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Introduction
The finite element method (FEM) is a very popular approach in order to discretize partial differential
equations, which is based on their variational forms. It plays a dominating role in modern computer
science and engineering (cf. [17]) and is the source of many theoretical explorations, especially in
the theory of solving partial differential equations, which this thesis will focus on.
The idea is to transform the partial differential equation into a variational form. This is done by
multiplying the strong form of the equation with a test function, integrating the equation over the
domain Ω and to use integration by parts. The variational form of the partial differential equation
weakens the regularity assumptions for the solution and uses functions in Sobolev1 spaces. The
solution of the resulting equations then needs to be approximated using the Ritz2 method (cf. re-
mark B.5 in [15]). This process of approximating the solution is called interpolation and plays a key
role in the finite element method. Instead of approximating the unknown solution of the variational
problem over an often complicated domain, one divides the domain into smaller subdomains, called
finite elements, and approximates the solution of the variational problem over each element using
“simpler” functions. Interpolation is therefore a central component of the finite element method,
as it enables the construction of accurate and efficient numerical solutions to partial differential
equations over complicated domains.
When it comes to the interpolation one needs to make a choice on the interpolation method that
is used. A very common choice is the polynomial interpolation also often referred to as Lagrange3

interpolation. Its popularity is due to its simplicity since it is very easy to apply and to implement.
However, the Lagrange interpolation operator cannot be used in the case of non-smooth functions.
That is why Clément4 (1975) came up with another interpolation operator, which is based on local
regularization and thus combines the ideas of the Lagrange interpolation and the L2 projection (cf.
[1]). So the Clément interpolation cures some difficulties of the Lagrange interpolation operator but
comes with some other disadvantages. One of them being the issue that the interpolation operator
constructed by Clément does not preserve homogenous boundary conditions.
Hence, another proposal was made for an interpolation operator that can be used to approximate
non-smooth functions and preserves homogenous boundary conditions. It was constructed by Scott5-
Zhang6 (1990) in [3] and performs local projections on either an element or a facet (cf. p.483 in
[3]).

1Sergei Sobolev (1908-1989) was a Soviet mathematician working in mathematical analysis and partial differential
equations (cf. [21]).

2Walther Ritz (1878-1909) was a Swiss theoretical physicist (cf. [41]).
3Joseph-Luis Lagrange (1736-1813) was an Italian mathematician and astronomer (cf. [34]).
4Philippe P.J.E. Clément is a French mathematician who is working as an emeritus professor at the Delft University

of Technology (cf. [23]).
5L. Ridgway Scott (*1948) is an American mathematician who is working as an emeritus professor at the University

of Chicago (cf. [22]).
6Shangyou Zhang is a mathematician who is working as a professor at the University of Delaware (cf. [24]).
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Instead of interpolation, also projection operators can be used. Examples are the L2 orthogonal
projection or the elliptic projection operator, which means the L2 projection of the gradient. Both
of them have the advantage of being quite easy to implement.
This thesis presents the basic ideas of the named interpolation and projection operators and explains
their constructions if necessary. Furthermore, this thesis explores their approximation and stability
properties in Sobolev spaces and gives some local as well as global interpolation error estimates.
This master thesis is divided into different chapters. In the first chapter the basic notions on do-
mains and meshes, the finite element method and the theory behind interpolation operators are
given. In addition, the most important definitions and results from the theory of Lebesgue7 and
Sobolev spaces are getting recalled. In the end of this chapter some general local as well as global
error bounds for the interpolation in Sobolev spaces will be given.
In the second chapter the Lagrange interpolation operator will be introduced. In order to understand
the construction of this operator and the ideas of proving interpolation and stability estimates the
one-dimensional case will be discussed first. Then the concept of this interpolation operator will be
generalized to the usage of higher degree polynomials. Also the Lp-stability of the Lagrange inter-
polant will be discussed. After extending the idea of the Lagrange interpolant to higher dimensions
using barycentric coordinates, different error bounds for the interpolation in Sobolev spaces based
on some results from the first chapter will be presented.
The third chapter deals with the construction of the Clément interpolation operator, which will be
discussed in a very general setting. Moreover, stability and approximation estimates will be given.
The next chapter is then concerned with an interpolation operator based on the ideas of the Clément
interpolation, namely the interpolation operator by Scott-Zhang. Here the construction as well as
the stability and approximation properties will be analyzed.
The fifth chapter introduces the notion of the L2-orthogonal projection. At first, the ordinary L2-
projection will be explained and some stability and approximation results will be proven. Then also a
weighted version of the L2 projection will be considered. Again, stability and interpolation estimates
will be presented.
The sixth chapter deals with the elliptic projection. The idea of this operator will be described and
its stability and approximation properties will be stated.
Finally, a conclusion will be drawn in the last chapter. There the main results will be recalled again
and it will be tried to compare the different approximation and stability properties of the interpola-
tion and projection operators. In the end there will be an outlook on further possible investigations.
This thesis is mainly based on the content in [10] and in [19]. Many definitions have also been
taken from [15]. Section 5.2 is based on the presentation in [4]. The sources of the definitions and
statements are mentioned next to them. If not stated otherwise the proof ideas were taken from
the stated source of the statement. In the footnotes references are given for several definitions that

7Henri Léon Lebesgue (1875-1941) was a French mathematician (cf. [32]).
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1. Preliminaries

1 Preliminaries
As explained in the introduction, the key idea in the theory of finite elements is that we will look at
domains that get decomposed or triangulated by a mesh, so that one can later interpolate functions
locally on each of the mesh cells. We will now define those basic notions.

1.1 Domains and Meshes
The definitions and examples presented here are taken from sections 1.2 and 1.3 in [10], section
11.1 in [19] as well as from the appendix in [15].

Definition 1.1.1 (Domain, domain with Lipschitz boundary). [10, Def.1.46]. In dimension 1, a
domain is an open, bounded interval. In dimension d ≥ 2 a domain with Lipschitz boundary is an
open8, bounded9, connected10 set in Rd such that its boundary ∂Ω = Ω \

◦
Ω, where Ω denotes the

closure11 and
◦
Ω means the interior12 of Ω, satisfies the following property:

There are α, β > 0, a finite number R of local coordinate systems x r = (x r ′, x r
d), 1 ≤ r ≤ R ,

where x r ′ ∈ Rd−1 and x r
d ∈ R, and R local maps φr that are Lipschitz13 continuous14 on their

definition domain {x r ′ ∈ Rd−1 | |x r ′| < α} and such that

∂Ω =
R⋃

r=1
{(x r ′, x r

d) | x r
d = φr(x r ′) and |x r ′| < α},

∀r : {(x r ′, x r
d) | φr(x r ′) < x r

d < φr(x r ′) + β and |x r ′| < α} ⊂ Ω as well as
∀r : {(x r ′, x r

d) | φr(x r ′) − β < x r
d < φr(x r ′) and |x r ′| < α} ⊂ Rd \ Ω,

where |x r ′| ≤ α means that |x r
i

′| ≤ α for all 1 ≤ i ≤ d − 1.

Figure 1: An example for a domain with a slit.

8See definition on p.8 in [16].
9See definition on p.96 in [42].

10See definition on p.793 in [11].
11See definition on p.15 in [16].
12See definition on p.15 in [16].
13Rudolf Lipschitz (1832-1903) was a German mathematician who made contributions to mathematical analysis

and differential geometry, as well as number theory, algebras with involution and classical mechanics (cf. [38]).
14See definition on p.165 in [16].
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1.1 Domains and Meshes

Remark 1.1.2 (On the definition of a domain). (i) If not stated otherwise we will assume throughout
this thesis that the considered domains are domains with Lipschitz boundary.
(ii) An implication of this definition is that a domain is located on exactly one side of its boundary
∂Ω. That means in particular that sets with slits or cuts, as shown in figure 1, are not included.

Definition 1.1.3 (Polygon, polyhedron). [10, Def.1.47]. In dimension 1, a polyhedron is a compact
interval. In dimension 2, a polyhedron, also called a polygon, is a domain, whose boundary is a finite
union of segments. In dimension 3, a polyhedron is a domain whose boundary is a finite union of
polygons.

Remark 1.1.4 (On the terminology). In the literature one often finds the terms polyhedron and
polygon used interchangeably.

Remark 1.1.5 (Extension to arbitrary dimensions). One can extend the definition of a polyhedron
to any dimension d using induction. One makes the observation that a polyhedron in Rd is a domain
which has a boundary that is just a finite union of polyhedra in Rd−1 (cf. remark 1.48 (iii) in [10]) .

Definition 1.1.6 (Mesh). [10, Def.1.49]. Let Ω be a domain in Rd . A mesh is a union of a
finite number N of compact15, connected, Lipschitz sets16 Km with non-empty interior such that
{Km}1≤m≤N forms a partition of Ω, i.e.,

Ω =
N⋃

m=1
Km and

◦
K m ∩

◦
K n = ∅ for m )= n.

A mesh {Km}1≤m≤N will be denoted by Th, where the subscript refers to the refinement level of the
mesh. We set

∀K ∈ Th : hK = diam(K ) = max
x1,x2∈K

||x2 − x1||d ,

where diam(K ) means the diameter of K and || · ||d denotes the Euclidean17 norm18 in Rd . Fur-
thermore we define

h := max
K∈Th

hK .

A sequence of successively refined meshes will be written as {Th}h>0.

Definition 1.1.7 (Mesh cells, faces, edges, vertices). [15, Rmk. B.16]. A mesh cell K is a compact
polyhedron in Rd , d ∈ {2, 3}, whose interior is not empty. The boundary ∂K of K consists of
m-dimensional linear manifolds19 (points, pieces of straight lines, pieces of planes), 0 ≤ m ≤ d − 1,
which are called m-faces. The 0-faces are the vertices of the mesh cell, the 1-faces are the edges,
and the (d − 1)-faces are called facets.

15See definition on p.37 in [16].
16See definition 3.2 on p.27 in [19].
17Euclid (fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician (cf. [29]).
18See definition on p.5 in [16].
19See definition 5.1 on p.142 in [12].
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1.1 Domains and Meshes

Remark 1.1.8 (Mesh cells in one dimension). It is clear that the mesh cells in one dimension are
just the subintervals, which decompose the domain. We will use this in section 2.1 to construct a
suitable mesh.

Example 1.1.9 (A mesh on the unit square). An example of a mesh can be seen in figure 2. Here
the unit square was equipped with a mesh consisting of triangles and quadrangles. Of course this is
just one example for a possible mesh on the unit square.

Figure 2: A possible mesh of the unit square in R2 (inspired by figure 1.11 in [10]).

Remark 1.1.10 (Reference cells and geometric transformations). Usually a mesh will be generated
by a reference cell, which we denote by K̂ , through geometric transformations Tm : K̂ −→ Km,
Km ∈ Th, that map the reference cell to the other mesh cells Km. We make the assumption that the
geometric transformations, which we will be using throughout this thesis, are C1-diffeomorphisms20.

Remark 1.1.11 (Transformations of higher degrees). In this thesis we will only consider the case
of geometric transformations of degree 1. The case of domains with curved boundaries, where one
needs geometric transformations of higher degrees, will not be treated here. The interested reader
may consult p.35 in [10].

Since we will consider simplicial meshes most of the time, we will now define the notion of a
simplex. Examples of simplices will be given.

Definition 1.1.12 (Simplices). [10, p.21]. Let {a0, ..., ad} be a family of points in Rd , d ≥ 1.
Furthermore let the vectors {a1 − a0, ..., ad − a0} be linearly independent. Then, the convex hull21

of {a0, ..., ad} is called a simplex, and the points {a0, ..., ad} are called vertices of the simplex.

Remark 1.1.13 (Choice of the reference point a0). Note that the choice of the reference point a0

is not of importance.

Example 1.1.14 (The unit simplex). [10, p.21]. The unit simplex of Rd is the set

∆d :=
{

x ∈ Rd | xi ≥ 0, 1 ≤ i ≤ d and
d∑

i=1
xi ≤ 1

}

.
20For a definition see p.3 in [12].
21See p.231 in [11].
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1.1 Domains and Meshes

Figure 3: One-dimensional and two-dimensional simplices.

Definition 1.1.15 (Affine meshes). [10, Def.1.53]. If the transformations Tm that transform the
reference mesh cell to the m-th mesh cell, i.e., Tm(K̂ ) = Km with m ∈ {1, ..., N}, are affine22, then
the mesh is called affine. In two dimensions, if the reference cell K̂ is a simplex, an affine mesh is
also often referred to as a triangulation.

Remark 1.1.16 (On the term triangulation). One should add that there is the convention in the
literature that the term triangulation is often used in any dimension for an affine and simplicial
mesh.

Definition 1.1.17 (Affine mapping from reference simplex in Rd). The affine mapping in Rd

that maps the reference simplex K̂ = {âi}0≤i≤d to another simplex K = {ai}0≤i≤d is given by
x = a0 + JTK x̂ with

JTK :=
[

∂T i
K

∂xj

]

ij

given by column vectors (aj − a0).

Remark 1.1.18 (Assumptions). Throughout this thesis we assume the reference cell K̂ , from which
the considered mesh is generated, to be a polyhedron. Commonly used reference cells are given by
the unit interval in dimension 1 and by the unit simplex (cf. example 1.1.14) or the unit square in
dimension 2. In dimension 3 one may choose the three-dimensional unit simplex or the unit cube.

Definition 1.1.19 (Shape regularity). [19, Def.11.2]. A sequence of affine meshes {Th}h>0 is called
shape-regular if there exists a constant C1 such that for all mesh cells K ∈ Th and for all h one has

σK := hK
ρK

≤ C1

with ρK being the diameter of the largest ball contained in K .

