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Abstract We propose a new local projection stabilization (LPS) firstement

method for convection-diffusion-reaction equations. Tgcretization contains a
crosswind diffusion term which depends on the unknown digcsolution in a
nonlinear way. Consequently, the resulting method is neali. Solvability of the

nonlinear problem is established and an a priori error egérm the LPS norm is
proved. Numerical results show that the nonlinear crosswifiusion term leads to
a reduction of spurious oscillations.

1 Introduction

Let Q@ c RY, d € {2,3}, be a bounded polygonal (polyhedral) domain with a
Lipschitz-continuous boundag/Q and let us consider the steady-state convection-
diffusion-reaction equation

—&€Au+b-Ou+cu=f inQ, u=u, 0ondQ. Q)

Itis assumed that is a positive constant arile W= (Q)9, ce L®(Q), f € L2(Q),
andu, € HY2(0Q) are given functions satisfying
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0:=c—%D~b200>0 inQ,
whereagy is a constant. Then the boundary value problem (1) has a ersiglution
inHY(Q).

The numerical solution of (1) is still a challenge if comientdominates diffu-
sion. In the framework of the finite element method, the comrapproach is to
apply a stabilized method, see [5] for a review. Linear ditedid methods typically
provide approximate solutions that possess spuriouslatsails in layer regions.
These oscillations can be suppressed without smearingyeesl significantly by
adding an additional artificial diffusion term dependingtbe approximate solution
in a nonlinear way, see [2] for a review of various approadfehis type that we
call spurious oscillations at layers diminishing (SOLD)thezls.

Here we concentrate on local projection stabilizations) R, 3, 4]. In compar-
ison with residual-based methods, the linear LPS has dadrantages. In particu-
lar, it does not contain second order derivatives, which beagostly to implement,
and if applied to systems of PDEs, it does not lead to additioauplings between
various unknowns. To suppress oscillations in layer regiore design a new non-
linear stabilization term inspired by both the linear LP$l &ime above-mentioned
nonlinear SOLD methods. Since we assume that the linear IS @enough ar-
tificial diffusion in the streamline direction, we introdeionly crosswind diffusion
through the nonlinear term. To preserve the above-merdiadeantages of the LPS,
the residual usually appearing in SOLD terms is replaced Bycauation of the
crosswind derivative of the approximate solution. This ggkense since the addi-
tional stabilization should be added in regions where taimhs in the crosswind
direction appear. For the resulting nonlinear method, vev@ithe existence of a
solution, without any restriction on the multiplicativectar in the nonlinear term.
Furthermore, we establish an a priori error estimate wipeet to the standard LPS
norm. The properties of the new method are illustrated byerigal results. Let us
mention that such results cannot be obtained using a limesswind-diffusion term
since then a reduction of spurious oscillations would besibes only at the price of
a considerable smearing of the layers.

The plan of the paper is as follows. Section 2 will summarieemain abstract
hypothesis imposed on the different partitions(fand the finite element spaces
considered. Section 3 presents the method whose well-peseds analyzed in Sec-
tion 4. An a priori error estimates is derived in Section Hdfy, numerical results
are presented in Section 6.

2 Assumptions

Givenh > 0, letW, c W*(Q) be a finite-dimensional space approximating the
spaceH(Q) and seM, =W, NHE(Q). Next, let.#4, be a set consisting of a finite
number of open subsel of Q such thatQ = Uue_4, M. It will be supposed that,
foranyM € .,
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cardM’ € #,; MNM’ #£0} <C, 2
hy :=diam(M) < Ch, (3)
hw <Chw VM €., MAM £0. (4)

The spac#\, is assumed to satisfy the inverse inequalify; ,; < Chy [[Vhllom for
anyvy, € Wh, M € .. For anyM € .4, a finite-dimensional spadey C L’°°(M)
is introduced. It is assumed that there exists a positiveteons p independent of
h such that

V.
Sup( 7q)M
vevi [IVllom

>PBerlldlom YA€ Dwm, M€ 4,

whereViy = {vy € Vi; v = 0in Q \ M}. Furthermore, for anMl € .#,, a finite-
dimensional spac&y C L*(M) containing the spacBy is introduced such that
(0Vh/0%i)|y € Gm for anyv, e Wy, i =1,...,d, and it is assumed that

_d
[dllowm <Chy®lldllom ~ Vd€Gm, M e 7. (5)

To characterize the approximation properties of the spagesndDyy, it is as-
sumed that there exist interpolation operatigrs . (H?(Q),W,) N.Z(H?(Q)N
H(Q),W) andju € £ (HY(M),Dm), M € 4, such that, for some constamts N
andC > 0 and for any seM € .44, it holds

V= inVlom + gt IV=inVllom < CHy Vi am  YveHKE M), k=1,....1, (6)
la—jmdllom <CHylalm  YaeH M), k=1,....1. (7)

We refer to [3] for examples of spac®4, and Dy possessing the properties
formulated in this section.

