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1. Introduction

The numerical stability of a convection-diffusion equation is, for the most part, due

to the presence of the diffusion term. Then, when convection dominates diffusion,

it is natural to expect that instabilities appear in the numerical solution. These
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instabilities result in the presence of large over and undershoots, which are a sign

of a violation of the discrete maximum principle (DMP). To correct the violation

of the DMP, many methods have been proposed and analyzed over the years. The

first attempt is to add enough numerical diffusion to make the problem diffusion-

dominated, and then the DMP follows under appropriate assumptions (see, e.g.,

Ref. 23). This crude strategy leads to numerical results which are extremely diffu-

sive, and then not usable in practice. This fact motivated the introduction of the

so-called shock-capturing methods, which are characterized by adding an extra term

to the discrete formulation. This extra term contains a viscosity coefficient which is

solution-dependent, hence making the method nonlinear (see Ref. 21 for a review).

Nonlinear discretizations are not necessarily guaranteed to preserve the DMP, and,

up to our best knowledge, the first one was the work of Ref. 31. Later approaches

include Refs. 9, 11, 3, 4, 14, 5.

All the above-mentioned references share two main hypotheses, namely, the need

to use first-order polynomials, and certain assumptions on the mesh. More precisely,

in the two-dimensional case the mesh is supposed to be a Delaunay one. This restric-

tion can be tracked back to the first work concerning the validity of the DMP, even

for a Laplace equation, i.e., the work of Ref. 13. Since then, several generalizations

and attempts to overcome that restriction have been done. For example, in Ref. 10

an anisotropic Laplacian was added to the formulation, and the DMP can be proved

for more general cases. More recently, in the context of hyperbolic equations, the

works of Refs. 18, 17 propose methods that can overcome this restriction, while at

the same time providing approximations that converge to the entropy solution. It

is important to remark that these last references’ possible extension to the case in

which diffusion is present in the equations does not seem to be an easy task.

One particular nonlinear discretization, designed to satisfy the DMP by con-

struction, is the one known as Algebraic Flux Correction (AFC) method. The ori-

gins of this method can be tracked back to Refs. 8, 33, and it has enjoyed a large

development in the last decade thanks to the work of D. Kuzmin and co-workers

(see Refs. 24, 25, 26, 27, 28, and Ref. 29 for a recent review). This class of meth-

ods, unlike previous discretizations, is not based on a variational formulation of the

problem, but rather in a rewriting of the resulting linear system in which the right-

hand side is written as the sum of antidiffusive fluxes. This rewriting shows that

these fluxes are responsible for the violation of the DMP, and then AFC schemes

limit them using solution-dependent limiters. Despite the fact of providing good

numerical results (apart from the above-cited references, see also the review works

of Refs. 22, 1 for some further numerical results), until very recently, no mathe-

matical analysis had been carried out for the AFC schemes. The first works in this

direction are, up to our best knowledge, Refs. 6, 7. Surprisingly, the proof of the

DMP given in Ref. 7 also requires the use of a Delaunay mesh. Then, despite the

fact that the geometry of the mesh does not enter explicitly in the definition of the

AFC methods, some results on them still depend on the geometry of the mesh. This

fact motivates the search for modifications of the limiters that generate methods
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satisfying the DMP on general meshes.

Another important property that is often requested to numerical discretizations

is the so-called linearity preservation. This property requests that the modification

added to the formulation vanishes if the solution is a first-order polynomial (at

least locally). This restriction, which can be interpreted as a weak consistency re-

quirement, is believed to lead to improved accuracy in smooth regions. In fact, in

previous works, linearity preservation has been linked to good convergence prop-

erties for diffusion problems (see, e.g., Refs. 20, 30). Even if this is a requirement

that may seem natural, this condition has been proposed in a very heuristic man-

ner. As a matter of fact, in many works the proposed method has been claimed

to be linearity preserving, but a proof of this fact is just hinted, or even lacking.

In addition, although this property, so far, has not been proved mathematically to

be a sufficient, or even a necessary, condition for good numerical behavior, it has

been observed in different works (see, e.g., Ref. 12, and, especially, the introduction

in Ref. 15 for a discussion), that linearity preservation improves the quality of the

numerical solution on distorted meshes.

Based on the above considerations, our main objective in this work is to propose

a definition of the limiters in an AFC method for a convection-diffusion-reaction

equation that achieves two main goals: satisfaction of the DMP and linearity preser-

vation, both on general simplicial meshes. To achieve this, we write down the main

requirements to be satisfied by the limiters, and proceed to modify the algorithm

proposed in Ref. 28 in such a way that these two properties are valid on general

meshes. More precisely, the limiters from Ref. 28 are modified with factors that de-

pend on the geometry of the elements that share a given node of the triangulation.

Hence, this approach introduces explicit geometric information about the mesh into

the algorithm.

Numerical studies will support the analytical results. In addition they show

that the numerical solutions obtained with the new limiter possess further desirable

properties compared with the solutions computed with the limiter from Ref. 25,

which is considered to be a method of choice: there is an optimal convergence on

distorted meshes in the diffusion-dominated regime and a sharper layer is obtained

in a standard test problem for the convection-dominated case.

It is worth mentioning that methods of AFC type we have found in the literature

do not satisfy the objectives of our paper in the required generality. For example,

the techniques of Ref. 28, used as a basis for our method, are proved to be linear-

ity preserving only on symmetric meshes as we discuss in Remark 6.3 below. The

method recently presented in Ref. 5 has been proved to preserve the DMP only

for meshes that satisfy the condition of Xu & Zikatanov32, and this condition is

sharp when the diffusion dominates. The linearity preservation of this method is

again restricted to symmetric meshes. An alternative making the method linearity

preserving for more general meshes requires solving an optimization problem for

each interior node of the mesh, thus making the method more involved. Very re-

cently, another monotone and linearity preserving method was proposed in Ref. 2
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for conservation laws. However, it is not clear whether the DMP still holds when this

method is applied to a convection-diffusion-reaction equation, which is our problem

of interest. Moreover, the authors of Ref. 2 propose to use a regularization strategy

to make the method twice differentiable and hence suitable for applying Newton’s

method but then the linearity preservation property is lost. Thus, up to our best

knowledge, the method presented in this paper is the first method that satisfies

both the DMP and linearity preservation on general simplicial meshes, when the

equation under consideration is a convection-diffusion-reaction equation. In partic-

ular, as a special result, a monotone and linearity preserving discretization of the

Poisson equation on general simplicial meshes is obtained.