Definition 1.1.20 (Quasi-uniform meshes). [19, Def.22.20]. A sequence of shape-regular meshes
{Th}h>0 is called quasi-uniform if there exists a constant C2 such that for all h and for all mesh cells
K ∈ Th it holds that

C2h ≤ hK .
22See p.254 in [11].
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1.2 Finite Elements

1.1.1 Geometrically Conformal Meshes

Definition 1.1.21 (Geometrically conformal meshes). [10, Def.1.55]. Let Ω be a domain in Rd

and let Th = {Km}1≤m≤N be a mesh of Ω. The mesh Th is called geometrically conformal if the
following matching criterion is satisfied:
For all mesh cells Km and Kn having a non-empty (d − 1)-dimensional intersection F = Km ∩ Kn,
there is a face F̂ of K̂ and renumberings of the geometric nodes of Km and Kn such that F =
Tm(F̂ ) = Tn(F̂ ) and

Tm|F̂ = Tn|F̂

for transformations Tm and Tn.

Remark 1.1.22 (Implications of the definition for connected domains). [10, Rmk. 1.56]. For a
connected domain Ω the definition of a geometrically conformal mesh tells us that for any two
distinct cells {Ki , Kj} with i )= j , the intersection of the two mesh cells Ki ∩ Kj is
(i) either empty or a common vertex in dimension 1;
(ii) either empty or a common vertex or a common edge in dimension 2;
(iii) either empty or a common vertex or a common edge or a common face in dimension 3.

Remark 1.1.23 (Assumption on the domains). In this thesis we will only consider connected do-
mains.

Example 1.1.24 (Counterexample). We want to visualize the meaning of the defintion of a geo-
metrically conformal mesh. Looking at figure 4 we notice that due to the red node this mesh is not
a geometrically conformal mesh since this node does not belong to the nodes of K1. Remark 1.1.22
(ii) is violated.

Figure 4: A mesh in R2 that is not geometrically conformal.

1.2 Finite Elements
In the introduction it was described that we will interpret interpolation as a part of the finite element
method. Therefore we will shortly introduce the most important terminology of this theory. For a

5



1.2 Finite Elements

more extensive introduction to the theory of finite elements we refer to [13] or [19]. The material
presented here was taken from section 5.2 in [19] and the appendix in [15].

Definition 1.2.1 (Finite elements). [19, Def.5.2]. Let d ≥ 1, an integer nsh ≥ 1, and the set
N := {1, ..., nsh}. A finite element consists of a triple (K , P,Σ) where
(i) K is a polyhedron in Rd ,
(ii) P is a finite-dimensional vector space23 of functions p : K −→ Rq for some integer q ≥ 1 and
(iii) Σ is a set of nsh linear forms from P to R, i.e., Σ = {σi}i∈N , such that the map ΦΣ : P −→ Rnsh

defined by ΦΣ(p) = (σi(p))i∈N is an isomorphism24. The linear forms σi are called degrees of freedom
and the bijectivity25 of the map ΦΣ is named unisolvence.

Remark 1.2.2 (On this definition). (i) This definition is due to Ciarlet. The interested reader may
look into [5].
(ii) A slightly more general version of this definition is definition 5.2 in [19].

Remark 1.2.3 (Basis of L(P;R)). From part (iii) of the prior definition it follows that Σ is a basis
of the space of linear forms over P, which we denote by L(P;R). One finds for the dimension of
the space of linear forms over P that dim(L(P;R)) = dim(P) = nsh. Note that the dimension of P
is equal to the cardinality26 of the set Σ (cf. remark 5.4 in [19] and p.20 in [10]).

Proposition 1.2.4 (Shape functions). [19, Prop. 5.5]. There is a basis {ϑi}i∈N of the vector space
P such that

∀i , j ∈ N : σi(ϑj) := δij

with δij denoting the Kronecker27 symbol. The functions ϑi are called shape functions.

Proof. This follows directly from the bijectivity of the map from part (iii) in the definition of finite
elements from above (cf. def. 1.2.1 (iii)).

Definition 1.2.5 (Parametric finite elements). [15, Def. B.27]. Let K̂ be a reference mesh cell with
the local polynomial space P̂(K̂ ), the local linear forms σ̂1, ..., σ̂N̂ and a class of bijective mappings
{TK : K̂ −→ K}. A finite element space is called a parametric finite element space if:
(i) The images {K} of {TK } form the set of mesh cells.
(ii) The local spaces are given by

P(K ) = {p | p = p̂ ◦ T −1
K , p̂ ∈ P̂(K̂ )}.

23Compare p.190 in [11].
24See definition on p.72 in [11].
25See definition on p.44 in [11].
26See definition on p.40 in [11].
27Leopold Kronecker (1823-1891) was a German mathematician who worked on number theory, algebra and logic

(cf. [35]).
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1.3 Interpolation Operators in General

(iii) The local linear forms are defined by

σK ,i(v(x)) = σ̂i(v̂(x̂)) = σ̂i(v(TK (x̂))),

where x̂ = (x̂1, ..., x̂d)T are the coordinates of the reference mesh cell and it holds x = TK (x̂) as
well as v̂ = v ◦ TK .

1.3 Interpolation Operators in General
In this section we will develop the basic terminology in order to talk about interpolation operators.
The content we are going to present is taken from sections 5.3 and 5.5 in [19].

Definition 1.3.1 (Interpolation operator). [19, Def. 5.7]. Let (K , P,Σ) be a finite element (cf.
def. 1.2.1). Assume that there exists a Banach28 space29 V (K ) ⊂ L1(K ;Rq) such that
(i) P ⊂ V (K );
(ii) the linear forms {σi}i∈N can be extended to L(V (K );R), i.e., there exist {σ̃i}i∈N and cΣ such
that σ̃i(p) = σi(p) for all p ∈ P, and |σ̃i(v)| ≤ cΣ||v ||V (K) for all v ∈ V (K ) and all i ∈ N . We will
abuse the notation and use σi instead of σ̃i .
The interpolation operator IK : V (K ) −→ P will be defined by

IK (v)(x) :=
∑

i∈N
σi(v)ϑi(x) ∀x ∈ K ,

for all v ∈ V (K ).

Proposition 1.3.2 (Boundedness). [19, Prop. 5.8]. The interpolation operator IK , which we
just defined, lies in the vector space of the bounded linear operators from V (K ) to P, i.e., IK ∈
L(V (K ); P).

Proof. We consider a norm || · ||P in P. Using the representation of the interpolation operator from
above, the triangle inequality30 and part (ii) of the prior definition we see that

||IK (v)||P def.= ||
∑

i∈N
σi(v)ϑi ||P

&-inequality
≤

∑

i∈N
||σi(v)ϑi ||P

1.3.1(ii)
≤ (cΣ

∑

i∈N
||ϑi ||P)||v ||V (K)

for all v ∈ V (K ).

Proposition 1.3.3 (P-invariance). [19, Prop. 5.9]. The space P is pointwise invariant under IK ,
i.e., IK (p) = p for all p ∈ P.

28Stefan Banach (1892-1945) was a Polish mathematician (cf. [39]).
29See definition on p. 803 in [11].
30cf. p.111 in [11].
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1.3 Interpolation Operators in General

Proof. We want to make use of proposition 1.2.4. Therefore let p = ∑
j∈N αjϑj . Then

IK (p) =
∑

i ,j∈N
αjσi(ϑj)ϑi

prop.1.2.4=
∑

i ,j∈N
αjδijϑi = p

by the property of the shape functions and the definition of the Kronecker delta δij . Hence, the
statement is verified. One says that the interpolation operator fulfills the projection property.

Remark 1.3.4 (Choices for V (K )). [19, Example 5.10]. If we use the values of the given function
v at some points on the mesh cell K for defining the interpolation operator IK (v) then a suitable
choice for V (K ) is the space of continuous functions from K to Rq which we write as C0(K ;Rq). It
is also common and for our discussions of highest interest to make the choice V (K ) := W k,p(K ;Rq)
for some real numbers k ≥ 0 and p ∈ [1, ∞] such that kp > d . We will define the notion of this
space in the next section (cf. def. 1.4.8).

We have seen that the interpolation operator IK is an element in the space L(V (K ); P) (cf.
Prop. 1.3.2), i.e., IK is a bounded linear operator from V (K ) to P. Since P is a subspace of V (K )
we know that P can be equipped with the norm of V (K ). Thus, one can view IK as an element in
L(V (K )).

Definition 1.3.5 (Lebesgue constant). [19, p.55]. The quantity

||IK ||L(V (K)) := sup
v∈V (K)\{0}

||IK (v)||V (K)
||v ||V (K)

is called Lebesgue constant for IK .

Lemma 1.3.6 (Lower bound of the Lebesgue constant). [19, Lemma 5.13]. The Lebesgue constant
is bounded from below. In other words, it holds that

||IK ||L(V (K)) ≥ 1.

Proof. Firstly, we note that P is nontrivial. It was proven in proposition 1.3.3 that the interpolation
operator IK is P-invariant, i.e., IK (p) = p for all p ∈ P. Hence, we can conclude that

sup
v∈V (K)\{0}

||IK (v)||V (K)
||v ||V (K)

≥ sup
p∈P

||IK (p)||V (K)
||p||V (K)

= sup
p∈P

||p||V (K)
||p||V (K)

= 1.

Theorem 1.3.7 (Interpolation error involving the Lebesgue constant). [19, Thm.5.14]. For all
functions v ∈ V (K ) it holds that

||v − IK (v)||V (K) ≤ (1 + ||IK ||L(V (K))) inf
p∈P

||v − p||V (K)

and if V (K ) is a Hilbert space it further holds that

||v − IK (v)||V (K) ≤ ||IK ||L(V (K)) inf
p∈P

||v − p||V (K).
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Proof. We know that by the projection property of the interpolation operator it holds for all p ∈ P
that IK (p) = p (see prop. 1.3.3). Hence, we are allowed to write

v − IK (v) = (IdV (K) − IK )(v) = (IdV (K) − IK )(v − p)

with IdV (K) being the identity operator in V (K ).
Using the boundedness of (IdV (K) − IK ) and then invoking the triangle inequality we obtain

||v − IK (v)||V (K) ≤ ||(IdV (K) − IK )(v − p)||V (K) ≤ (1 + ||IK ||L(V (K)))||v − p||V (K).

Now taking the infimum over p ∈ P gives us the first inequality.
For the other estimate we assume that V (K ) is a Hilbert space. The proof relies on the fact that
in a Hilbert space H an operator T ∈ L(H) with 0 )= T ◦ T = T )= Id fulfills the equality

||T ||L(H) = ||Id − T ||L(H).

For a proof of this statement see Lemma 5 in [9].
We are going to use this result with H := V (K ) and T := IK . It is true that IK )= 0 because P is
nontrivial. Furthermore it holds that IK )= IdV (K) due to the fact that P is a proper subset of V (K ).
Also observe that IK ◦ IK = IK by again using the P-invariance of the interpolation operator. Now
applying the mentioned result we find

||v − Ik(v)||V (K) ≤ ||IdV (K) − IK ||L(V (K))||v − p||V (K) = ||IK ||L(V (K))||v − p||V (K).

Finally, we obtain the desired estimate by again taking the infimum over all p ∈ P.

Remark 1.3.8 (On the interpolation error). The just proven estimate indicates that a large Lebesgue
constant corresponds to a bad approximation behavior of the interpolation operator IK .

1.4 Lebesgue and Sobolev Spaces
Since we want to investigate the properties of the interpolation operators in Sobolev spaces, we
introduce them together with Lebesgue spaces in a concise way. This section is based on the
appendix B in [10] and the appendix A in [15].

1.4.1 Lebesgue Spaces

Definition 1.4.1 (Lebesgue spaces). [15, Def.A.27]. The space of functions that are Lebesgue
integrable on Ω to the power of p ∈ [1, ∞) is denoted by

Lp(Ω) =
{

f |
∫

Ω
|f (x)|pdx < ∞

}
,

9



1.4 Lebesgue and Sobolev Spaces

which is equipped with the norm

||f ||Lp(Ω) =
(∫

Ω
|f (x)|pdx

)1/p
.

For p = ∞, this space is given by

L∞(Ω) = {f | |f (x)| < ∞ almost everywhere in Ω}

with the norm

||f ||L∞(Ω) = ess sup
x∈Ω

|f (x)| = inf
N⊂Ω,µ(N)=0

sup
x∈Ω\N

|f (x)|,

where ess sup is called the essential supremum and µ denotes the Lebesgue measure31 on Rd .

Example 1.4.2 (L1(Ω)). For p = 1 one has L1(Ω), which is the space consisting of the scalar-valued
functions that are Lebesgue-integrable over the domain Ω.

Definition 1.4.3 (The space of locally integrable functions). [10, Def. B.2] Let M(Ω) denote the
space of equivalence classes of functions, where two functions belong to the same equivalence class
if they coincide almost everywhere, i.e. everywhere but on a set of zero Lebesgue measure. Then
the space of locally integrable functions L1

loc(Ω) is defined as

L1
loc(Ω) = {f ∈M(Ω) | ∀K ⊂ Ω compact, f ∈ L1(K )}.

Theorem 1.4.4 (Hölder’s32 inequality). [10, Thm. B.6]. Let f ∈ Lp(Ω) and g ∈ Lq(Ω) with
1 ≤ p ≤ +∞ and 1

p + 1
q = 1. Then fg ∈ L1(Ω) and

∫

Ω
|fg |dx ≤ ||f ||Lp(Ω)||g ||Lq(Ω).