3 A local projection discretization

The weak form of problem (1) is: Find< H(Q) such that = u, ondQ and
auv) = (f,v) VveH}Q), (8)
where(-,-) denotes the inner product irf(Q) and the bilinear forna is given by
a(u,v) = & (0Ou,0v) 4 (b- Ou,v) + (cu,v).

For anyM € ., a continuous linear projection operatgy is introduced which
maps the spade?(M) onto the spacBw. Itis assumed thafri || (2w L2m)) <C
for any M € .#},. Using this operator, the fluctuation operatqf := id — 1y is
defined, wheréd is the identity operator ob?(M). Then, clearly
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[kl 2 2my 2y <C - VM € . 9)
Sinceky vanishes oy, it follows from (9) and (7) that
lkmdllom <Chtlalw  VaeH M), M e, k=0.....I.  (10)

An application ofky; to a vector-valued function means thaj is applied compo-
nentwise.
For anyM € .4}, a constanby, € RY is chosen such that

Ibm| < [[Bllo,com 5 b —bmlgcom < Chw [Bf1com- (11)

A typical choice forby is the value ofb at one point ofM, or the integral mean
value ofb overM. In addition, a functioni,, € W, is introduced such that its trace
approximates the boundary conditiogn

We are now ready to present the finite element method to beestueinduy, € W,
such thauy, — Uph € V,, and

a(Un, Vh) + Sh(Un, Vh) + dn(Un;Un, Vh) = (f,Vh) ¥V Vh € Vi, (12)
where

sh(uv) = > v (Km(bw - Ou), km(bm - 0OV))m

Me.
dh(wuv) =3 (W) ki (Ru D), kv (R V)
Me.

(-,-)m is the inner product ih?(M) andRy : RY — RY is the orthogonal projection
onto the line (plane) orthogonal by,. The stabilization parameters are given by

. h h2
v = To Min M. Tm L
[bllg.eonm €

hd [km (Bv Dup) 12 .
B o PEMENERE i, 0

hi1.m
0 if |Uh‘17yv| =0,

o Y(un) =

wheretp andf are positive constants.

Remark 1Using (11), (9), andPu |, = 1, one obtains
I “Mlloam <ChyIblowm  YVEH Q) Mesh.  (13)

In the analysis, the error will be measured using the folhguinesh-dependent
norm

1/2

1/2
) 2 2
[VllLps = (5|V|1,Q+||U V6.0 +5t1(\4V)>
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Note that integrating by parts gives

a(v,v) +sn(vVv) = |vilfps  ¥veEHH(Q). (14)

4 Well-posedness of the nonlinear discrete problem

This section studies the existence of solutions for theineat discrete problem
(12). Let us define the nonlinear operaigr. Vi, — Vj, by

(Thzn, Vh) = @(Zn + Uph, Vh) + Sh(Zn + Uph, Vi) + An(Zn + Ubh; Za + Ubh, Vi) — (T, Vh)

for anyz,, vy € Vh. Thenu, € W, is a solution of (12) if and only itin| ;, = Ubn| 0
andTh(un — Upn) = 0. Thus, our aim is to prove that the operaiphas a zero iv;,.
To this end, we shall use the following simple consequen& aiiwer’s fixed-point
theorem.

Lemma 1. Let X be a finite-dimensional Hilbert space with inner pradgc) and
norm|| - ||. Let P: X — X be a continuous mapping and>K0 a real number such
that (Px,x) > 0 for any xe X with ||x|| = K. Then there exists & X such that
IIX]| < K and Px=0.

Proof. See [6, p. 164, Lemma 1.4].
Theorem 1. The problem (12) has a solution.
Proof. In view of (14), for anyz, € V,, it holds

(Thzn, 2n) = [|Z0|Eps + An(2n -+ T Zn, Zn)
+a(Uph, Zn) + Sh(Ubh, Zn) + An(Zn + Uph; Uph, Z0) — (T, 20).

According to (13), one has

|Ah(Uv.2)| <C 5 Dy [1Blloeo it K0 (PMEV) oot | Kt (PE2) .00
Me. #y

for anyu,v,ze W*(Q). Thus, applying (5), (9), the equivalence of norms on finite-

dimensional spaces, the Cauchy-Schwarz inequality, andfdhng inequality, one
deduces that

1 .
(Thzh,2) = 5 |Zn[1Eps — Co (I[TbnllE.o + I F1l5.0) -
whereCp > 0 depends oua, b, ¢, gy, h, andW, but not onz,. Consequently,

(Thzn.20) > Cal|z0ll§ o —Co VZn € Vi,

whereC,, C, are positive constants. Thus, in view of Lemma 1 with &y
\/C2/C1, the operatoil,, has a zero and hence the problem (12) has a solution.
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5 Error estimate

Lemma 2. There exists an operatqo, : L?(Q) — Vi such that, for any w ¢
L?(Q), the following estimates hold

[(V=pvywW)| <C % [IVllom [IkmMWliowm (15)
Me .y,

eviZu i loviBu<C S hZIVIRw  YMezn.  (16)
M’ € 4,
MNM’' #0
Proof. See [4, Lemma 1].