The rest of the paper is organized as follows. In Sec. 2, AFC schemes are pre-

sented in their most general form. Then, the minimal requirements on the limiter

in order to satisfy the DMP are laid down in Sec. 3. Our concrete proposal for the

limiter is given in Sec. 4. Sec. 5 is devoted to the application of the AFC scheme to

the convection-diffusion-reaction equation and its analysis. The final ingredient in

the definition of the limiter, namely, the computation of the multiplicative factor

introduced in order to make the method linearity preserving, is presented in Sec. 6.

Finally, some numerical results supporting our claims are given in Sec. 7.

2. An Algebraic Flux Correction Scheme

Consider a linear boundary value problem for which the maximum principle holds.

Let us discretize this problem by the finite element method. Then, the discrete

solution can be represented by a vector U ∈ RN of its coefficients with respect to

a basis of the respective finite element space. Let us assume that the last N −M
components of U (0 < M < N) correspond to nodes where Dirichlet boundary

conditions are prescribed whereas the first M components of U are computed using

the finite element discretization of the underlying partial differential equation. Then

U ≡ (u1, . . . , uN ) satisfies a system of linear equations of the form

N∑
j=1

aij uj = gi , i = 1, . . . ,M , (2.1)

ui = ubi , i = M + 1, . . . , N . (2.2)

We assume that the matrix (aij)
M
i,j=1 is positive definite, i.e.,

M∑
i,j=1

ui aij uj > 0 ∀ (u1, . . . , uM ) ∈ RM \ {0} . (2.3)

To introduce an algebraic flux correction scheme, we first extend the matrix

of (2.1) to a matrix A = (aij)
N
i,j=1. For example, one can simply use the finite

element matrix corresponding to the above-mentioned finite element discretization

in the case when homogeneous natural boundary conditions are used instead of the
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Dirichlet ones. We shall consider this matrix with the following modification:

aji := 0 if aij < 0 , i = 1, . . . ,M , j = M + 1, . . . , N . (2.4)

This reduces the amount of artificial diffusion introduced by the matrix D defined

next.

Using the matrix A = (aij)
N
i,j=1, we introduce a symmetric artificial diffusion

matrix D = (dij)
N
i,j=1 with entries

dij = dji = −max{aij , 0, aji} ∀ i 6= j , dii = −
∑
j 6=i

dij . (2.5)

This definition guarantees that the matrix Ã := A+D has positive diagonal entries

and non-positive off-diagonal entries. If, in addition,

N∑
j=1

aij ≥ 0 , i = 1, . . . ,M , (2.6)

then the matrix Ã satisfies sufficient conditions to preserve the discrete maximum

principle. Note that the property (2.6) is usually satisfied by finite element dis-

cretizations of elliptic equations arising in applications.

Going back to the solution of (2.1), this system is equivalent to

(ÃU)i = gi + (DU)i , i = 1, . . . ,M . (2.7)

Since the row sums of the matrix D vanish, it follows that

(DU)i =
∑
j 6=i

fij , i = 1, . . . , N ,

where fij = dij (uj − ui). Clearly, fij = −fji for all i, j = 1, . . . , N . The idea of the

algebraic flux correction scheme is to limit those anti-diffusive fluxes fij that would

otherwise cause spurious oscillations. To this end, system (2.1) (or, equivalently,

(2.7)) is replaced by

(ÃU)i = gi +
∑
j 6=i

αij fij , i = 1, . . . ,M , (2.8)

with solution-dependent correction factors αij ∈ [0, 1]. For αij = 1, the original

system (2.1) is recovered. Hence, intuitively, the coefficients αij should be as close

to 1 as possible to limit the modifications of the original problem. So far, these

coefficients have been chosen in various ways, and their definition is always based

on the above fluxes fij , see Refs. 24, 25, 26, 27, 28 for examples. To guarantee that

the resulting scheme is conservative, and to be able to show existence of solutions,

one should require that the coefficients αij are symmetric, i.e.,

αij = αji , i, j = 1, . . . ,M . (2.9)
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Rewriting the equation (2.8) using the definition of the matrix Ã, one obtains

the following expression for the algebraic flux correction scheme:

N∑
j=1

aij uj +

N∑
j=1

(1− αij) dij (uj − ui) = gi , i = 1, . . . ,M , (2.10)

ui = ubi , i = M + 1, . . . , N , (2.11)

where αij = αij(u1, . . . , uN ) ∈ [0, 1], i = 1, . . . ,M , j = 1, . . . , N , satisfy (2.9).

The following theorem states sufficient conditions on the limiters αij assuring

the solvability of the nonlinear discrete problem (2.10), (2.11). Our proposal for

such limiters will be given in Sec. 4.

Theorem 2.1. Let (2.3) hold. For any i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}, let

αij : RN → [0, 1] be such that αij(u1, . . . , uN )(uj − ui) is a continuous function

of u1, . . . , uN . Finally, let the functions αij satisfy (2.9). Then there exists a solu-

tion of the nonlinear problem (2.10), (2.11).

Proof. See Theorem 3.3 in Ref. 7.

It is worth mentioning that the symmetry property (2.9) is necessary for the

validity of Theorem 2.1, see Ref. 6.

3. The Discrete Maximum Principle

As it was mentioned in the introduction, the main motivation of AFC schemes is

to respect the DMP. In this section, we state some minimal assumptions on the

limiters αij in order to satisfy this property.

Given i ∈ {1, . . . ,M}, the discrete maximum principle will be formulated locally,

with respect to an index set Si ⊂ {1, . . . , N}. We assume that

Si ⊃ {j ∈ {1, . . . , N} \ {i} : aij 6= 0 or aji > 0} , i = 1, . . . ,M . (3.1)

The proof of the discrete maximum principle requires only that {αijdij}j∈Si
van-

ish if ui is a strict local extremum. More precisely, we assume that, for any

i ∈ {1, . . . ,M} and any U = (u1, . . . , uN ) ∈ RN , the limiters αij satisfy

ui > uj ∀ j ∈ Si or ui < uj ∀ j ∈ Si ⇒ αij(U)dij = 0 ∀ j ∈ Si .