Proof. See p.11 in [18].

Corollary 1.4.5 (Interpolation inequality). [10, Cor. B.7]. Let 1 ≤ p ≤ q ≤ +∞ and 0 ≤ α ≤ 1.
Let r be such that 1

r = α
p + (1−α)

q . Then

∀f ∈ Lp(Ω) ∩ Lq(Ω) : ||f ||Lr (Ω) ≤ ||f ||αLp(Ω)||f ||1−α
Lq(Ω).

A very important Lebesgue space is the space of square-integrable functions L2(Ω). The following
theorem is one reason for the important role of this space.

Theorem 1.4.6 (The space of square-integrable functions). [10, Thm. B.9]. The space of square-
integrable functions L2(Ω) is a Hilbert space when equipped with the scalar product

(f , g)L2(Ω) :=
∫

Ω
fgdx

and the corresponding norm

||f ||L2(Ω) =
(∫

Ω
f 2dx

) 1
2 .

31See definition A.2.1 on p.544 in [18].
32Otto Hölder (1859-1937) was a German mathematician (cf. [37]).
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Proof. This is a consequence of the Fischer33-Riesz34 Theorem.

Remark 1.4.7 (Cauchy-Schwarz inequality). In L2(Ω) the Hölder inequality becomes the so-called
Cauchy35-Schwarz36 inequality:

∀f , g ∈ L2(Ω) : (f , g)L2(Ω) ≤ ||f ||L2(Ω)||g ||L2(Ω).

1.4.2 Sobolev Spaces

Definition 1.4.8 (Sobolev spaces). [15, Def. A.30]. Let s ∈ N ∪ {0} and p ∈ [1, ∞), then the
Sobolev space W s,p(Ω) is defined by

W s,p(Ω) := {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω), ∀α : |α| ≤ s}.

This space is equipped with the norm

||u||W s,p(Ω) :=
∑

|α|≤s
||Dαu||Lp(Ω).

We also use the notation H s(Ω) := W s,2(Ω), which is a Hilbert37 space38 with the inner product39

(u, v)Hs(Ω) =
∑

|α|≤s

∫

Ω
Dαu(x)Dαv(x)dx

and the induced40 norm

||u||Hs(Ω) = (u, u)1/2
Hk(Ω).

Example 1.4.9 (H1(Ω)). [10, Example B.28]. The space H1(Ω) = {u ∈ L2(Ω) | ∂iu ∈ L2(Ω), 1 ≤
i ≤ d} equipped with the scalar product

(u, v)H1(Ω) =
∫

Ω
uv dx +

∫

Ω
∇u · ∇v dx =

∫

Ω
uv dx +

d∑

i=1

∫

Ω
∂iu∂iv dx

is a Hilbert space.
The corresponding norm is given by

||u||2H1(Ω) =
∫

Ω
u2 dx +

∫

Ω
(∇u)2 dx = ||u||L2(Ω) + |u|2H1(Ω).

33Ernst Sigismund Fischer (1875-1954) was an Austrian mathematician (cf. [28]).
34Frigyes Riesz (1880-1956) was a Hungarian mathematician (cf. [31]).
35Augustin-Louis Cauchy (1789-1857) was a French mathematician (cf. [25]).
36Hermann Amandus Schwarz (1843-1921) was a German mathematician (cf. [33]).
37David Hilbert (1862-1943) was a German mathematician and one of the most influential mathematicians of the

19th and early 20th century (cf. [27]).
38See definition on p.810 in [11].
39See definition A.5. on p.464 in [10].
40See example (1.5) on p.6 in [16].
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Definition 1.4.10 (Fractional Sobolev spaces). [10, Def. B.30]. For 0 < s < 1 and 1 < p < +∞
the Sobolev space with fractional exponent is defined as

W s,p(Ω) =



u ∈ Lp(Ω) | u(x) − u(y)
||x − y ||s+ d

p
∈ Lp(Ω × Ω)






Furthermore, if s > 1 is not an integer and letting σ = s − [s] with [s] denoting the integer part of
s, then one defines the space W s,p(Ω) as

W s,p(Ω) = {u ∈ W [s],p(Ω) | Dαu ∈ W σ,p(Ω), ∀α : |α| = [s]}.

If p = 2 we will write H s(Ω) = W s,2(Ω) again.

1.5 Embedding
In some occasions we will need to make use of the embedding of Sobolev spaces. Here we recall
some important results. The content of this section is taken from appendix B in [10].

Proposition 1.5.1 (Embedding of Lebesgue spaces). [10, Prop. B.39]. Let Ω be an open bounded
set. Then, for 1 ≤ p < q ≤ +∞ the embedding Lq(Ω) ⊂ Lp(Ω) is continuous.

Proof. This statement follows from Hölder‘s inequality.

Theorem 1.5.2 (Sobolev inequality). [10, Thm. B.40]. Let 1 ≤ p < d and denote by p∗ the
number such that 1

p∗ = 1
p − 1

d or equivalently p∗ = pd
d−p . Then there exists c = p∗

1∗ with 1∗ := d
d−1

such that for all functions u ∈ W 1,p(Rd) the inequality

||u||Lp∗ (Rd ) ≤ c||∇u||Lp(Rd )

holds.

Proof. See page 32 in [7].

Corollary 1.5.3. [10, Cor. B.41]. Let 1 ≤ p, q ≤ +∞. The following embeddings

W 1,p(Rd) ⊂ Lq(Rd) if






either 1 ≤ p < d and p ≤ q ≤ p∗,
or p = d and p ≤ q < +∞

are continuous.

Proof. A proof is given on page 34 in [7].

Theorem 1.5.4 (Morrey41). [10, Thm. B.42]. Let d < p ≤ +∞ and α = 1 − d
p . The embedding

W 1,p(Rd) ⊂ L∞(Rd) ∩ C 0,α(Rd)

is continuous.
41Charles B. Morrey Jr. (1907-1984) was an American mathematician (cf. [26]).
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Proof. A proof can be found on page 37 in [7].

Corollary 1.5.5. [10, Cor. B.43]. Let 1 ≤ p, q ≤ +∞. Let s ≥ 1 be an integer. Let Ω be a
bounded open set having the (1, p)-extension property. The embeddings

W s,p(Ω) ⊂






Lq(Ω) if 1 ≤ p < d
s and p ≤ q ≤ p∗,

Lq(Ω) if p = d
s and p ≤ q < +∞,

L∞(Ω) ∩ C 0,α(Ω) if p > d
s and α = 1 − d

sp .

are continuous.

Remark 1.5.6 (Continuity of functions in H1(Ω)). A consequence of this theorem is that in one
dimension functions in H1(Ω) are continuous. However, one should note that in dimension 2 or in
dimension 3 this is not true any longer. This remark will be quite important for some proofs in the
other chapters of this thesis. Nevertheless, this result will also limit some investigations as we will
see in the section about the weighted L2 projection.

1.6 Error Bounds for Interpolation in Sobolev Spaces
The objective of this section is to state local as well as global error estimates on affine meshes for
scalar-valued functions belonging to Sobolev spaces, which we defined previously (cf. def. 1.4.8).
We will refer to the literature for their proofs. The results given are taken from section 1.5.1 in [10].

Theorem 1.6.1 (Local Interpolation). [10, Thm.1.103]. Let {K̂ , P̂, Σ̂} be a local finite element
with associated normed vector space V (K̂ ). Let 1 ≤ p ≤ ∞ and assume that there exists an integer
k such that

Pk ⊂ P̂ ⊂ W k+1,p(K̂ ) ⊂ V (K̂ ). (1)

Furthermore, let TK : K̂ −→ K be an affine bijective mapping from the reference mesh cell to
another mesh cell and let Ik

K be the local interpolation operator on K. Let l be chosen in such a
way that 0 ≤ l ≤ k and W l+1,p(K̂ ) ⊂ V (K̂ ) with continuous embedding. Then, setting σK = hK

ρK

where ρK denotes the diameter of the largest ball that can be inscribed in K, there exists c > 0
such that for all m ∈ {0, ..., l + 1} we have

∀K , ∀v ∈ W l+1,p(K ) : |v − Ik
K v |W m,p(K) ≤ chl+1−m

K σm
K |v |W l+1,p(K).

Proof. A proof of this result is given on page 59 in [10].

Definition 1.6.2 (Degree of a finite element). [10, Def.1.104]. The largest integer k such that the
embedding (1) holds is called the degree of the finite element {K̂ , P̂, Σ̂}.
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Remark 1.6.3 (Optimal error estimate). If the function we want to interpolate lies in W k+1,p(K )
we may set l = k in the previous theorem. Then one obtains an error estimate, which is optimal.
In particular, one gets for m ∈ {0, ..., k + 1} that

∀K , ∀W k+1,p(K ) : |v − Ik
K v |W m,p(K) ≤ chk+1−m

K σm
K |v |W l+1,p(K).

Theorem 1.6.4 (Global interpolation). [10, Cor. 1.109]. Let p, k and l be such that they satisfy
the assumptions of the previous theorem. Furthermore, let Ω be a polyhedron and let {Th}h>0 be a
shape-regular family of affine meshes of Ω. With V k

h we denote the approximation space based on
{Th} and the finite element {K̂ , P̂, Σ̂}. Let Ik

h be the corresponding global interpolation operator.
Then, there exists a constant c such that for all h and v ∈ W l+1,p(Ω) one finds

||v − Ik
h v ||Lp(Ω) +

l+1∑

m=1
hm




∑

K∈Th

|v − Ik
h v |pW m,p(K)





1
p

≤ chl+1|v |W l+1,p(Ω),

for p < ∞, and for p = ∞ one has

||v − Ik
h v ||L∞(Ω) +

l+1∑

m=1
hm max

K∈Th
|v − Ik

h v |W m,∞(K) ≤ chl+1|v |W l+1,∞(Ω).

Proof. A proof can be found on page 61 in [10].

Corollary 1.6.5 (Interpolation in W s,p(Ω)). [10, Cor.1.110]. Let the conditions of the previous
theorem hold. We assume that V k

h is W 1,p-conformal, which means that V k
h ⊂ W 1,p(Ω). Then

there exists a constant c such that for all h and v ∈ W l+1,p(Ω) the estimate

|v − Ik
h v |W 1,p(Ω) ≤ chl |v |W l+1,p(Ω)

holds.

14



2. The Lagrange Interpolation Operator IL
K

2 The Lagrange Interpolation Operator IL
K

In this section the Lagrange interpolation operator will be introduced, which is a popular choice for
the interpolation of smooth functions. The main idea is to define the interpolation operator using
the values of the function to be interpolated at the nodes that are distributed over the proposed
mesh. That means in particular, following the definition of a general interpolation operator (cf.
def. 1.3.1), that for a set of points {ai}N

i=1 in some mesh cell K the general Lagrange interpolation
operator is defined by

IL
K v :=

∑

i∈N
v(ai)ϑi

where ϑi are suitable shape functions and v is the function to be interpolated (cf. p.54 in [19]).
We will make this definition more accessible in the following sections. For the sake of simplicity
the one-dimensional case will be presented first. Later the idea of this operator will be generalized
to higher dimensions. Throughout this section we will derive some estimates on the interpolation
error, which will help us to understand how interpolation estimates are proven. This chapter follows
closely the presentation in chapter 1.1 in [10].

2.1 The One-Dimensional Case
2.1.1 Interpolation Using Polynomials of Degree 1

In one dimension a domain is an open, bounded interval (cf. def. 1.1.1). So we will consider the
open interval Ω = (a, b), which will be decomposed by a mesh. In this scenario, following def.
1.1.6 and def. 1.1.7 as well as remark 1.1.8, a mesh is given by an indexed set of subintervals with
non-zero measure {Ii = [x1,i , x2,i ]}0≤i≤N that form a partition of Ω, which means that

Ω =
N⋃

i=0
Ii and

◦
I i ∩

◦
I j = ∅ for i -= j .

In order to construct such a mesh we pick (N + 2) points in Ω such that

a = x0 < x1 < ... < xN < xN+1 = b,

where we set x1,i = xi and x2,i = xi+1 for 0 ≤ i ≤ N . Using the introduced terminology from
definition 1.1.7 we call the points {x0, ..., xN+1} the vertices of the mesh. Furthermore we allow the
mesh to have variable step size, i.e.,

hi := xi+1 − xi , 0 ≤ i ≤ N ,

and define h to be the maximum step size, i.e.,

h := max
0≤i≤N

hi .
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According to remark 1.1.8 the intervals will be called mesh cells. The mesh will be denoted as
Th := {Ii}0≤i≤N .
As an approximation space we will consider the vector space of continuous, piecewise linear functions

P1
h = {vh ∈ C0(Ω) | ∀i ∈ {0, ..., N} : vh|Ii ∈ P1},

where C0(Ω) means the space of continuous functions on Ω ⊂ R and P1 denotes the vector space
composed of univariate polynomial functions of degree at most 1. We define for i ∈ {0, ..., N + 1}
the functions

ϕi(x) :=






1
hi−1

· (x − xi−1) = (x−xi−1)
(xi −xi−1) if x ∈ Ii−1,

1
hi

· (xi+1 − x) = (xi+1−x)
(xi+1−xi ) if x ∈ Ii ,

0 otherwise,

with suitable modifications if i = 0 or i = N + 1 (cf. p.4 in [10]).

Remark 2.1.1 (Hat functions). One easily sees that the ϕi are continuous, piecewise linear func-
tions, i.e., ϕi ∈ P1

h . With respect to the shape of their graphs the defined functions are also often
called hat functions (cf. figure 5).