Using the operatori, andp,, we introduce the operatoy € .2(H?(Q),W,) N
ZL(H2(Q)NHE(Q),Vh) by rpv = inv+ pn(v—inv). To formulate the interpolation
properties ofy, it is convenient to introduce the mesh dependent norm

1/2
IVll1h = ( S {Vim +hMZIVII%,M}> :
Me
Then, using (16), (2), (3), and (6), one obtains
V=tV p SCIIV=inVl1n <CH V10 VVEHM(Q), k=1,...,I. (17)

Lemma 3. Let uc H*1(Q) for some ke {1,...,1}, and letn := u—rnu. Then, for
any v, € i\ {0}, the following estimate holds
a(n,Vh) + h(N;Vh) — Sh(U, Vh)
[Vnll ps
112
<C(e+h[bllowq+ h? 10100 + h? |b|ioo.(2 ") h Ulki10-  (18)

Inllps+

Proof. See [4].
Lemma 4. For any w, € W, and ue H**1(Q) with ke {1,...,1}, it holds

A (Wh; P, ThU) < C ]l 0 PP [UR 1 0 (19)
Proof. First, the application of (5), (13), and (3) leads to

On(Wh; it ) < 5 ] T (Wh) [lo.2.m 1 Knm (RO (rnU)) 18 o
Me.

<Ch[bllowe 5 lIKmO(rau)l[am-
Me. 1

Using (9) and (10), fou € H**1(Q) with k € {1,...,I} there holds
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[[kmO(rau)llom < [lkmBulom + [[KmO(U—Thu)||om
< CH [Ulies 1 +ClU—Thlp -
Thus, (19) follows from (2), (3), and (17).
We are now in a position to prove the main result of this paper.

Theorem 2. Let the weak solution of (1) satisfyaH**1(Q) for some ke {1,...,1}.
Letly € H?(Q) be an extension of,.and letly, = inly. Then the solutionyiof the
local projection discretization (12) satisfies the errotiemte

2 2112
Ju—Unlps < C(e+h]bllgw.o +h°[|0llgw.a +h*|blTe.o g

K
hluli10-

Proof. Setn :=u—rpuande, ;= u, — rhpu. From (12) and (8), it follows that

a(en, en) + sh(en, en) + dn(Un; Un, €n)
= a(Un, €n) + Sh(Un, €n) + dn(Un; Un, €n) — &(rU, €n) — Sn(rnU, €n)
=a(n,en) +s(n,en) —s(u,en).

Thus, in view of (14), one gets
||en||Zps+ dh(Un; €n,€n) = a1, en) + (11, €n) — Sn(U, €n) — tn(Un; U, &) -

The first three terms on the right-hand side can be estimagid) (18). Apply-
ing Holder’'s and Young’s inequalities, one gekg up; rpu, en) < dn(Up;rpu, rpu) +
%dh(uh;en,en). Therefore, using (19), one obtains

||€nl|Zps + dn(Un; €n, €n)
<C(e+hl[bllowa+ h? 10]l0.0.0 + h? |b\ioo.,9 00_1) h? |U|E+1,Q .

Finally, using the triangle inequality and the estimate)(1Be statement of the
theorem follows.

6 Numerical results

In this section we illustrate the properties of the methazppsed in this paper by
numerical results obtained for the following example.

Example 1. Solution with two interior layer&quation (1) is considered witQ =
(0,1)2, e =108, b(x,y) = (-y,x)T, c= f = 0, and the boundary conditions

au
= onrP — =0 onrN
U=uUp ) an )
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Fig. 1 LPS solutions forg = 0.02, 8 = 0 (left) andtg = 0.02, 8 = 0.05 (right).

whereN = {0} x (0,1), F'® = 9Q\ N, n is the outward pointing unit normal
vector to the boundary d®, and

1 for(xy) € (1/3,2/3) x {0},
Up(X,Y) = {0 else onP.

We used a triangulatioy, of Q constructed by dividindg? into 32x 32 equal
squares and each square into two triangles by drawing anhfom bottom left
to top right. Each se¥l € ., is the union of all triangles of}, possessing a com-
mon interior vertex of7,. Thus the sets from#}, generally overlap. The spa®g,
consists of continuous piecewise linear functions and plaeasDy, are spaces of
constant functions. Figure 1 shows that the crosswind glffutermdy, leads to a
reduction of spurious oscillations compared to the stashtiaear LPS method.
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