(3.2)

The matrix A will be supposed to satisfy (2.6). Then the only assumption on A
for proving the local discrete maximum principle at i ∈ {1, . . . ,M} will be that

there exists j ∈ {1, . . . , N}, j 6= i : aij < 0 or aij < aji . (3.3)

Note that the diagonal entry aii can be arbitrary. The condition (3.3) is typically

satisfied, in particular, by the matrix associated to a finite element discretization of
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the convection-diffusion equation (see Lemma 5.1 and Remark 5.2 below for details).

If (3.3) does not hold but

Ai :=

N∑
j=1

aij > 0 , (3.4)

then still a slightly weaker statement on the DMP can be proved. If Ai = 0 and

aii > 0 (as implied by (2.3)), then (3.3) is always satisfied.

With the above hypotheses, we prove the main result of this section.

Theorem 3.1. Let the matrix A satisfy (2.6) and let the limiters αij satisfy (3.2).

Let (u1, . . . , uN ) ∈ RN satisfy (2.10). Consider any i ∈ {1, . . . ,M}. If (3.3) holds,

one has

gi ≤ 0 ⇒
(
if ui ≥ 0, then ui ≤ max

j∈Si

uj
)
, (3.5)

gi ≥ 0 ⇒
(
if ui ≤ 0, then ui ≥ min

j∈Si

uj
)
. (3.6)

If Ai > 0, one has

gi ≤ 0 ⇒
(
if ui > 0, then ui ≤ max

j∈Si

uj
)
, (3.7)

gi ≥ 0 ⇒
(
if ui < 0, then ui ≥ min

j∈Si

uj
)
. (3.8)

Consequently, if (3.3) holds or Ai > 0, one has

gi ≤ 0 ⇒ ui ≤ max
j∈Si

u+
j , (3.9)

gi ≥ 0 ⇒ ui ≥ min
j∈Si

u−j , (3.10)

where u+
j := max{0, uj} and u−j := min{0, uj}.

Proof. Since dij = 0 for any i ∈ {1, . . . ,M} and j 6∈ Si ∪ {i}, the equation (2.10)

can be written in the form

Ai ui +
∑
j∈Si

[aij + (1− αij(U)) dij ] (uj − ui) = gi , i = 1, . . . ,M . (3.11)

Consider any i ∈ {1, . . . ,M} and let gi ≤ 0 and ui ≥ 0. Let us assume that ui > uj
for all j ∈ Si. Then (3.11) and (3.2) imply that

Ai ui +
∑
j∈Si

(aij + dij) (uj − ui) = gi . (3.12)

Due to the definition of dij (cf. (2.5)), one has aij + dij ≤ 0 for j 6= i. Moreover, if

(3.3) holds, there is j ∈ Si such that aij +dij < 0. Hence the left-hand side of (3.12)

is strictly positive, which is a contradiction. If Ai > 0 and ui > 0, then (3.12) implies

that gi ≥ Ai ui > 0. This is, again, a contradiction. Therefore, there is j ∈ Si such

that ui ≤ uj , which proves (3.5) and (3.7). The statements (3.6) and (3.8) follow
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in an analogous way. Finally, (3.9) and (3.10) are immediate consequences of the

preceding statements.

Assuming equality instead of inequality in (2.6), the following stronger result

can be proved.

Theorem 3.2. Let the limiters αij satisfy (3.2) and let (u1, . . . , uN ) ∈ RN satisfy

(2.10). Consider any i ∈ {1, . . . ,M}. If Ai = 0 and (3.3) holds, then one has

gi ≤ 0 ⇒ ui ≤ max
j∈Si

uj ,

gi ≥ 0 ⇒ ui ≥ min
j∈Si

uj .

Proof. The proof from the previous result can be applied, with the minor difference

that, since Ai = 0, the restriction on the sign of ui is not needed.

4. Definition of αij

Last section imposed minimal conditions that the limiter αij used in (2.10) should

satisfy in order to guarantee the discrete maximum principle. In this section we

design a limiter that fulfills those hypotheses. Additionally, we are interested in

proposing a limiter that makes the method linearity preserving on general simplicial

meshes. Our proposal is related to the one from Ref. 28 which is, however, not

proved to be linearity preserving on general meshes, see Remark 6.3. The main

difference between our proposal and the one from Ref. 28 is the definition of the

constant γi below, which will be later derived to impose linearity preservation on

general simplicial meshes. We shall show that it provides limiters that guarantee

the solvability of (2.10), (2.11), and the validity of the discrete maximum principle.

First, for any i ∈ {1, . . . ,M}, we set

umax
i := max

j∈Si∪{i}
uj , umin

i := min
j∈Si∪{i}

uj , qi := γi
∑
j∈Si

dij , (4.1)

where Si is an index set satisfying (3.1) and γi > 0 is a fixed constant, whose value

will be defined later (see (6.5) in Theorem 6.1). Furthermore, for any i ∈ {1, . . . ,M},
we set

P+
i :=

∑
j∈Si

f+
ij , P−i :=

∑
j∈Si

f−ij , Q+
i := qi (ui − umax

i ) , Q−i := qi (ui − umin
i ) ,

and we define

R+
i := min

{
1,
Q+

i

P+
i

}
, R−i := min

{
1,
Q−i
P−i

}
.

If P+
i or P−i vanishes, we set R+

i := 1 or R−i := 1, respectively. Finally, we set

α̃ij :=


R+

i if fij > 0 ,

1 if fij = 0 ,

R−i if fij < 0 ,

i = 1, . . . ,M, j = 1, . . . , N ,
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and define

αij := min{α̃ij , α̃ji} , i, j = 1, . . . ,M ,

αij := α̃ij , i = 1, . . . ,M, j = M + 1, . . . , N .

The symmetry condition (2.9) is guaranteed by the last step of this algorithm.

The following result shows that the above limiter satisfies (3.2). Then, the result-

ing method respects the discrete maximum principle, independently of the geometry

of the mesh, provided A satisfies (2.6) and at least one of the conditions (3.3) and

(3.4) for any i ∈ {1, . . . ,M}.

Lemma 4.1. The limiter αij defined in this section satisfies (3.2).