Figure 5: The graphs of hat functions (based on figure 1.1 in [10]).

Proposition 2.1.2 (Basis of P1
h). [10, Prop.1.1]. The set of hat functions {ϕ0, ..., ϕN+1} is a

basis42 for the space of continuous, piecewise linear functions P1
h .

Proof. From the definition it follows directly that

ϕi(xj) = δij =




1 if i = j ,
0 if i -= j ,

42See definition on p.204 in [11].
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for 0 ≤ i , j ≤ N + 1 with δij denoting the Kronecker symbol. This fact will be of importance for our
argumentation. In order to prove the linear independence43 let (λ0, ..., λN+1)T ∈ RN+2. We make
the assumption that the continuous function w = ∑N+1

i=0 λiϕi vanishes for all x ∈ Ω. Thus, it holds
by the observation from the beginning that

w(xi) =
N+1∑

i=0
λiϕi(xi) = λi = 0 for 0 ≤ i ≤ N + 1.

That proves the linear independence.
Now we need to show that the set {ϕ0, ..., ϕN+1} spans P1

h . Given that on each mesh cell Ii the
functions vh and ∑N+1

i=0 vh(xi)ϕi are affine and coincide at the two points xi and xi+1, we know that
for all vh ∈ P1

h it holds that vh = ∑N+1
i=0 vh(xi)ϕi . This completes the proof.

Having found appropriate shape functions, we still need linear forms to properly define an inter-
polation operator in the sense of definition 1.3.1. As we have already stated in the beginning of
this chapter, the essence of Lagrange interpolation is that it uses the values of the function to be
interpolated. So consider the linear forms that evaluate a function at the i-th node, i.e.,

σi : C0(Ω) −→ R

v .−→ σi(v) = v(xi), i ∈ {0, ..., N + 1}.

Using the gathered information we are able to define the Lagrange interpolation operator.

Definition 2.1.3 (Lagrange interpolation operator). [10, p.5]. The interpolation operator

I1
h : C0(Ω) −→ P1

h

v .−→
N+1∑

i=0
σi(v)ϕi

is called the Lagrange interpolation operator of degree 1.

Remark 2.1.4 (On the defintion of the Lagrange interpolation operator). Looking at the definition
of this interpolation operator it is clear that for a function v that belongs to C0(Ω), the Lagrange
interpolant of v , i.e., I1

hv , is the unique continuous, piecewise linear function that takes the same
value as v at all vertices within the mesh.

Having defined the Lagrange interpolation operator we want to discuss its properties in Sobolev
spaces.

Lemma 2.1.5 (Subspace of H1(Ω)). [10, Lemma 1.3]. It holds that P1
h ⊂ H1(Ω) = W 1,2(Ω).

43See definition on p.201 and the used criterion for linear independence on p.203 in [11].
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Proof. Let vh be a function in P1
h . It is clear by definition that vh also lies in L2(Ω). Recall that

functions in P1
h are continuous by definition. Thus, by the continuity of vh we see that its first-order

distributional derivative44 is the piecewise constant function uh such that for the restriction of uh to
each mesh cell Ii it holds that

∀Ii ∈ Th : uh|Ii = vh(xi+1) − vh(xi)
hi

.

Then, by the same argumentation as for vh, we know that the function uh lies in L2(Ω) too and
hence vh ∈ H1(Ω).

Proposition 2.1.6 (H1-stability of I1
h). [10, Prop. 1.4]. I1

h is a linear continuous mapping from
H1(Ω) to H1(Ω), and there exists a positive constant C such that

||I1
hv ||H1(Ω) ≤ C ||v ||H1(Ω).

Proof. For the first part of the proposition we know by the embedding theorems that in dimension
1, a function in H1(Ω) is continuous (cf. remark 1.5.6). Let v ∈ H1(Ω) and x , y ∈ Ω. By the
Cauchy-Schwarz inequality, which we stated in remark 1.4.7, one finds

|v(y) − v(x)| ≤

∣∣∣∣∣∣

y∫

x
|v ′(s)|ds

∣∣∣∣∣∣
=
∣∣∣∣∣∣

y∫

x
|v ′(s)| · 1ds

∣∣∣∣∣∣
≤ |y − x | 1

2

(∫

Ω
|v ′(s)|2ds

) 1
2 = |y − x | 1

2 |v |H1(Ω).

(2)

Let x be a point where |v | attains its minimum in Ω. By inequality (2) we can argue that

||v ||L∞(Ω) ≤ |b − a|− 1
2 ||v ||L2(Ω) + |b − a| 1

2 |v |H1(Ω), (3)

because |v(x)| ≤ |b − a|− 1
2 ||v ||L2(Ω). A detailed proof of a more general version of this statement

can be found on p.24 in [20]. Thus, the Lagrange interpolant I1
hv is well-defined for v ∈ H1(Ω).

By the previous lemma we know that P1
h ⊂ H1(Ω), which implies that the Lagrange interpolant lies

in H1(Ω), i.e., I1
hv ∈ H1(Ω). This means I1

h maps H1(Ω) to H1(Ω), which proves the first part of
the statement.
For the second part of the statement we consider a mesh cell Ii ∈ Th for 0 ≤ i ≤ N . By the proof
of the previous lemma we know that (I1

hv)′
|Ii = h−1

i (v(xi+1) − v(xi)). We get

|I1
hv |H1(Ii ) =




xi+1∫

xi

|h−1
i (v(xi+1) − v(xi))|2ds





1
2

= h−1
i |v(xi+1) − v(xi)|




xi+1∫

xi

1ds




1
2

= h−1
i |v(xi+1) − v(xi)||xi+1 − xi |

1
2

= h− 1
2

i |v(xi+1) − v(xi)|

= h− 1
2

i

xi+1∫

xi

|v ′(s)|ds

≤ h− 1
2

i |xi+1 − xi |
1
2 |v |H1(Ii ) = |v |H1(Ii ),

44See definition B.19 on p. 481 in [10].
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2.1 The One-Dimensional Case

using estimate (2) in the last step. It immediately follows that |I1
hv |H1(Ω) ≤ |v |H1(Ω). It further

holds by the definition of the L∞-norm (cf. def. 1.4.1) that

||I1
hv ||L2(Ω) =

(∫

Ω
|I1

hv |2dx
) 1

2
≤
(∫

Ω
||I1

hv ||2L∞(Ω)dx
) 1

2
≤ |b − a| 1

2 ||I1
hv ||L∞(Ω).

Because the function and its linear interpolant coincide at the vertices we also have ||I1
hv ||L∞(Ω) ≤

||v ||L∞(Ω). We further assume that h is bounded. Now using these estimates we infer by (3) that

||I1
hv ||L2(Ω) ≤ C ||v ||H1(Ω),

where C is a constant that is independent of h. This completes the proof.

Proposition 2.1.7 (Interpolation error). [10, Prop. 1.5]. For all h and v ∈ H2(Ω),

||v − I1
hv ||L2(Ω) ≤ h2||v ′′||L2(Ω) and ||(v − I1

hv)′||L2(Ω) ≤ h||v ′′||L2(Ω).

Proof. Let Ii ∈ Th be a mesh cell and let u be a function in H1(Ω) which takes the value zero at
some point η in the mesh cell Ii . Then, by inequality (2) we obtain

||u||L2(Ii ) ≤ hi ||u′||L2(Ii ).

Next, let v ∈ H2(Ω) and let i ∈ {0, ..., N}. Furthermore, we set ui = (v − I1
hv)′

|Ii . Note that ui

lies in H1(Ii). Observe that Rolle45’s theorem tells us that ui vanishes at some point η in the mesh
cell Ii . By the application of the inequality ||u||L2(Ii ) ≤ hi ||u′||L2(Ii ) to ui and by using the fact that
(I1

hv)′′ becomes zero for all arguments x ∈ Ii we come to the conclusion that

||v ′ − (I1
hv)′||L2(Ii ) ≤ hi ||v ′′||L2(Ii ).

Now summation over the mesh cells yields the second estimate in the proposition.
For proving the first estimate, one needs to apply the estimate ||u||L2(Ii ) ≤ hi ||u′||L2(Ii ) to (v −I1

hv)|Ii .
Using that one finds

||v − I1
hv ||L2(Ii ) ≤ hi ||v ′ − (I1

hv)′||L2(Ii ) ≤ h2
i ||v ′′||L2(Ii ).

Finally, one concludes again by summing over the mesh cells.

Remark 2.1.8 (On the proven error bounds). [10, p. 7]. (i) Looking at the proven error bound one
sees that the bound on the interpolation error involves second-order derivatives of v . This results
from the fact that a large second derivative corresponds to a high deviation of the graph of v from
the piecewise linear interpolant.
(ii) If the function, which we seek to interpolate lies in H1(Ω) only, one can verify that

∀h : ||v − I1
hv ||L2(Ω) ≤ h||v ′||L2(Ω) and lim

h−→0
||(v − I1

hv)′||L2(Ω) = 0.

(iii) The proof we have given for the last proposition indicates that the Lagrange interpolation
operator I1

h possesses numerous local interpolation properties. In other words, one observes that
the interpolation error is controlled elementwise before it is controlled on a global level. This
observation serves as a motivation for the introduction of local interpolation operators.

45Michel Rolle (1652-1719) was a French mathematician (cf. [36]).
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2.1 The One-Dimensional Case

2.1.2 Interpolation with Higher-Degree Polynomials

The interpolation technique from the previous section can be generalized to higher-degree polynomi-
als. This has the advantage that we can interpolate smooth functions to high-order accuracy. This
section follows closely the material from section 1.1.3 in [10]. In order to do this this generalization
process we again consider the mesh Th = {Ii} from the beginning. Different to the previous part is
the choice of the approximation space. Now we consider the space

Pk
h = {vh ∈ C0(Ω); ∀i ∈ {0, ..., N}, vh|Ii ∈ Pk},

with Pk denoting the vector space that consists of univariate polynomials of degree at most k , i.e.,
p ∈ Pk if p(t) = ∑k

i=0 αit i for all t ∈ R, with αi ∈ R for every integer i ∈ {0, ..., k}. Before defining
the corresponding interpolation operator we need to recall the notion of Lagrange polynomials.

Definition 2.1.9 (Lagrange polynomials). [10, Def. 1.7]. Let k ≥ 1 and let {s0, ..., sk} be (k + 1)
distinct numbers. The Lagrange polynomials {)k

0 , ..., )k
k} associated with the nodes {s0, ..., sk} are

defined as

)k
m(t) :=

∏
l )=m(t − sl)

∏
l )=m(sm − sl)

, 0 ≤ m ≤ k .

Remark 2.1.10 (Kronecker delta). The Lagrange polynomials satisfy the property

)k
m(sl) = δml , 0 ≤ m, l ≤ k ,

by definition.

Example 2.1.11 (Computation of Lagrange polynomials). Consider the unit interval [0, 1] using
equi-distributed nodes. One computes for the degree k = 1 the Lagrange polynomials

)1
0(t) = t − 1

0 − 1 = t − 1
(−1) = −t + 1 and )1

1(t) = t − 0
1 − 0 = t.

For k = 2 one finds

)2
0(t) = t − 1

2
0 − 1

2
· t − 1

0 − 1 = 2t2 − 3t + 1,

)2
1(t) = t − 0

1
2 − 0 · t − 1

1
2 − 1 = −4t2 + 4t and

)2
2(t) = t − 0

1 − 0 ·
t − 1

2
1 − 1

2
= 2t2 − t.

Remark 2.1.12 (Nodes for different degrees k). The example illustrates that for the degree k = 1
the nodes coincide with the vertices of the proposed mesh. For a degree of k = 2 one sees that the
nodes include the midpoint of the interval. For higher k it generalizes in the obvious way.
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2.1 The One-Dimensional Case

Since we want to define the Lagrange interpolation operator for arbitrary degrees k we will
proceed in a similar way as we did in section 2.1. Hence, we will now define an analogon to the hat
functions from the previous section where we looked at k = 1. Therefore, we will define the nodes
ξi ,m := xi + m

k hi , 0 ≤ m ≤ k in the mesh cell Ii for i ∈ {0, ..., N}. Next we will use the Lagrange
polynomials, which we defined above and associate those to the nodes ξi ,m. So let {)k

i ,0, ..., )k
i ,k} be

the Lagrange polynomials associated with these nodes. Now for j ∈ {0, ..., k(N +1)} with j = ki +m
and 0 ≤ m ≤ k − 1, we define for 1 ≤ m ≤ k − 1 the functions

ϕki+m(x) =




)k

i ,m(x) if x ∈ Ii ,
0 otherwise,

and for m = 0,

ϕki(x) =






)k
i−1,k(x) if x ∈ Ii−1,

)k
i ,0(x) if x ∈ Ii ,

0 otherwise,

with certain modifications if i = 0 or i = N + 1 (cf. p.8 in [10]).

Lemma 2.1.13 (Hat functions lie in Pk
h ). [10, Lemma 1.8]. The hat functions ϕj lie in Pk

h .

Proof. Let j ∈ {0, ..., k(N + 1)} with j = ki + m. For 1 ≤ m ≤ k − 1 we find that

ϕj(xi) = ϕj(xi+1) = 0.

This leads to the conclusion that ϕj lies in the space C0(Ω). Also note that if we restrict the ϕj to
each mesh cell that these restrictions will lie in Pk of the considered mesh cell, which is due to their
construction. It follows that ϕj ∈ Pk

h . Next we make the assumption that m = 0 and 0 < i < N +1.
It is clear that ϕki is continuous at xi by construction. Furthermore it holds that

ϕki(xi−1) = ϕki(xi+1) = 0.

