖0,∞,Ω h2k+1 |u|2k+1,Ω . (19)

Proof. First, the application of (5), (13), and (3) leads to

dh(wh; rhu, rhu)≤ ∑
M∈Mh

‖τsold
M (wh)‖0,1,M ‖κM(PM∇(rhu))‖2

0,∞,M

≤Ch‖b‖0,∞,Ω ∑
M∈Mh

‖κM∇(rhu)‖2
0,M .

Using (9) and (10), foru∈ Hk+1(Ω) with k∈ {1, . . . , l} there holds
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‖κM∇(rhu)‖0,M ≤ ‖κM∇u‖0,M +‖κM∇(u− rhu)‖0,M

≤Chk
M |u|k+1,M +C|u− rhu|1,M .

Thus, (19) follows from (2), (3), and (17).

We are now in a position to prove the main result of this paper.

Theorem 2. Let the weak solution of (1) satisfy u∈Hk+1(Ω) for some k∈{1, . . . , l}.
Let ũb ∈ H2(Ω) be an extension of ub and letũbh= ihũb. Then the solution uh of the
local projection discretization (12) satisfies the error estimate

‖u−uh‖LPS≤C
(
ε +h‖b‖0,∞,Ω +h2‖σ‖0,∞,Ω +h2 |b|21,∞,Ω σ−1

0

)1/2
hk |u|k+1,Ω .

Proof. Setη := u− rhu andeh := uh− rhu. From (12) and (8), it follows that

a(eh,eh)+sh(eh,eh)+dh(uh;uh,eh)

= a(uh,eh)+sh(uh,eh)+dh(uh;uh,eh)−a(rhu,eh)−sh(rhu,eh)

= a(η ,eh)+sh(η ,eh)−sh(u,eh) .

Thus, in view of (14), one gets

‖eh‖
2
LPS+dh(uh;eh,eh) = a(η ,eh)+sh(η ,eh)−sh(u,eh)−dh(uh; rhu,eh) .

The first three terms on the right-hand side can be estimated using (18). Apply-
ing Hölder’s and Young’s inequalities, one getsdh(uh; rhu,eh) ≤ dh(uh; rhu, rhu)+
1
4 dh(uh;eh,eh). Therefore, using (19), one obtains

‖eh‖
2
LPS+dh(uh;eh,eh)

≤C
(
ε +h‖b‖0,∞,Ω +h2‖σ‖0,∞,Ω +h2 |b|21,∞,Ω σ−1

0

)
h2k |u|2k+1,Ω .

Finally, using the triangle inequality and the estimate (18), the statement of the
theorem follows.

6 Numerical results

In this section we illustrate the properties of the method proposed in this paper by
numerical results obtained for the following example.

Example 1. Solution with two interior layers.Equation (1) is considered withΩ =
(0,1)2, ε = 10−8, b(x,y) = (−y,x)T , c= f = 0, and the boundary conditions

u= ub on Γ D ,
∂u
∂n

= 0 on Γ N ,
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Fig. 1 LPS solutions forτ0 = 0.02,β = 0 (left) andτ0 = 0.02,β = 0.05 (right).

whereΓ N = {0}× (0,1), Γ D = ∂Ω \Γ N, n is the outward pointing unit normal
vector to the boundary ofΩ , and

ub(x,y) =

{
1 for (x,y) ∈ (1/3,2/3)×{0},
0 else onΓ D.

We used a triangulationTh of Ω constructed by dividingΩ into 32×32 equal
squares and each square into two triangles by drawing a diagonal from bottom left
to top right. Each setM ∈ Mh is the union of all triangles ofTh possessing a com-
mon interior vertex ofTh. Thus the sets fromMh generally overlap. The spaceWh

consists of continuous piecewise linear functions and the spacesDM are spaces of
constant functions. Figure 1 shows that the crosswind diffusion termdh leads to a
reduction of spurious oscillations compared to the standard linear LPS method.
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