Proof. Consider any i ∈ {1, . . . ,M} and U = (u1, . . . , uN ) ∈ RN such that ui > uj
for all j ∈ Si. Then, umax

i = ui and hence Q+
i = 0. Choose any j ∈ Si and let us

show that αij(U)dij = 0. It suffices to consider dij 6= 0. But then fij > 0 and hence

P+
i > 0, leading to R+

i = 0. Consequently α̃ij(U) = 0, thus giving αij(U) = 0. If

ui < uj for all j ∈ Si, then the proof is analogous.

In addition to the last lemma, the following result states that the limiter αij

satisfies the continuity conditions from Theorem 2.1, and hence problem (2.10),

(2.11) has a solution. Its proof is very similar to Lemma 4.1 in Ref. 7, and then we

give an abridged form of it for completeness.

Lemma 4.2. The coefficients αij are such that φij(U) := αij(u1, . . . , uN )(uj − ui)
are continuous functions of u1, . . . , uN on RN .

Proof. Consider any i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}. Let us first investigate the

continuity of α̃ij . It suffices to consider the case α̃ij 6≡ 1 (and hence dij 6= 0 and

j ∈ Si). Let U = {ui}Ni=1 ∈ RN . We first consider ui > uj . Then, fij > 0 and one

obtains

α̃ij(U) = R+
i =

min{P+
i , Q

+
i }

|fij |+ P̃+
i

with P̃+
i =

∑
k∈Si\{j}

f+
ik .

Since ui > uj , there is a neighborhood of U where the denominator of the above

expression does not vanish, and then the function α̃ij is continuous in U . Now, if

uj > ui, by the same arguments one can deduce that α̃ij is continuous in U . Thus,

if ui 6= uj , then α̃ij , and therefore φij , is continuous in U . Finally, if ui = uj , then

φij(U) = 0. Let V = {vi}Ni=1 ∈ RN . Then, since αij(U) ∈ [0, 1], one obtains

|φij(V )−φij(U)| = |φij(V )| = |αij(V )| |vj−vi| ≤ |vj−uj−(vi−ui)| ≤
√

2‖V−U‖RN .

Then, φij(V ) → φij(U) if V → U and φij is continuous in U . This finishes the

proof.

We finish this section by making some comments on the choice of the factors γi
used in (4.1). First, the proof of the discrete maximum principle is independent of
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their values, and then, it can be applied for choices other than the one introduced

in this paper, e.g., the ones from Ref. 28. Once this is said, the actual value of

γi has two main impacts in the performance of the AFC scheme. First, if chosen

appropriately (as it will be done in Sec. 6 below), then it can be proved that the

resulting scheme is linearity preserving on general simplicial meshes. Second, it

influences the amount of artificial diffusion added by the AFC term to the original

system (2.1). If γi’s are increased, then more limiters αij will be equal to 1 and

hence less artificial diffusion will be added. If γi’s are decreased, then more limiters

αij will be smaller than 1 and hence more artificial diffusion will be added. Thus,

to reduce smearing of approximate solutions represented by the values u1, . . . , uN ,

large values of γi’s are convenient. The downside of this is that, for large values

of γi’s, the limiters αij(u1, . . . , uN ) change very rapidly near local extrema in ui
and hence the numerical solution of the nonlinear algebraic problem becomes more

involved.

5. The AFC Scheme for Convection-Diffusion-Reaction Equations

Let Ω ⊂ Rd, d = 2, 3, be a bounded polyhedral domain with Lipschitz boundary.

Let us consider the steady-state convection-diffusion-reaction equation

−ε∆u+ b · ∇u+ c u = g in Ω , u = ub on ∂Ω , (5.1)

where ε ∈ (0, ε0) with ε0 < +∞ is a constant, and b ∈ W 1,∞(Ω)d, c ∈ L∞(Ω),

g ∈ L2(Ω), and ub ∈ H
1
2 (∂Ω) ∩ C(∂Ω) are given functions satisfying

∇ · b = 0 , c ≥ σ0 ≥ 0 in Ω ,

where σ0 is a constant. The weak solution of (5.1) is a function u ∈ H1(Ω) such

that u = ub on ∂Ω and

a(u, v) = (g, v) ∀ v ∈ H1
0 (Ω) , (5.2)

with

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) .

Here we adopt the usual notation for Sobolev spaces. In particular, (·, ·) denotes

the inner product in L2(Ω) or L2(Ω)d. Since c ≥ σ0 in Ω and b is solenoidal, then

a(v, v) ≥ ‖v‖2a ∀ v ∈ H1
0 (Ω) , (5.3)

with

‖v‖2a = ε |v|21,Ω + σ0 ‖v‖20,Ω .

It is well known that the weak solution of (5.1) exists, is unique, and satisfies the

maximum principle (cf. Ref. 16).

Let Th belong to a regular family of triangulations of Ω consisting of simplices.

We introduce the finite element spaces

Wh = {vh ∈ C(Ω) : vh|T ∈ P1(T ) ∀T ∈ Th} , Vh = Wh ∩H1
0 (Ω) ,
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consisting of continuous piecewise linear functions. From now on, we denote by

x1, . . . , xN the vertices of the triangulation Th and assume that x1, . . . , xM ∈ Ω

and xM+1, . . . , xN ∈ ∂Ω. Furthermore, we denote by ϕ1, . . . , ϕN the usual basis

functions of Wh, i.e., we assume that ϕi(xj) = δij , i, j = 1, . . . , N , where δij is the

Kronecker symbol. Then the functions ϕ1, . . . , ϕM form a basis in Vh.

Now, an approximate solution of the variational problem (5.2) can be introduced

as the solution of the following finite-dimensional problem:

Find uh ∈Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

a(uh, vh) = (g, vh) ∀ vh ∈ Vh . (5.4)

We denote

aij = a(ϕj , ϕi) , i, j = 1, . . . , N , (5.5)

gi = (g, ϕi) , i = 1, . . . ,M , (5.6)

ubi = ub(xi) , i = M + 1, . . . , N . (5.7)

Then uh solves (5.4) if and only if its coefficient vector with respect to the basis

of Wh satisfies the relations (2.1) and (2.2). The bilinear form a defines the matrix

A = (aij)
N
i,j=1 whose entries are given by (5.5) and (2.4). Finally, thanks to (5.3) the

matrix (aij)
M
i,j=1 satisfies (2.3), and it follows that the problem (5.4) has a unique

solution.