We conclude that ϕki is an element of Pk
h . For the cases i = 0 and i = N + 1 one follows a similar

procedure. This ends the proof.

As in the previous section we will again need linear forms for the definition of the interpolation
operator. We introduce the set of nodes {aj}0≤j≤k(N+1) such that aj = ξi ,m where j = ik + m. For
j ∈ {0, ..., k(N + 1)} we consider the linear forms

σj : C0(Ω) −→ R

v .−→ σj(v) = v(aj),

which are defined by evaluating the function v at the nodes aj .
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2.1 The One-Dimensional Case

Proposition 2.1.14 (Bases for Pk
h and L(Pk

h ,R)). [10, Prop. 1.9]. The set {ϕ0, ..., ϕk(N+1)} is a
basis for Pk

h and {σ0, ..., σk(N+1)} is a basis for L(Pk
h ;R).

Proof. Using the fact that for the linear forms it holds that σj(ϕj′) = δjj′ for 0 ≤ j , j ′ ≤ k(N + 1),
one can prove this statement similarly to the proof of proposition 2.1.2.

We are now ready to define the interpolation operator Ik
h .

Definition 2.1.15 (Lagrange interpolant of degree k). [10, p.10].
The interpolation operator

Ik
h : C0 −→ Pk

h

v .−→
k(N+1)∑

j=0
σj(v)ϕj

is called the Lagrange interpolation operator of degree k .

Remark 2.1.16 (Properties of the Lagrange interpolant of degree k). [10, p.10]. (i) It is clear that
the Lagrange interpolation operator of degree k is linear.
(ii) The Lagrange interpolant Ik

h v is the unique function in Pk
h for which its values at all the nodes

of the mesh coincide with the values of the function v .

Lemma 2.1.17 (Subspace of H1(Ω)). [10, Lemma 1.10]. The space Pk
h is a subset of H1(Ω).

Proof. Similar to the proof for P1
h (cf. Lemma 2.1.5).

We want to take a closer look at the properties of Ik
h . The following construction is taken from

p.10 in [10]. We look at the i-th interval Ii = [xi , xi+1] ∈ Th and consider the (k + 1) linear forms
{σi ,0, ..., σi ,k} defined by the point evaluations at the nodes ξi ,m, i.e.,

σi ,m : Pk −→ R

p .−→ σi ,m(p) = p(ξi ,m), 0 ≤ m ≤ k .

As the local shape functions {ϑi ,0, ..., ϑi ,k} we choose the (k + 1) Lagrange polynomials associated
with the nodes {ξi ,0, ..., ξi ,k}, i.e.,

ϑi ,m = )k
i ,m for 0 ≤ m ≤ k .

A familiy {Ik
Ii }Ii ∈Th of local interpolation operators for i ∈ {0, ..., N} is now defined by

Ik
Ii : C0(Ii) −→ Pk

h

v .−→
k∑

m=0
σi ,m(v)ϑi ,m =

k∑

m=0
v(ξi ,m))k

i ,m.
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2.1 The One-Dimensional Case

This means for all 0 ≤ i ≤ N and v ∈ C0(Ω) we have by definition that

(Ik
h v)|Ii = Ik

Ii (v|Ii ).

We want to show that a reference interpolation operator can generate the family {Ik
Ii }Ii ∈Th . Therefore

we consider the unit interval K̂ = [0, 1] as a reference cell. We further set P̂ = Pk and define on
the reference mesh cell, analogously to the prior discussion, the (k + 1) linear forms {σ̂0, ..., σ̂k} by

σ̂m : Pk −→ R

p̂ .−→ σ̂m(p̂) = p̂(ξ̂m), 0 ≤ m ≤ k ,

where the m-th node on the reference cell is given by ξ̂m = m
k . Let {)̂k

0 , ..., )̂k
k} be the Lagrange

polynomials that we associate with the reference nodes {ξ̂0, ..., ξ̂k}.
Next let ϑ̂m = )̂k

m, 0 ≤ m ≤ k , such that σ̂m(ϑ̂n) = δmn for 0 ≤ m, n ≤ k . Now the interpolation
operator on the reference cell is defined as

Ik
K̂ : C0(K̂ ) −→ Pk

v̂ .−→
k∑

m=0
σ̂m(v̂)ϑ̂m =

k∑

m=0
v̂(ξ̂m))̂k

m.

We want to transform the reference mesh cell to the other mesh cells. Hence, according to remark
1.1.10, we use the affine transformations

Ti : K̂ −→ Ii
t .−→ x = xi + thi for i ∈ {0, ..., N}.

Observe that Ti(K̂ ) = Ii . That means in particular that we can construct the mesh by applying the
affine transformations Ti to the reference mesh cell K̂ . Also note that the transformations Ti map
the reference nodes to the nodes of the i-th interval, i.e., Ti(ξ̂m) = ξi ,m for 0 ≤ m ≤ k . So we have
that ϑi ,m ◦ Ti = ϑ̂m and for all continuous functions v ∈ C0(Ii) we find σi ,m(v) = σ̂m(v ◦ Ti). With
the computation

Ik
Ii (v)(Ti(x̂)) def.=

k∑

m=0
σi ,m(v)ϑi ,m(Ti(x̂))

=
k∑

m=0
σi ,m(v)ϑ̂m(x̂) (using ϑi ,m ◦ Ti = ϑ̂m)

=
k∑

m=0
σ̂m(v ◦ Ti)ϑ̂m(x̂) (using σi ,m(v) = σ̂m(v ◦ Ti))

def.= Ik
K̂ (v ◦ Ti)(x̂)

we conclude that for all functions continuous functions v ∈ C0(Ii) it holds that

Ik
Ii (v) ◦ Ti = Ik

K̂ (v ◦ Ti). (4)

In conclusion, the above construction shows that combining the reference interpolation operator
with the transformations Ti we can completely generate the family {Ik

Ii }Ii ∈Th .
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2.1 The One-Dimensional Case

Proposition 2.1.18 (H1-stability of Ik
h ). [10, Prop. 1.11]. Ik

h is a linear continuous mapping from
H1(Ω) to H1(Ω), and ||Ik

h ||L(H1(Ω);H1(Ω)) is uniformly bounded with respect to h.

Proof. To prove that Ik
h is a linear continuous mapping from H1(Ω) to H1(Ω) one can just repeat

the proof for P1
h (cf. lemma 2.1.6).

For the other part let v be a function in H1(Ω) and let Ii ∈ Th be a mesh cell. We make use of
the fact that ∑k

m=0 ϑ′
i ,m = 0. This is true because looking at ∑k

m=0 ϑi ,m we notice that this sum is
a polynomial in Pk and hence ∑k

m=0 ϑi ,m − 1 lies in Pk also. Now using the property from remark
2.1.10 it follows that

k∑

m=0
ϑi ,m(ξi ,n) − 1 = 0 for n = 0, 1, ..., k .

This means that this polynomial has k + 1 zeros and hence must be the zero polynomial since a
polynomial of degree k can only have up to k zeros.
So using the just proven result we have

(Ik
Ii v)′ =

k∑

m=0
[v(ξi ,m) − v(xi)]ϑ′

i ,m.

By inequality (2) we have

|v(ξi ,m) − v(xi)| ≤ h
1
2
i ||v ′||L2(Ii ) for 0 ≤ m ≤ k . (5)

Now doing a change of variables in the integral leads to

||ϑ′
i ,m||L2(Ii ) = h− 1

2
i ||ϑ̂′

m||L2(K̂). (6)

We set the constant ck = max0≤m≤k ||ϑ̂′
m||L2(K̂). Note that this constant is independent of the given

mesh.
Using the derived expression for (Ik

Ii )′ from above, applying the triangle inequality and then the
inequality from above, we have

||(Ik
Ii v)′||L2(Ii ) =

∣∣∣∣∣

∣∣∣∣∣

k∑

m=0
[v(ξi ,m) − v(xi)]ϑ′

i ,m

∣∣∣∣∣

∣∣∣∣∣
L2(Ii )

(

since (Ik
Ii v)′ =

k∑

m=0
[v(ξi ,m) − v(xi)]ϑ′

i ,m

)

≤
k∑

m=0
||[v(ξi ,m) − v(xi)]ϑ′

i ,m||L2(Ii ) (triangle inequality)

=
k∑

m=0
(|v(ξi ,m) − v(xi)| · ||ϑ′

i ,m||L2(Ii ))

≤
k∑

m=0
h

1
2
i ||v ′||L2(Ii ) · h− 1

2
i ||ϑ̂m||L2(K̂) (by (5) and (6))

≤ (k + 1)ck ||v ′||L2(Ii ) (summing over all m and using ck).
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2.1 The One-Dimensional Case

It follows that ||(Ik
Ii v)′||L2(Ii ) is controlled by ||v ′||L2(Ω) uniformly with respect to h.

Moreover, using the observation ∑k
m=0 ϑi ,m = 1 we have

Ik
Ii v − v(xi) =

k∑

m=0
[v(ξi ,m) − v(xi)]ϑi ,m.

It follows that for an argument from the i-th interval x ∈ Ii one gets

|Ik
Ii v(x)| ≤ ||v ||L∞(Ω) + (k + 1)Mkh

1
2
i ||v ′||L2(Ii )

with the mesh-independent constant Mk = max0≤m≤k ||ϑ̂m||L∞(K̂).
Then by (3) it follows that ||Ik

h v ||L∞(Ω) is controlled by (||v ||2L2(Ω) + ||v ′||2L2(Ω))
1
2 uniformly with

respect to h. Finally, using that

||Ik
h v ||L2(Ω) ≤ |b − a| 1

2 ||Ik
h v ||L∞(Ω)

finishes the proof.

Proposition 2.1.19 (Interpolation error). [10, Prop. 1.12]. Let 0 ≤ l ≤ k. Then, there exists a
constant c such that, for all h and v ∈ H l+1(Ω) we have

||v − Ik
h v ||L2(Ω) + h|v − Ik

h v |H1(Ω) ≤ chl+1|v |Hl+1(Ω),

and for l ≥ 1,

l+1∑

m=2
hm
( N∑

i=0
|v − Ik

h v |2Hm(Ii )

) 1
2

≤ chl+1|v |Hl+1(Ω).

Proof. A proof of this proposition is given on pages 12 and 13 in [10].

Remark 2.1.20. [10, Rmk. 1.13]. (i) One obtains optimal error estimates for smooth enough
functions, i.e., v ∈ Hk+1(Ω). By proposition 2.1.19 one finds

∀h, ∀v ∈ Hk+1(Ω) : ||v − Ik
h v ||L2(Ω) + h|v − Ik

h v |H1(Ω) ≤ chk+1|v |Hk+1(Ω).

Nevertheless, the interpolation error is not necessarily of optimal order if the function to be interpo-
lated is a non-smooth function. That is the case if the function v lies in H s(Ω) but not in H s+1(Ω)
for s ≥ 2. Then using polynomials of degree larger than s − 1 will not improve the interpolation
error.
(ii) We further note that for a function v that lies only in H1(Ω) the interpolation error in the
H1-seminorm still goes to zero for h → 0, i.e., limh−→0 |v − Ik

h v |H1(Ω) = 0.
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2.2 On the Lp-Stability of the Lagrange interpolant

2.2 On the Lp-Stability of the Lagrange interpolant
We will now investigate the Lp-stability of the Lagrange interpolant. The following construction was
taken from the pages 57 to 58 in [20]. Let α ∈ (0, 1). We consider the Lagrange P1 shape functions
ϑ1(x) := 1 − x and ϑ2(x) := x . Furthermore we consider the sequence of continuous functions
{vn}n∈N\{0}, which are defined over the unit interval K := [0, 1] as

vn(x) :=




nα − 1 if 0 ≤ x ≤ 1

n ,
x−α − 1 otherwise.

In order to get a better understanding of the behavior of this sequence of functions we have plotted
the graphs for different n and the case of α = 1

2 (cf. figure 6).

Figure 6: Graphs of vn for α = 1
2 and n = 1, 2, 3, 4, 5 as well as 10.

Firstly, we will show that this sequence is uniformly bounded in Lp(0, 1) for all p such that pα < 1.
Using the definition of vn, applying the triangle inequality and computing the Lp norm we have

||vn||Lp(0,1) ≤ ||x−α − 1||Lp(0,1) ≤ 1 + ||x−α||Lp(0,1) = 1 + 1
(1 − pα) 1

p
< ∞

because pα < 1.
Next we compute the Lagrange interpolant I1

K (vn) using the defined shape functions. Using that
by definition it holds that vn(1) = 0 gives us

I1
K vn(x) = vn(0)ϑ1(x) + vn(1)ϑ2(x) = (nα − 1)(1 − x).

Plugging the computed expression for the interpolant into the Lp-norm implies

||I1
K vn||Lp(0,1) = (nα − 1)||(1 − x)||Lp(0,1) ≥ (nα − 1)

∣∣∣∣

∣∣∣∣
1
2

∣∣∣∣

∣∣∣∣
Lp(0, 1

2)
≥ 1

4(nα − 1).
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To see that the first inequality holds, one computes the integrals
∫ 1

0
(1 − x)pdx = −

[
1

p + 1(1 − x)p+1
]1

0
= 1

p + 1

and
∫ 1

2

0

(1
2
)p

= 1
2 · 1

2p = 1
2p+1 .

Then, by performing a simple induction on p, one shows that
1
p ≥ 1

2p+1 .