The artificial diffusion matrix D = (dij)
N
i,j=1 is defined using (2.5). We introduce

the nonlinear form

dh(w; z, v) :=

N∑
i,j=1

(1− αij(w)) dij (z(xj)− z(xi)) v(xi) ∀ w, z, v ∈ C(Ω) ,

with αij(w) := αij({w(xi)}Ni=1). Then the corresponding flux correction scheme

(2.10), (2.11) can be rewritten as the following variational problem:

Find uh ∈Wh such that uh(xi) = ub(xi), i = M + 1, . . . , N , and

a(uh, vh) + dh(uh;uh, vh) = (g, vh) ∀ vh ∈ Vh . (5.8)

Since the limiters αij defined in the last section satisfy the assumptions of Theo-

rem 2.1, and the bilinear form a is elliptic, then the problem (5.8) has a solution.

A natural (solution dependent) norm on Vh corresponding to the left-hand side of

(5.8) is defined by

‖vh‖h :=
(
‖vh‖2a + dh(uh; vh, vh)

)1/2

, vh ∈ Vh .

Assuming that u ∈ H2(Ω) and following completely analogous steps as the ones

from Sec. 7 in Ref. 7 it follows that, if σ0 > 0, the following error bound holds

‖u− uh‖h ≤ C h ‖u‖2,Ω + (dh(uh; ihu, ihu))1/2 , (5.9)
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where C > 0 is independent of u, h, and ε, and ihu stands for the Lagrange inter-

polate of u. For the last term in (5.9), using the proof of Lemma 7.3 from Ref. 7, it

follows that

dh(wh; ihu, ihu) ≤ C max
i,j=1,...,N

(|dij | |xi − xj |2−d) |ihu|21,Ω ∀ wh ∈Wh, u ∈ C(Ω) ,

(5.10)

where C is independent of h and the data of problem (5.1). This result shows that

the error ‖u− uh‖h will tend to zero as long as the product |dij | |xi − xj |2−d tends

to zero. This implies that the method will converge as long as the matrix A tends to

be an M -matrix, and this speed of convergence is fast enough to compensate for the

negative power of h arising from |xi − xj |2−d in the three-dimensional case. Hence,

it is natural to expect that the convergence properties of the method will vary

according to the geometry of the mesh. In particular, for the convection-dominated

regime, an O(h1/2) estimate of ‖u−uh‖h can be shown irrespectively of the geometry

of the mesh. On the contrary, for the diffusion-dominated regime, the convergence

rates will vary dramatically depending on the geometrical properties of the mesh

(see Ref. 7 for details). This was illustrated numerically in Ref. 7 for the limiter

defined in Ref. 25. In some particular cases a better than expected convergence was

observed, but the theoretical justification of this fact, which requires a more refined

estimation of dh(uh; ihu, ihu) for particular limiters, does not seem to be an easy

task, and it will be the subject of our future research.

The above results are valid for any limiters αij satisfying the assumptions of

Sec. 2 (resp. of Theorem 2.1) and hence, in particular, for the limiter from Sec. 4.

To apply this limiter, we have to specify the sets Si satisfying (3.1). The simplest

possibility is to use

Si = {j ∈ {1, . . . , N} \ {i} : xi and xj are end points of the same edge} , (5.11)

where i = 1, . . . ,M . This definition of Si was used in the computations reported in

Sec. 7. To finish the definition of αij , we have to define the factors γi used in (4.1).

This will be done in the following section.

Remark 5.1. Usually, results on the discrete maximum principle like in Theo-

rems 3.1 and 3.2 are proved for Delaunay meshes with respect to sets Si = {j ∈
{1, . . . , N} \ {i} : aij 6= 0}. For c = 0, this definition and the set used in (3.1)

coincide in Delaunay meshes. Indeed, for such a mesh, the validity of aji > 0 in

(3.1) implies that aij 6= 0 since aij + aji = 2 ε (∇ϕi,∇ϕj) ≤ 0. Whenever c > 0,

then both definitions no longer coincide, the set induced by (3.1) can be larger, and

hence the final result is slightly weaker. The stronger assumption (3.1) is made in

order to guarantee our results to be valid on arbitrary meshes.

We close this section by showing that the matrix A defined above satisfies the

assumptions made on it to prove the discrete maximum principle.

Lemma 5.1. The matrix A defined in (5.5) and (2.4) satisfies the assumption
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(2.6). Moreover, for any i ∈ {1, . . . ,M}, the assumption (3.3) holds if Ai = 0 or

there exists j ∈ {1, . . . , N} : (b · ∇ϕj , ϕi) 6= 0 . (5.12)

Proof. The validity of (2.6) follows immediately from the property
∑N

j=1 ϕj = 1

and the nonnegativity of c. Consider any i ∈ {1, . . . ,M}. If Ai = 0, then there is

j ∈ {1, . . . , N}, j 6= i, with aij < 0 since aii ≥ ε |ϕi|21,Ω > 0. Hence (3.3) holds. Let

us assume (5.12) and let (3.3) does not hold, i.e.,

aij ≥ 0 and aij ≥ aji ∀ j ∈ {1, . . . , N} , j 6= i . (5.13)

Under this assumption, then the modification (2.4) is not used for the matrix entries

in (5.13), and the original matrix remains unchanged. Hence, in view of the second

inequality in (5.13), one has

(b · ∇ϕj , ϕi) ≥ (b · ∇ϕi, ϕj) = −(b · ∇ϕj , ϕi) ∀ j ∈ {1, . . . , N} , j 6= i ,

so that

(b · ∇ϕj , ϕi) ≥ 0 ∀ j ∈ {1, . . . , N} , j 6= i .

Since (b · ∇ϕi, ϕi) = 0 and
∑N

j=1(b · ∇ϕj , ϕi) = 0, one deduces that

(b · ∇ϕj , ϕi) = 0 ∀ j ∈ {1, . . . , N} ,

which is in contradiction with (5.12).

Remark 5.2. According to the previous lemma, the validity of (3.3) is not guar-

anteed if the convection term does not contribute to the i-th row of the matrix A.

Although this cannot be excluded, it is a rather exceptional situation and hence

(3.3) will typically hold if b does not vanish identically in suppϕi. Lemma 5.1 also

shows that (3.3) holds if c ≡ 0 since then Ai = 0 for any i ∈ {1, . . . ,M}. Thus, if the

reaction term for c > 0 is discretized using a lumping like in Ref. 7, the off-diagonal

entries of A are the same as for c ≡ 0 and hence (3.3) again holds although Ai > 0.

6. Linearity Preservation

Let us consider the limiter from Sec. 4 with the sets Si defined in (5.11). In this

section we finish the definition of this limiter by specifying the parameters γi that

make it possible to prove that the resulting scheme is linearity preserving on general

simplicial meshes. We recall that x1, . . . , xN stand for the vertices of Th, and that

x1, . . . , xM ∈ Ω. We shall show that the factors γi in (4.1) can be defined in such a

way that

α̃ij(u) = 1 ∀ u ∈ P1(Rd) , i = 1, . . . ,M, j = 1, . . . , N . (6.1)

Then the AFC scheme (2.10), (2.11) will be linearity preserving. Let us consider

any function u ∈ P1(Rd) and set ui = u(xi), i = 1, . . . , N . Then, if one wants to

satisfy (6.1), one needs

Q+
i ≥ P

+
i if fij > 0 , Q−i ≤ P

−
i if fij < 0 . (6.2)
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Fig. 1. Examples of patches ∆i for d = 2.

Sufficient conditions for (6.2) are the inequalities

ui − umin
i ≤ γi (umax

i − ui) , umax
i − ui ≤ γi (ui − umin

i ) . (6.3)

Note that it suffices to find γi such that

ui − umin
i ≤ γi (umax

i − ui) ∀ u ∈ P1(Rd) , (6.4)

since then the second inequality in (6.3) follows from (6.4) by changing the sign of

u. Thus, the validity of (6.4) assures that the AFC scheme (2.10), (2.11) based on

the limiter from Sec. 4 is linearity preserving.

To discuss the validity of (6.4), it is convenient to introduce the patch ∆i =

suppϕi for any interior vertex xi of the triangulation Th. Thus, ∆i is a patch

consisting of simplices T ∈ Th sharing the vertex xi, see Fig. 1. Then the sets Si

defined in (5.11) satisfy

Si = {j ∈ {1, . . . , N} : xj ∈ ∂∆i} ,

and one has

umin
i = min

∆i

u , umax
i = max

∆i

u .

Note that, for u ∈ P1(Rd), umin
i and umax

i are attained at vertices lying on ∂∆i.

If the patch ∆i is symmetric with respect to the vertex xi (like the first three

patches from the left in Fig. 1), then the inequality (6.4) holds with γi = 1 as the

following lemma shows.

Lemma 6.1. Let ∆i be symmetric with respect to xi. Then

ui − umin
i = umax

i − ui ∀ u ∈ P1(Rd) .

Proof. Let us assume that ui − umin
i < umax

i − ui. There exists a vertex xj ∈ ∂∆i

such that umax
i = uj . Furthermore, due to the symmetry of ∆i, there is a vertex

xk ∈ ∂∆i such that (xj + xk)/2 = xi. Then uj + uk = 2ui and hence

ui − umin
i < umax

i − ui = uj − ui = ui − uk .

Consequently, uk < umin
i , which is a contradiction. Analogously, it can be shown

that ui − umin
i > umax

i − ui leads to a contradiction.

For general patches ∆i, a possible factor γi is computed in the following theorem.
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Fig. 2. Patch ∆i with notation from the proof of Theorem 6.1.

Theorem 6.1. Let x1, . . . , xM ∈ Ω. For any i ∈ {1, . . . ,M}, let ∆i be the above-

defined patch corresponding to the vertex xi and let ∆conv
i be its convex hull. Let

γi =

max
xj∈∂∆i

|xi − xj |

dist(xi, ∂∆conv
i )

, i = 1, . . . ,M . (6.5)

Then the inequalities (6.4) hold and hence the AFC scheme (2.10), (2.11) with the

limiter from Sec. 4 is linearity preserving.

Proof. For simplicity, we shall present the proof for d = 2. For d = 3 one can

proceed analogously. Consider a patch ∆i and let u ∈ P1(R2) be any nonconstant

linear function. Let p be the line in the direction of ∇u containing the vertex xi.

Then there are uniquely determined points A,B ∈ p such that u(A) = umin
i , u(B) =

umax
i . Let qA and qB be lines orthogonal to p intersecting the line p at the points A

and B, respectively, see Fig. 2. Since u is constant along lines perpendicular to p, the

patch ∆i is contained in the strip between the lines qA and qB . Consequently, each

of these lines intersects ∆i only at points on ∂∆i comprising at least one vertex.

Moreover, any such vertex lies on the boundary of the convex hull ∆conv
i . To find a

constant γi for which the inequality (6.4) holds, we have to estimate the ratio

ui − umin
i

umax
i − ui

=
u(xi)− u(A)

u(B)− u(xi)
=
|xi −A|
|B − xi|

.

Since qA contains a vertex xk lying on ∂∆conv
i , one has

|xi −A| ≤ |xi − xk| ≤ max
xj∈∂∆conv

i

|xi − xj | = max
xj∈∂∆i

|xi − xj | .

On the other hand, if TB is a triangle whose vertices are xi and two consecutive

vertices on ∂∆conv
i such that the half-line xiB intersects TB (see Fig. 2), then

|B − xi| ≥ dist(xi, EB) ,
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where EB is the edge of TB opposite xi. Consequently,

|B − xi| ≥ dist(xi, ∂∆conv
i ) ,

which gives (6.5).

Remark 6.1. For the patches in Fig. 1, the formula (6.5) gives the values 2,
√

2,√
2, 2, and 2, respectively (from the left to the right). Since the first three patches

from the left are symmetric, Lemma 6.1 shows that the formula (6.5) is not optimal

in general. The last two patches in Fig. 1 are nonsymmetric and, for the linear

function u(x, y) = x+ y, one obtains ui− umin
i = 2 (umax

i − ui). Thus, for these two

patches, the formula (6.5) gives the optimal values.

This possible lack of optimality arises from the fact that we have used the worst

case scenario, this is, when the extrema of the function u are attained at the vertices

closest to, and furthest away from, xi, to derive the formula (6.5). This reasoning

on the worst case scenario is adapted to three space dimensions in a straightforward

way.

Remark 6.2. Let us briefly mention the computation of the denominator in (6.5).