This verifies the first inequality.
For the second inequality one just needs to look at the second integral. There one easily sees that
this implies that

∣∣∣
∣∣∣12
∣∣∣
∣∣∣
Lp(0, 1

2)
≥ 1

4 . Hence, the second inequality is also true.
Now one finds that

||I1
K vn||Lp(0,1) ≥ 1

4(nα − 1)γ−1||vn||Lp(0,1)

with γ := 1 + 1
(1−pα)

1
p
.

This proves that for all n ∈ N we have

||I1
K ||L(Lp ;Lp) ≥ 1

4(nα − 1)γ−1.

Thus,

||I1
K ||L(Lp ;Lp) = ∞,

which means that I1
K is not Lp-stable for all p < 1

α . Note that since α was arbitrary in (0, 1) one
can conclude that the interpolation operator I1

K is not Lq stable for all q ∈ [1, ∞) in dimension 1.

Remark 2.2.1 (On the L2-stability of the Lagrange interpolant). In fact, the above construction
shows that the Lagrange interpolant is not L2-stable in general.

2.3 Extension of the Lagrange Interpolation Operator to Higher Dimen-
sions

In order to extend the idea of the Lagrange interpolation operator to higher dimensions one can
reformulate the notions from the previous sections with the help of barycentric coordinates. The
information presented in this section were taken from section 1.2.3 in [10] and the appendix B in
[15].
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2.3 Extension of the Lagrange Interpolation Operator to Higher Dimensions

Definition 2.3.1 (Barycentric coordinates). [10, p.21]. Let K be a simplex in Rd . For 0 ≤ i ≤ d
let Fi be the face of K that is opposite to the node ai . The associated barycentric coordinates
{λ0, ..., λd} are defined in the following way:
For 0 ≤ i ≤ d we define the map

λi : Rd −→ R

x .−→ λi(x) = 1 − (x − ai) · ni
(aj − ai) · ni

with ni denoting the outward normal to Fi and aj being an arbitrary vertex in the face Fi

Remark 2.3.2. [10, p.22]. (i) The barycentric coordinate λi is an affine function that takes the
value 1 at the node ai and which is equal to zero at Fi .
(ii) The barycenter B of K has barycentric coordinates ( 1

d+1 , ..., 1
d+1) (cf. remark B.32 in [15]).

(iii) The barycentric coordinates fulfill the following properties:
For all x ∈ K , 0 ≤ λi ≤ 1 and for all x ∈ Rd we have

d+1∑

i=1
λi(x) = 1 and

d+1∑

i=1
λi(x)(x − ai) = 0.

Example 2.3.3. (i) In dimension 1, the barycentric coordinates on K = [x0, x1] are given by

λ0(x) = 1 − x − x0
x1 − x0

= x1 − x
x1 − x0

and λ1(x) = 1 − x − x1
x0 − x1

= x − x0
x1 − x0

which coincides with the results for the linear shape functions from the beginning in the one dimen-
sional case.
(ii) In the unit simplex in dimension 2 one obtains the barycentric coordinates λ0 = 1−x1−x2, λ1 = x1

and λ2 = x2.
(iii) In dimension 3 one finds λ0 = 1 − x1 − x2 − x3, λ1 = x1, λ2 = x2 and λ3 = x3.

Of course there is also a generalization of the polynomial space for higher dimensions. We will
denote it by Pd

k .

Definition 2.3.4 (The polynomial space Pd
k ). [10, p.22]. Let x = (x1, ..., xd) and let Pd

k denote the
space of polynomials in the variables x1, ..., xd with real coefficients and of global degree at most k ,
i.e.,

Pd
k =




p(x) =
∑

0≤i1,...,id ≤k,i1+...+id ≤k
αi1...id x i1

1 ...x id
d | αi1,...,id ∈ R




 .

Remark 2.3.5 (Local shape functions). [10, p.22]. (i) For k = 1 the local shape functions ϑi are
given through the barycentric coordinates, i.e.,

ϑi = λi , 0 ≤ i ≤ d .

(ii) In the situation of k = 2 the local shape functions are given by

λi(2λi − 1), 0 ≤ i ≤ d , and 4λiλj , 0 ≤ i < j ≤ d .

28



2.4 Error Bounds

2.4 Error Bounds
In the end of this chapter we want to give multiple error estimates for the Lagrange interpolation
operator. They are based on the error estimates which we stated earlier in sections 1.3 and 1.6. We
follow the presentation in section 1.5.1 in [10].

2.4.1 Error Bound Involving the Lebesgue Constant

We have already proven that the interpolation error of an interpolation operator is bounded by an
expression involving the Lebesgue constant (cf. theorem 1.3.7). Hence, we obtain the following
result for the Lagrange interpolation operator.

Theorem 2.4.1 (Error bound for the Lagrange interpolation operator involving the Lebesgue
constant). Consider the general Lagrange interpolation operator IL

K (cf. p.15) with the space
V (K ) = C0(K ) and denote the Lebesgue constant by Λ. It holds

||v − IL
K (v)||C0(K) ≤ (1 + Λ) inf

p∈P
||v − p||C0(K).

Proof. This is an application of theorem 1.3.7.

Remark 2.4.2 (On the error bound). (i) One can show that the Lebesgue constant in the case of
the Lagrange interpolation operator is given by

Λ = ||λ||C0(K)

with the Lebesgue function λ(x) := ∑
i∈N |ϑi(x)| for all x ∈ K (cf. example 5.1.5 in [19]).

(ii) Note that only the first inequality of the theorem 1.3.7 holds since C0(K ) together with the L2

scalar product is only a pre-Hilbert space.

2.4.2 Error Bounds for Interpolation in W s,p(Ω)

Now we give some error estimates for the Lagrange interpolation operator when interpolating in
Sobolev spaces. We consider the Lagrange finite element of degree k and set V (K̂ ) = C0(K̂ ). It
follows that under these circumstances the condition on l in the local error estimate (cf. theorem
1.6.1) becomes d

p − 1 < l ≤ k . Concretely, by the Rellich46-Kondrachov47 theorem (cf. theorem
B.46 in [10].) it holds that W l+1,p(K̂ ) ⊂ V (K̂ ) if l +1 > d

p . Using this observation on can formulate
the following local error estimate (cf. example 1.106 (i) in [10]).

Corollary 2.4.3 (Local error estimate). In the setting of theorem 1.6.1 and using the condition on
l from above it holds

∀K , ∀v ∈ W l+1,p(K ) : |v − Ik
K v |W m,p(K) ≤ chl+1−m

K σm
K |v |W l+1,p(K).

.
46Franz Rellich (1906-1955) was an Austrian-German mathematician (cf. [30]).
47Vladimir Iosifovich Kondrashov (1909-1971) was a Soviet mathematician (cf. [40]).
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Proof. See theorem 1.6.1.

Corollary 2.4.4 (Global error estimate). [10, Example 1.111]. Considering a Lagrange finite element
of degree k with p = 2 and d ≤ 3. One can take by the conditions on l from above 1 ≤ l ≤ k and
using the global interpolation estimate (cf. theorem 1.6.4) one finds for all functions v ∈ H l+1(Ω)
that

||v − Ik
h v ||L2(Ω) + h|v − Ik

h |H1(Ω) ≤ chl+1|v |Hl+1(Ω).

Proof. See theorem 1.6.4.

Remark 2.4.5 (Optimal error estimate). [10, Example 1.111]. (i) Note that this error estimate is
optimal if v ∈ Hk+1(Ω).
(ii) [10, Rmk.1.112]. The estimate also holds true for l not being an integer. Let k ≥ 1 and d ≤ 3.
We can apply the derived error estimate with l = k − d

2 and p = ∞ because W k+1− d
2 ,∞(K̂ ) ⊂ C0(K̂ )

with continuous embedding, i.e., k + 1 − d
2 > 0. We obtain for functions v ∈ W k+1− d

2 ,∞ that

||v − Ik
h v ||L∞(Ω) ≤ chk+1− d

2 |v |
W k+1− d

2 ,∞(Ω)
.

Using the continuous embedding Hk+1(Ω) ⊂ W k+1− d
2 ,∞ yields for all h and for all v ∈ Hk+1(Ω)

that

||v − Ik
h v ||L∞(Ω) ≤ chk+1− d

2 |v |Hk+1(Ω).

Moreover, if v ∈ W k+1,∞(Ω) we obtain the sharper estimate

||v − Ik
h v ||L∞(Ω) ≤ chk+1|v |W k+1,∞(Ω)

using theorem 1.6.4.
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3 The Clément Interpolation Operator ICle
h

Often one faces the problem of interpolating non-smooth functions. This means that a function
may be too rough and hence is not in the domain of the Lagrange interpolation operator anymore.
Recall that we concluded in remark 1.5.6 that functions which lie in L2(Ω) or in H1(Ω) in dimension
d ≥ 2 are discontinuous in general. Then the Lagrange interpolation operator, which evaluates
functions at a finite number of given points, is not well-defined anymore. Clément proposed in his
paper from 1975 (cf. [1]) an interpolation operator in order to fix this problem. His idea is based
on “local regularization” and is therefore a combination of the L2 projection, which we will discuss
in more detail in chapter 5, and the Lagrange interpolation from chapter 2. We will first present
the construction of this interpolation operator and then discuss its properties. In the end of this
chapter we will comment on the advantages and disadvantages of this operator. The construction
presented here closely follows section 1.6.1 in [10].

3.1 Construction of the Clément Interpolation Operator
Let Ω be a polyhedron and let {Th}h>0 be a shape-regular family of affine, simplicial, geometrically
conformal meshes (cf. chapter 1).
We will use the H1-conformal approximation space

Pk
c,h := {vh ∈ C0(Ω) | ∀K ∈ Th, vh ◦ TK ∈ Pk},

where c refers to the continuity across mesh interfaces. Recall that H1-conformal means in this
case that Pk

c,h ⊂ H1. We denote by {a1, ..., aN} the Lagrange nodes. Further, we consider a set
{ϕ1, ..., ϕn} of global shape functions in Pk

c,h. The Clément interpolation operator uses collections
of simplices that share a common node.

Definition 3.1.1 (Macroelements). [10, p.68]. Let ai be a node. A macroelement associated with
ai consists of all simplices in the mesh that contain the node ai .

We will write Mi for a macroelement associated with a node ai . Examples for macroelements
are given in figure 7.

Figure 7: Different macroelements (inspired by figure 1.24 in [10]).
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Those macroelements Mi can be configurated in only a finite number of ways. We will denote
this number of configurations by ncf. Let {M̂n}1≤n≤ncf be the list of reference macroelements. Next
we define the map

j : {1, ..., N} −→ {1, ..., ncf}

which maps the index i of a macroelement Mi to the index of a reference configuration. Moreover,
let

FMi : M̂j(i) → Mi

be a diffeomorphism from M̂j(i) to Mi such that for all reference mesh cells K̂ that lie in the reference
configuration M̂j(i), i.e., K̂ ∈ M̂j(i), the restriction FMi |K̂ to the reference mesh cell is affine.
Now for a reference macroelement M̂n and a function v̂ ∈ L1(M̂n), we let π̂nv̂ be the unique
polynomial in Pk(M̂n) such that for all polynomials q̂ ∈ Pk(M̂n) one has

∫

M̂n
(π̂nv̂ − v̂)q̂ = 0

or equivalently

(π̂nv̂ − v̂ , q̂)L2(M̂n) = 0 ∀q̂ ∈ Pk .

In particular, π̂nv̂ is the local L2(M̂n)-projection of v̂ ∈ L1(M̂n). Finally, the Clément interpolation
operator is of the form

ICle
h : L1(Ω) −→ Pk

c,h

v .−→ ICle
h v =

N∑

i=1
π̂j(i)(v ◦ FMi )(F −1

Mi (ai))ϕi .

3.2 Stability and Approximation Estimates
Lemma 3.2.1 (Stability). [10, Lemma 1.127]. Let the assumptions from section 3.1 hold and let
1 ≤ p < ∞ and 0 ≤ m ≤ 1. There exists a constant c such that for all h and for all v ∈ W m,p(Ω)
it holds that

||ICle
h v ||W m,p(Ω) ≤ c||v ||W m,p(Ω).

Lemma 3.2.2 (Approximation). [10, Lemma 1.127]. For K ∈ Th we denote by ∆K the set of
elements in Th sharing at least one vertex with the mesh cell K . Let F be an interface between two
elements of Th, and denote by ∆F the set of elements in Th sharing at least one vertex with F . Let
l , m and p satisfy 1 ≤ p ≤ ∞ and 0 ≤ m ≤ l ≤ k + 1. Then there exists a constant c such that
for all h, for all mesh cells K ∈ Th and for all v ∈ W l ,p(∆K ) one has

||v − ICle
h v ||W m,p(K) ≤ chl−m

K ||v ||W l ,p(∆K ).
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Similarly, if m + 1
p ≤ l ≤ k + 1, then for all h for all mesh cells K ∈ Th and for all v ∈ W l ,p(∆F )

the estimate

||v − ICle
h v ||W m,p(F ) ≤ chl−m− 1

p ||v ||W l ,p(∆F )

holds.

Corollary 3.2.3. [10, Cor. 1.128]. Let the assumptions from the previous lemma hold. Furthermore
let 0 ≤ l ≤ k + 1 and let 0 ≤ m ≤ min(1, l). Then there exists a constant c such that for all h and
for all v ∈ W l ,p(Ω) it holds that

inf
v∈Pk

c,h

||v − vh||W m,p(Ω) ≤ chl−m||v ||W l ,p(Ω).