First, any vertex xj ∈ ∂∆i is shifted in the direction of the edge xixj on the bound-

ary of the convex hull ∆conv
i . Then one goes through all simplices T forming ∆conv

i

and, denoting by E the edge (or face) of T opposite xi, one computes dist(xi, E).

This is particularly easy in the two-dimensional case: If T possesses an obtuse angle

at an end point of E, say P , then dist(xi, E) = |xi−P |. If both angles of T at the end

points of E are not obtuse, then dist(xi, E) = 2 |T |/|E|. In the three-dimensional

case, the computation of dist(xi, E) is more involved. Nevertheless, one can replace

it by 3 |T |/|E| ≤ dist(xi, E) (and possibly increase the value of γi). Another pos-

sibility is to replace dist(xi, ∂∆conv
i ) by the smallest diameter of inscribed balls of

simplices forming ∆conv
i .

Remark 6.3. As already mentioned, the limiter proposed in this paper is related

to a method presented in Ref. 28. Although the methods of Ref. 28 are claimed to

be linearity preserving, it turns out that the respective proofs are not correct for

general meshes. The reason is that they rely on the validity of the inequality

ui − uj ≤ γij (umax
i − ui) (6.6)

for any u ∈ P1(Rd) and j ∈ Si (with Si defined in (5.11)), where

γij =
2

mi

∑
k 6=i

|cik · (xi − xj)| , mi =

∫
Ω

ϕi dx , cik =

∫
Ω

ϕi∇ϕk dx .

To prove (6.6), one uses the fact that mi∇u =
∑

k cik uk =
∑

k cik(uk − ui) and

ui − uj = ∇u · (xi − xj), which leads to

ui − uj =
1

mi

∑
k 6=i

cik · (xi − xj) (uk − ui) . (6.7)
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Fig. 3. Patch ∆i for constructing a counterexample in Remark 6.3.

If the patch ∆i is symmetric with respect to xi, then |uk − ui| ≤ umax
i − ui for any

k ∈ Si due to Lemma 6.1 and hence (6.7) implies (6.6). On the other hand, for non-

symmetric patches, the inequality |uk−ui| ≤ umax
i −ui may be violated. Therefore,

in general, (6.6) does not hold, as one can see from the following counterexample.

Let us consider the patch ∆i depicted in Fig. 3 consisting of four right-angled tri-

angles such that the vertices x1, x2, x3 have the same distance h from xi whereas

the distance of x4 from xi is h′. Then γi2 = 4h/(h + h′). If u ∈ P1(R2) satisfies

u4 = umax
i , then ui − u2 = (umax

i − ui)h/h′ and hence (6.6) may hold with j = 2

only if h ≤ 3h′.

We finish this section by stating that the definition of the limiter presented in

this work introduces explicit geometric information about the mesh into the method.

This is not the standard way of defining the limiters (as the usual definitions use

only the matrix entries and the solution values), and is different from the one used in

Ref. 28, but it has been proved to be of fundamental importance to ensure linearity

preservation on general meshes.

7. Numerical Studies

The numerical studies will illustrate the properties of the AFC scheme (2.10), (2.11)

with the limiter proposed in Sec. 4 for the convection-diffusion-reaction equation

from Sec. 5. If not specified otherwise, the parameters γi from (4.1) are defined by

the formula (6.5). In addition, the results will be compared with those obtained

with the limiter from Ref. 25. The limiter from Ref. 25 can be considered as kind

of standard limiter for algebraic stabilizations of steady-state convection-diffusion-

reaction equations so far.

For the sake of brevity, only results computed on a distorted mesh, see Fig. 4

(left), will be presented in detail. The mesh was constructed starting from the

Delaunay mesh depicted in Fig. 4 (right) by shifting interior nodes to the right by

half of the horizontal mesh width on each even horizontal mesh line. Therefore, for
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Fig. 4. Distorted mesh used in the simulations (left) and starting point for its construction (right).

the most diagonal edges, the sum of the two angles opposite the edge is greater

than 5π/4 and hence the mesh is not of Delaunay type. We shall characterize the

meshes by the number of edges ne along one horizontal (or equally vertical) mesh

line (thus, ne = 6 for both meshes in Fig. 4).

Results for three examples will be presented. In the first example, the order of

convergence is studied, in both the convection-dominated and diffusion-dominated

regime. The second example investigates the linearity preservation property. Finally,

a standard test problem with boundary layers and an interior layer is considered.

The nonlinear discrete problems were solved with a damped Newton’s method.

Example 7.1. Polynomial solution. Problem (5.1) is considered with Ω = (0, 1)2,

b = (3, 2)T , c = 1, ub = 0, and the right-hand side g chosen such that, for a given

value of ε,

u(x, y) = 100x2 (1− x)2 y (1− y) (1− 2y)

is the solution of (5.1).

The order of convergence of the error eh := u−uh measured in various norms for

the limiter proposed in Sec. 4 is presented in Table 1 for the convection-dominated

case and in Table 2 for the diffusion-dominated regime. In addition, the tables show

the consistency error d
1/2
h (uh) := dh(uh; ihu, ihu)1/2, cf. the estimate (5.9).

Concerning the convection-dominated case, results for the limiter from Ref. 25

on a mesh of the same type can be found in Table 6 from Ref. 7. Comparing the

results, it can be seen that for both limiters the convergence orders of eh are similar

in all three norms. We could observe that this statement holds also for other meshes,

in particular for more regular ones.

The situation is much different in the diffusion-dominated regime. Whereas the

limiter from Sec. 4 leads to errors that decay with an optimal rate, see Table 2, the

method with the limiter from Ref. 25 does not converge at all, compare Table 10

from Ref. 7. This favorable behavior of the new limiter seems to be important in

situations where the convection field is a flow field. In this case there might be

subregions of the domain in which the problem is diffusion-dominated.