Remark 3.2.4 (On the Clément interpolation operator). [10, Rmk.1.129]. (i) The Clément inter-
polation operator is not a projection, i.e. ICle

h ICle
h v -= v .

(ii) Another disadvantage of the Clément interpolation operator relies on the fact that this operator
does not preserve homogenous boundary conditions. In particular, if v vanishes on the boundary,
then in general the interpolant ICle

h v does not need to vanish on the boundary as well. Usually one
approaches this problem by setting the boundary nodal values to zero. In fact, one can show that
the Clément interpolation operator, modified this way, still fulfills the lemmas 3.2.1 and 3.2.2.
(iii) For the treatment of domains with curved boundaries there exist generalizations of the Clément
interpolation operator. One can also adjust the operator to other finite elements. References on
these topics are [2] and [8].

Remark 3.2.5 (Motivating the Scott-Zhang interpolation operator). The disadvantages adressed
in the previous remark motivated the construction of the Scott-Zhang interpolation operator, which
tries to fix those issues and which we are going to introduce in the next chapter.
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4 The Scott-Zhang Interpolation Operator ISZ
h

The disadvantages of the discussed Clément interpolation operator are that it does not preserve
homogenous boundary conditions and that it does not satisfy the projection property (cf. remark
3.2.4). In order to solve the problem of not preserving homogenous boundary conditions one can
set the boundary nodal values to zero. However, this procedure cannot be easily generalized to the
case of a nonhomogenous boundary.
Scott and Zhang constructed in their paper from 1990 (cf. [3]) another interpolation operator
which is a projection and preserves homogenous boundary conditions in a natural way. We will again
explain its construction and then state its stability and approximation properties. This chapter is
based on section 1.6.2 in [10] and on the paper [3].

4.1 Construction of the Scott-Zhang Interpolation Operator
Again we will consider a polyhedron Ω and a shape-regular family of affine, simplicial, geometrically
conformal meshes {Th}h>0. As before we will use the approximation space Pk

c,h and consider a set
of Lagrange nodes {ai}N

i=1. To each of these nodes we will assign either a d-simplex or a (d − 1)-
simplex, which we denote by ζi . In particular we need to differ between different cases.

Case 1: If the node ai lies in the interior of a d-simplex, i.e., ai ∈
◦
K , we set ζi = K .

Case 2: If the node ai lies in the interior of a face F , which is a (d −1)-simplex one chooses ζi = F .
For the other nodes ai that lie on a (d − 2)-simplex one is allowed to associate this node with any
(d − 1)-simplex F such that ai ∈ F , i.e., ζi = F .
One exception to the freedom of choice in case 2 is the third case.
Case 3: In the case that ai is at the boundary and lies in the intersection of a number of different
faces one chooses the face that belongs to the boundary, i.e., F ⊂ ∂Ω.

Figure 8: Visualizations of cases 2 and 3 (the right-hand side was inspired by figure 1.26 in [10]).
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Figure 8 visualizes case 2 and case 3. The left-hand side shows the situation that a node lies on
the boundary of the triangulated domain. Hence, as described in case 3, one needs to choose one
of the green faces. The right-hand side shows a node ai , which is on a face. Thus, one associates
the green face with the node ai .
For the number of nodes being contained in ζi we will write ni . For example, the chosen face on the
righ-hand side of figure 8 contains three nodes. That means for this case we would have ni = 3.
By {ϕi ,q}1≤q≤ni we denote the restrictions to ζi of the local shape functions associated with the
nodes that lie in ζi . We will follow the convention of setting ϕi ,1 = ϕi .
Finally, let t be an integer with 1 ≤ t ≤ n we define the function Ψi ,t ∈ span{ϕi ,1, ..., ϕi ,ni } as the
unique function for which

∫

ζi
Ψi ,tϕi ,r = δtr , 1 ≤ t, r ≤ ni ,

holds. Note that δtr denotes the Kronecker delta.
Using this, we define the Scott-Zhang interpolation operator as

ISZ
h : W l ,p(Ω) −→ Pk

c,h

v .−→ ISZ
h v =

N∑

i=1
ϕi

∫

ζi
Ψi ,1v .

Remark 4.1.1 (Properties of the Scott-Zhang interpolation operator). From v|∂Ω = 0 it follows by
the definition of the operator that ISZ

h v|∂Ω = 0, which means that that the Scott-Zhang interpolation
operator preserves homogenous boundary conditions. Also note that by the definition of Ψi ,t it is
true that for all functions vh ∈ Pk

c,h it holds that ISZ
h vh = vh. In fact, one computes for all basis

functions ϕk that

ISZ
h ϕk =

N∑

i=1
ϕi

∫

ζi
Ψi ,1ϕk =

N∑

i=1
ϕi · δik = ϕk

with δik denoting the Kronecker delta. Hence, the Scott-Zhang interpolation operator is a projection.
We see that the disadvantages that we identified in the case of the Clément interpolation operator
are cured.

4.2 Stability and Approximation Properties
We will now state the the stability and approximation properties of the interpolation operator we
have just constructed.

Lemma 4.2.1 (Stability and approximation properties). [10, Lemma 1.130]. Let p and l satisfy
1 ≤ p < +∞ and l ≥ 1 if p = 1, and l > 1

p otherwise. Then there exists a constant c such that
(i) for all 0 ≤ m ≤ min(1, l) it holds that

∀h, ∀v ∈ W l ,p(Ω) : ||ISZ
h v ||W m,p(Ω) ≤ c||v ||W l ,p(Ω).

35



4.2 Stability and Approximation Properties

(ii) Provided l ≤ k + 1, for all 0 ≤ m ≤ l , one has

∀h, ∀K ∈ Th, ∀v ∈ W l ,p(∆K ) : ||v − ISZ
h v ||W m,p(K) ≤ chl−m

K |v |W l ,p(∆K ).

Proof. The corresponding proofs are given in [3].

Remark 4.2.2 (Disadvantages of the Scott-Zhang interpolation operator). Even though, the prob-
lems of the Clément interpolation operator get fixed, the Scott-Zhang operator comes with its own
disadvantages. First, one should note that this operator is only defined for Lagrange finite elements.
A second issue, one should care about, is the fact that for the projection over the facets one needs
that the function one wants to project is smooth enough because one needs to make sure that its
trace over any facet is well-defined (cf. p.2 in [14]).
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5 L2-Orthogonal Projection πL2

Instead of interpolation operators one can use so-called projection operators. An often considered
choice is the L2 projection, which we are going to present in this chapter. We will first introduce the
ordinary L2 projection following the structure and material from section 1.6.3 in [10]. Afterwards
we will present a more special case of the L2 projection, namely the weighted L2 projection. We will
see that the weighted version of the L2 projection leads to a more complicated situation where error
and stability estimates are not derived as easily as in the case of the ordinary L2 projection.

5.1 The Ordinary L2 Projection
Let Pk

c,h again denote the H1-conformal space used previously in the chapters 3 and 4.
We consider the orthogonal projection operator

πL2 : L2(Ω) −→ Pk
c,h

with the scalar product (u, v)L2(Ω) = ∫
Ω uv dx .

Now the L2-projection πL2v ∈ Pk
c,h for a function v ∈ L2(Ω) is defined by the equation

(v − πL2v , u)L2(Ω) = 0 ∀u ∈ Pk
c,h.

Lemma 5.1.1 (Stability). [10, Lemma 1.131]. Let k ≥ 1. It holds that

∀v ∈ L2(Ω) : ||πL2v ||L2(Ω) ≤ ||v ||L2(Ω).

Moreover, if the family {Th}h>0 is quasi-uniform, there exists a constant c such that

∀h, ∀v ∈ H1(Ω) : ||πL2v ||H1(Ω) ≤ c||v ||H1(Ω).

Proof. The first stability estimate follows directly from the definition by using the Pythagoras iden-
tity, which results in

||v ||2L2 = ||πL2v ||2L2(Ω) + ||v − πL2v ||2L2(Ω).

For the second estimate let v ∈ H1(Ω). We consider its Scott-Zhang interpolant ISZ
h v , which we

defined in the previous section. One finds

||πL2v ||H1(Ω) ≤ ||πL2v − ISZ
h v ||H1(Ω) + ||ISZ

h v ||H1(Ω) (triangle inequality)
= ||πL2(v − ISZ

h v)||H1(Ω) + ||ISZ
h v ||H1(Ω) (using πL2(ISZ

h v) = ISZ
h v)

≤ ch−1||πL2(v − ISZ
h v)||L2(Ω) + ||ISZ

h v ||H1(Ω) (inverse inequality)
≤ ch−1||v − ISZ

h v ||L2(Ω) + ||ISZ
h v ||H1(Ω) (L2-stability of πL2)

≤ c ′||v ||H1(Ω) (H1-stability and approximation properties of ISZ
h ).

This completes the proof.
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Definition 5.1.2 (Negative-norm). [10, p.72]. For s ≥ 1 and v ∈ L2(Ω) the negative-norm is
defined by

||v ||H−s(Ω) = sup
w∈Hs(Ω)∩H1

0 (Ω)

(v , w)L2(Ω)
||w ||Hs(Ω)

.

Remark 5.1.3 (About this norm). [10, p.72]. This norm is not the norm, which is used used to
construct the dual space H−s(Ω) except for s = 1.

Having defined this norm, we are able to write down an error bound for the L2-projection operator.

Proposition 5.1.4 (Error bound in the negative-norm). [10, Prop. 1.133]. Let k ≥ 1 and 1 ≤ s ≤
k + 1. Then there exists a constant c such that

∀h, ∀v ∈ L2(Ω) : ||v − πL2v ||H−s(Ω) ≤ chs inf
vh∈Pk

c,h

||v − vh||L2(Ω).

Proof. Let v ∈ L2(Ω) and w ∈ H s(Ω) ∩ H1
0 (Ω). We know that s ≤ k + 1. Hence, we can argue

by the lemma about the approximation properties of the Clément interpolation operator (cf. lemma
3.2.2) that

||w − ICle
h w ||L2(Ω) ≤ chs |w |Hs(Ω).

Next we note that v − πL2v is L2-orthogonal to Pk
c,h. Thus, we may conclude that

(v − πL2v , w)L2(Ω) = (v − πL2v , w − ICle
h w)L2(Ω) ≤ chs ||v − πL2v ||L2(Ω)||w ||Hs(Ω).

This completes the proof.

In the end we also want to give the following local and global error bounds for functions in
Sobolev spaces.

Lemma 5.1.5 (Local error estimate). [19, Lemma 11.18]. Let p ∈ [1, ∞]. There exists a constant
c such that for every integers r ∈ {0, ..., k + 1} and m ∈ {0, ...r}, all functions v ∈ W r ,p(K ), all
mesh cells K ∈ Th, and all h the error estimate

|v − πL2(v)|W m,p(K) ≤ chr−m
K |v |W r ,p(K)

holds.

Proof. A proof is given in on page 134 in [19].

Proposition 5.1.6 (Global error estimates). [10, Prop. 1.134]. Let 1 ≤ l ≤ k. There exists a
constant c such that, for all h and all functions v ∈ H l+1(Ω) it holds that

||v − πL2(v)||L2(Ω) ≤ chl+1|v |Hl+1(Ω).

Furthermore, if the family {Th}h>0 is quasi-uniform, there exists a constant c such that for all h and
for a function v ∈ H l+1(Ω) one has

||v − πL2(v)||H1(Ω) ≤ chl |v |Hl+1(Ω).
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Proof. A sketch of the proof is given on page 80 in [10].

Remark 5.1.7 (On the L2 projection). (i) An advantage of the presented L2 projection is that,
contrary to the introduced Lagrange interpolation operator, the L2 projection does not require that
the functions we want to approximate are continuous.
(ii) An algorithm for computing the L2 projection is given in section 1.3.3 in [13].

5.2 The Weighted L2 Projection
The study of solving second-order elliptic boundary value problems with discontinuous coefficients,
where the discretized version appears harder to be solved, motivated a modification of the ordinary
L2 projection by introducing weights in the definition of the L2 projection. In this section we will
introduce these kinds of weighted L2-projections and investigate L2-error estimates as well as their
H1-stability. This section follows the presentation in the papers [4] and [6].
In this section let Ω ⊂ Rd , 1 ≤ d ≤ 3, be a domain, which will be decomposed such that

Ω =
J⋃

i=1
Ωi

with the Ωi being mutually disjoint, i.e., for any pair of subdomains {Ωm,Ωn} it holds that Ωm∩Ωn =
∅ for m -= n. We further assume that {Th}h>0 with h ∈ (0, 1) is a quasi-uniform (cf. def. 1.1.20)
family of triangulations of Ω such that the triangulations line up with the subdomains. As a
consequence of this assumption, a restriction of Th to a subdomain Ωi will be a triangulation of the
subdomain itself. We will denote the set of interfaces by Γ, i.e., Γ := ⋃J

i=1 ∂Ωi \ ∂Ω and make the
assumption that Γ consists only of segments (d = 2) or plane polygons d = 3. Let {ωi}J

i=1 be a set
of positive constants. We define the weighted inner products by

(u, v)L2
ω
(Ω) :=

J∑

i=1
ωi(u, v)L2(Ωi )

and

(u, v)H1
ω(Ω) :=

J∑

i=1
ωi

∫

Ωi
∇u · ∇vdx

with the induced norms || · ||L2
ω(Ω) and | · |H1

ω(Ω). Additionally, we define

|| · ||2H1
ω(Ω) = || · ||2L2

ω(Ω) + | · |2H1
ω(Ω)

to be the full weighted H1 norm.