We believe that the optimal convergence of the limiter proposed in Sec. 4 is

connected with its linearity preservation property on general simplicial meshes. A

similar behavior has been observed in Ref. 30, where linearity preserving limiters
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Table 1. Example 7.1, ε = 10−8, numerical results for αij from Sec. 4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 2.722e−2 1.15 1.401e+0 0.02 9.086e−2 1.76 7.428e−2 1.21

32 1.035e−2 1.40 1.041e+0 0.43 2.287e−2 1.99 2.563e−2 1.54

64 5.099e−3 1.02 8.907e−1 0.23 6.219e−3 1.88 1.113e−2 1.20

128 2.555e−3 1.00 8.952e−1 -0.01 2.308e−3 1.43 5.240e−3 1.09

256 1.299e−3 0.98 8.991e−1 -0.01 8.409e−4 1.46 2.538e−3 1.05

Table 2. Example 7.1, ε = 10, numerical results for αij from Sec. 4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 1.786e−2 1.74 4.726e−1 0.87 9.284e−1 1.13 1.522e+0 0.88

32 4.218e−3 2.08 2.404e−1 0.98 3.035e−1 1.61 7.633e−1 1.00

64 1.016e−3 2.05 1.213e−1 0.99 1.077e−1 1.49 3.841e−1 0.99

128 2.545e−4 2.00 6.082e−2 1.00 3.816e−2 1.50 1.924e−1 1.00

256 6.439e−5 1.98 3.045e−2 1.00 1.361e−2 1.49 9.632e−2 1.00

512 1.628e−5 1.98 1.524e−2 1.00 4.896e−3 1.47 4.819e−2 1.00

Table 3. Example 7.1, ε = 10, numerical results for αij from Sec. 4 and γi replaced by γi/4.

ne ‖eh‖0,Ω ord. |eh|1,Ω ord. d
1/2
h (uh) ord. ‖eh‖h ord.

16 4.543e−2 0.91 5.801e−1 0.68 2.753e+0 0.32 2.051e+0 0.65

32 3.095e−2 0.55 3.939e−1 0.56 2.362e+0 0.22 1.404e+0 0.55

64 2.622e−2 0.24 3.138e−1 0.33 2.199e+0 0.10 1.127e+0 0.32

128 2.428e−2 0.11 2.826e−1 0.15 2.118e+0 0.05 1.018e+0 0.15

256 2.341e−2 0.05 2.707e−1 0.06 2.078e+0 0.03 9.756e−1 0.06

512 2.301e−2 0.03 2.660e−1 0.03 2.059e+0 0.01 9.582e−1 0.03

are used to approximate a diffusion problem. The theoretical justification of this

statement is not yet available, and will be the topic of our future research.

A further support of the above claim is given in Table 3. Here we present results

obtained with the limiter from Sec. 4 for parameters γi defined as a quarter of the

value provided by the formula (6.5). Then the method is not linearity preserving

and we observe that the errors of the approximate solutions do not converge to zero.
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Fig. 5. Example 7.2, solution with the limiter from Sec. 4 (left) and that from Ref. 24 (right).
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Fig. 6. Example 7.2, cross section of the solutions at y = 0.5.

Example 7.2. Linear solution. The data for this example were chosen to be Ω =

(0, 1)2, ε = 10−8, b = (2 y − x,−3x + y)T , c = 0, and the boundary condition ub
and the right-hand side g were set such that

u(x, y) = 2x+ 3 y

is the solution of (5.1).

This example serves for showing on the one hand the linearity preservation of

the limiter from Sec. 4 on the considered distorted mesh. On the other hand, it also

demonstrates that the limiter from Ref. 25 does not possess this property. Results

for simulations with ne = 8 are presented in Fig. 5 and for a closer inspection

also a cross-section of the two solutions is shown in Fig. 6. The limiter proposed in

Sec. 4 provides a solution which is virtually the analytical solution (the maximum

error is of the order of 10−10, which is in accordance with the stopping criterion for

the nonlinear iteration). For the limiter from Ref. 25, the violation of the linearity

preservation is clearly visible.

Example 7.3. Solution with layers. The final example considers a standard test

problem defined in Ref. 19. This problem is given by Ω = (0, 1)2, ε = 10−8, b =
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Fig. 7. Example 7.3, solutions obtained with the limiter defined in Sec. 4 (left) and the limiter
from Ref. 24 (right).
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Fig. 8. Example 7.3, solutions obtained with the limiter defined in Sec. 4 (left) and the limiter

from Ref. 24 (right). Both solutions respect the discrete maximum principle. The solution with
the proposed limiter shows a sharper interior layer, especially at the bottom. A slight smearing

can be observed along the boundary layer at y = 0 for the limiter from Ref. 24.

(cos(−π/3), sin(−π/3))T , c = 0, g = 0, and the boundary condition

ub(x, y) =

{
0 for x = 1 or y ≤ 0.7,

1 else.

Note that the boundary condition from Example 7.3 can be easily changed to an

infinitely smooth function that coincides with ub from Example 7.3 at all boundary

vertices of the mesh used for the computations presented in this section. Then

Example 7.3 also formally fits into the framework considered in Sec. 5.

The solutions computed with both limiters are presented in Figs. 7 and 8. It

can be observed that both definitions of the limiters provide an acceptable solution.

They obey the DMP and all boundary layers are sharp. A close look at the interior

layer, in particular at the bottom, shows that the layer of the solution computed

with the limiter from Sec. 4 is a little bit sharper. Also, a slight smearing of the

boundary layer at y = 0 is visible for the limiter from Ref. 25.
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8. Conclusions and Outlook

This paper proposed a new limiter for algebraic stabilizations of steady-state

convection-diffusion-reaction equations within the framework of finite element meth-

ods. The main goal of the construction of the new limiter was that the resulting

scheme should obey the DMP and it should possess the linearity preservation prop-

erty on general simplicial meshes. Both properties could be achieved and proved.

The definition of the new limiter does not only rely on algebraic data but also re-

quires some geometric information (on the local mesh), like the limiter of Ref. 2.

We think that the enrichment of algebraic stabilizations with geometric information

is in general a promising approach for designing stabilized methods. In contrast to

the limiters of Refs. 2 and 5, the new limiter does not depend on any user-chosen

parameter (like the exponent p in case of Refs. 2, 5) controlling the amount of

numerical diffusion added to the method, which makes the present approach more

practical.

The numerical studies showed an optimal order of convergence in the diffusion-

dominated regime, which is not present for the limiter from Ref. 25. As already

mentioned, we believe that this behavior of the new limiter is somehow connected

to the linearity preservation, but the proof is open. A further topic of our future

work will be the analysis, and possibly improvement, of algebraic stabilizations for

time-dependent problems.
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Alexander Linke, and Rudolf Umla. An assessment of discretizations for convection-
dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg.,
200(47-48):3395–3409, 2011.
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