Definition 5.2.1 (The weighted L2 projection). [4, p.470]. Let P1
0,h ⊂ H1

0 (Ω) be the finite element
space consisting of piecewise linear polynomials that vanish on the boundary of the domain ∂Ω. The
weighted L2 projection

πω
h : L2(Ω) −→ P1

0,h
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is defined by the property

∀u ∈ L2(Ω), v ∈ P1
0,h : (πω

h u, v)L2
ω(Ω) = (u, v)L2

ω(Ω).

In dimension 1, one easily derives the following error estimate.

Proposition 5.2.2 (Error estimate for d = 1). [4, Prop. 4.1]. For d = 1, we have that for all
functions u ∈ H1

0 (Ω) there exist constants c1, c2 such that

||u − πω
h u||L2

ω(Ω) ≤ c1h|u|H1
ω(Ω)

and

|πω
h u|H1

ω(Ω) ≤ c2|u|H1
ω(Ω).

Proof. Since we are just in one dimension it holds by the Sobolev embedding theorems that H1(Ω) ↪→
C(Ω) (cf. remark 1.5.6). In particular, we know that the Lagrange interpolation operator I1

h :
C(Ω) → P1

0,h is well-defined for functions from H1(Ω). Moreover, we know that for any K ∈ Th it
holds that for all u ∈ H1(K ) we have

||u − I1
hu||L2(K) ≤ ch|u|H1(K).

Now by summing over all mesh cells K ∈ Th with using proper weights we find

||u − I1
hu||L2

ω(Ω) ≤ ch|u|H1
ω(Ω)

for all functions u ∈ H1
0 (Ω). Finally, we note that the first inequality is now obtained by observing

that ||u − πω
h u||L2

ω(Ω) ≤ ||u − I1
hu||L2

ω(Ω). The second inequality follows just as in the case of the
ordinary L2 projection.

Remark 5.2.3 (Generalization to higher dimensions). One should note that one cannot use the
same approach in order to find similar error estimates in higher dimensions. The reason for that is
that for d > 1 functions in H1(Ω) do not need to be continuous any longer (cf. remark 1.5.6).

5.2.1 No Internal Cross Points

Definition 5.2.4 (Internal cross points). [4, p. 471]. A point on Γ that belongs to more than two
subdomains Ωi is called an internal cross point.

We introduce a weighted inner product on L2(Γ). Therefore we define

(u, v)L2
ω(Γ) :=

J∑

i=1

∫

∂Ωi \∂Ω
ωiuv ds.

Also define P1
0,h(Γ) := {v|Γ | v ∈ P1

0,h}. Let PΓ : L2(Γ) −→ P1
0,h(Γ) be the orthogonal projection

with respect to the just defined inner product (·, ·)L2
ω(Γ).
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Lemma 5.2.5. [4, Lemma 4.2]. For all u ∈ H1
0 (Ω) it holds that

||u − πω
h u||L2

ω(Ω) ≤ C(h|u|H1
ω(Ω) + h 1

2 ||u − PΓu||L2
ω(Γ)).

Proof. 48 On each subdomain Ωi there exists wi ∈ P1
0,h(Ωi) such that

||u − wi ||2L2(Ωi ) + h2||u − wi ||2H1(Ωi ) ≤ ch2||u||2H1(Ωi ).

A justification for this is given by proposition 3.5 in [4]. Next, define w ∈ P1
0,h by

w :=






wi at the nodes in Ωi ,
PΓu on Γ.

Then, using the well known fact that for constants C1 and C2 as well as functions v ∈ P1
0,h one has

C1hd ∑

x∈N
v 2(x) ≤ ||v ||L2(Ω) ≤ C2hd ∑

x∈N
v 2(x) (7)

with N denoting the set of vertices of the triangulation, one obtains

||u − w ||2L2
ω(Ω) = ||u − wi + wi − w ||2L2

ω(Ω)

= ||u − wi ||2L2
ω(Ω) + 2(u − wi , wi − w)L2

ω(Ω) + ||wi − w ||2L2
ω(Ω)

=
J∑

i=1
ωi ||u − wi ||2L2(Ωi +

J∑

i=1
ωi ||wi − w ||2L2(Ωi )

(7)
≤

J∑

i=1
ωi ||u − wi ||2L2(Ωi ) + C1h2

J∑

i=1
ωi
∑

p∈Th

|(wi − w)(p)|2

=
J∑

i=1
ωi ||u − wi ||2L2(Ωi ) + C1h2

J∑

i=1
ωi




∑

p∈Ωi

|(wi − wi)(p)|2 +
∑

p∈Γi

|(wi − PΓu)(p)|2




=
J∑

i=1
||u − wi ||2L2(Ωi ) + C1h2

J∑

i=1

∑

p∈Γi

|(wi − PΓu)(p)|2

≤
J∑

i=1
ωi ||u − wi ||2L2(Ωi ) + C1h||wi − PΓu||L2

ω(Γ)

≤ C2
J∑

i=1
ωih2||u||H1(Ωi ) + C1h||u − PΓu||2L2

ω(Γ)

= C2h2|u|2H1
ω(Ω) + C1h||u − PΓu||2L2

ω(Γ).

Note that for establishing the inequality in the seventh line we have used the fact that for a polynomial
f of degree 1, the inequality |f (0)|2 + |f (h)|2 < Ch−1 ∫ h

0 f 2dx holds. That is the reason why the
exponent of h drops in two dimensions. In three dimensions the factor h would vanish.
For the last inequality we have used the inequality stated at the beginning of the proof.
Finally, using that ||u − πω

h u||L2
ω(Ω) ≤ ||u − w ||L2

ω(Ω) we obtain the desired estimate.
48Note that there is a typing error in the original paper. When bounding ||u − w ||2L2

ω(Ω) the index i for the w in
the last term of the first estimate is missing.
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5.2 The Weighted L2 Projection

Remark 5.2.6 (Independence of cross points). [4, p.471]. Taking a look at the proof, one sees that
the proof does not depend on the existence of cross points. However, the only known application
of it is the application to the case that the interface does not have any internal cross points.

Under the assumption that the decomposition of the domain Ω does not have any internal cross
points, one can prove the following theorem.

Theorem 5.2.7. [4, Thm.4.3]. Assume that the decomposition of the domain Ω has no internal
cross points. Then for all functions u ∈ H1

0 (Ω) one has

||u − πω
h u||L2

ω(Ω) ≤ h|u|H1
ω(Ω)

and

|πω
h u|H1

ω(Ω) ≤ c|u|H1
ω(Ω).

Proof. First, we define a function ϕ ∈ P1
0 (Γ) as the orthogonal L2-projection from L2(Γi) to the

restriction from P1
0 to Γi , i.e., ϕ = PΓi u. Since we know that Γ has no internal cross points we

conclude that the defined function ϕ is well-defined.
Observe that it also holds that for all Γi one finds

||u − ϕ||L2(Γi ) ≤ ||u − wi ||L2(Γi ).

Due to lemma 2.1 in [4] we have

||u − wi ||2L2(Γi ) ≤ 1
h ||u − wi ||2L2(Ωi ) + h||u − wi ||2H1(Ωi ).

It follows

h||u − wi ||2L2(Γi ) ≤ c(||u − wi ||2L2(Ωi ) + h2||u − wi ||2H1(Ωi )) ≤ ch2|u|H1(Ωi ).

This implies

h||u − PΓu||2L2
ω(Γi ) ≤ ch

J∑

i=1
ωi ||u − ϕ||2L2(Γi ) ≤ ch2

J∑

i=1
ωi |u|2H1(Ωi ) = h2|u|H1

ω(Ω).

Now using lemma 5.2.4 leads to the desired estimate. Moreover, note that the other inequality
follows similarly to the proof for the ordinary L2 projection (cf. lemma 5.1.1).

5.2.2 Error Estimates Using “Finer” Finite Elements

The whole situation becomes more complicated if one allows internal cross points. We will now
present some estimates under special circumstances. Even though the embedding H1(Ω) ↪→ C(Ω)
does not hold in d = 2 any longer, one could say that it is almost true for functions that lie in finite
element subspaces (cf. p.472 in [4]). Based on this observation we will now state some further
results for the more general situation.
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5.2 The Weighted L2 Projection

Theorem 5.2.8. [4, Thm. 4.5]. For any function u ∈ P1
0,h with h < h one has

||u − πω
h ||L2

ω(Ω) ≤






ch(log h
h)1

2 |u|H1
ω(K), d = 2,

ch
(

h
h

) 1
2 |u|H1

ω(K) d = 3,

and

|πω
h u|H1

ω(Ω) ≤






c(log h
h)1

2 |u|H1
ω(K), d = 2,

c
(

h
h

) 1
2 |u|H1

ω(K) d = 3,

with K being a mesh cell.

Proof. This is a direct consequence of lemma 4.4 in [4].

5.2.3 Error Estimates for Functions in H1

In this section we will state some estimates for functions in H1. For the proofs we will refer to the
original paper [4].
The first lemma, we will present, tells us that we can find nearly optimal estimates if we use the full
weighted H1 norms.

Lemma 5.2.9. [4, Lemma 4.6]. For all functions u ∈ H1
0 (Ω) one has

||u − πω
h u||L2

ω(Ω) ≤ ch| log h| 1
2 ||u||H1

ω(Ω).

Proof. A proof of this statement is given on page 473 in [4].

From this lemma one obtains the following theorem.

Theorem 5.2.10. [4, Thm. 4.7]. If for all i the (d −1)-dimensional Lebesgue measure of (∂Ωi ∩∂Ω)
is positive, then for all functions u ∈ H1

0 (Ω) it holds that

||u − πω
h u||L2

ω(Ω) ≤ ch| log h| 1
2 |u|H1

ω(Ω)

and

|πω
h u|H1

ω(Ω) ≤ c| log h| 1
2 |u|H1

ω(Ω).

Proof. This is a direct consequence of the previous lemma.

Remark 5.2.11. Note that the assumption on the measure is necessary and cannot be excluded.
For more details the interested reader may consult [6].
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6 The Elliptic Projector πH1

In this section we are going to present another orthogonal projection operator, which can be used
for functions in H1(Ω). This operator is called the elliptic projection operator or the Riesz projector.
The material presented here is taken from section 1.6.3 in [10].
As before we use the H1-conformal space Pk

c,h (cf. section 3.1). We consider the map

πH1 : H1(Ω) −→ Pk
c,h

together with the scalar product

(u, v)H1(Ω) =
∫

Ω
uv +

∫

Ω
∇u · ∇v .

Then the elliptic projection of a function v ∈ H1(Ω) denoted by πH1v is defined by the property

(πH1v − v , u)H1(Ω) = 0 ∀u ∈ Pk
c,h.

Lemma 6.0.1 (Stability). [10, Lemma 1.131]. Let k ≥ 1. It holds that

∀v ∈ H1(Ω) : ||πH1 ||H1(Ω) ≤ ||v ||H1(Ω).

Proof. This estimate follows just as in the case for the L2 projection by using the Pythagoras identity
(cf. lemma 5.1.1).

Proposition 6.0.2 (Global error estimate). [10, Prop. 1.134]. Let 1 ≤ l ≤ k.
(i) There exists a constant c such that

∀h, ∀v ∈ H l+1 : ||v − πH1v ||H1(Ω) ≤ chl |v |Hl+1(Ω).

(ii) If Ω is convex, there exists a constant c such that,

∀h∀v ∈ H l+1(Ω) : ||v − πH1v ||L2(Ω) ≤ chl+1|v |Hl+1(Ω).

Proof. This can be proven in conjunction with the global error estimate for the L2 projection. A
sketch of the proof is given on page 80 in [10].
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7 Conclusion
Throughout the previous discussions we have seen that even though the Lagrange interpolation is a
popular choice when it comes to approximating functions, its use is accompanied by some difficulties
like the lack of L2-stability and the fact that it cannot handle functions that are not smooth enough
in the sense that point evaluations are not well-defined.
We have then explained the construction of an interpolation operator invented by Clément, which
addresses the problems that we identified while working with the Lagrange interpolation operator.
Nevertheless, the Clément operator is not a good choice when it comes to the treatment of ho-
mogenous boundary conditions. Of course, one can follow the approach by Clément in setting the
boundary nodal values to zero but this strategy cannot be generalized easily to the case of non-
homogenous boundaries conditions.
Hence, we introduced the Scott-Zhang interpolation operator, which fixes this problem and satisfies
in addition the projection property.
Next to the interpolation operators, we have also looked at projection operators, namely the L2

projection and a weighted version of it as well as the elliptic projection, which have the advantage
that they are very simple and therefore easy to implement. However, we have seen that in the case
of the weighted L2 projection, error estimates are a lot harder to derive as in the case for the ordinary
L2 projection. After presenting this variety of different interpolation and projection operators, we
have collected some of their most important stability and approximation properties in the table on
the pages 46 and 47. This table is supposed to give the reader a good overview over the results we
have seen in our discussions.
Obviously, we have not considered all interpolation operators available and this thesis just focuses on
a choice of the most important ones. For example the interpolation operators by Crouzeix-Raviart
or the Raviart-Thomas interpolation operator have not been adressed. The interested reader may
consult the sections 1.2.6 and 1.2.7 in [10] for the treatment of those operators. Additionally, there
are a lot more specializations of the interpolation operators we have presented. Some of them are
presented in [19].
Moreover, we have limited ourselves to a quite basic setting regarding the domain, the properties of
the meshes and the choice of the finite element spaces. Hence, the considerations that were under-
taken in this thesis can be extended to way more general settings. For a more complete discussion
of these topics we recommend the book [19].
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