
On Solvers for Saddle Point
Problems Arising in Finite
Element Discretizations of

Incompressible Flow Problems

Master Thesis

Freie Universität zu Berlin
Fachbereich Mathematik und Informatik

Institut für Mathematik

Supervisor: Prof. Dr. Volker John

Presented by: Natalia Schönknecht

Berlin, October 5, 2015

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich die vorstehende Masterarbeit mit dem Titel ”On
solvers for saddle point problems arising in finite element discretizations of incom-
pressible flow problems” selbständig und nur unter Verwendung der angegebenen
Quellen und Hilfsmittel erstellt habe.

Die Stellen, die anderem Werken dem Wortlaut oder dem Sinn nach entnommen
wurden, habe ich in jedem einzelnen Fall durch die Angabe der Quelle als Entlehnung
kenntlich gemacht.

Berlin, den October 5, 2015

Contents

1 Introduction 7

2 Steady-State Navier-Stokes Equations 8
2.1 Basic Equations . 8
2.2 Boundary Conditions . 9
2.3 Weak Formulation . 11
2.4 Linearization . 14

2.4.1 The Newton’s Linearization Scheme 14
2.4.2 The Picard’s Linearization Scheme 15

2.5 Finite Element Discretization . 16
2.6 Matrix-Vector Form . 18

3 Time-Dependent Navier-Stokes Equations 20
3.1 Basic Equations . 20
3.2 Weak Formulation . 21
3.3 Discretization . 22

3.3.1 Semi-Discretization in Time 22
3.3.2 Variational Formulation and Linearization 22
3.3.3 Discretization of the Linear Systems in Space 23

3.4 Matrix-Vector Form . 23

4 Solvers for Linear Saddle Point Problems 25
4.1 Properties of Saddle Point Matrices 25

4.1.1 Solvability Conditions . 26
4.1.2 The Inverse of a Saddle Point Matrix 28
4.1.3 Spectral Properties of Saddle Point Matrices 29
4.1.4 Conditioning Issues . 30

4.2 Overview of Solution Algorithms . 30
4.3 The Schur Complement Reduction Method 31
4.4 Preconditioning . 33

4.4.1 The Least Squares Commutator Preconditioner 35
4.4.2 The SIMPLE Preconditioner 38

4.5 Coupled Multigrid . 40
4.5.1 Transfer Between the Levels of the Multigrid Hierarchy 40
4.5.2 The Vanka Smoothers . 43
4.5.3 The Multiple Discretisation Multilevel Method 44

4.6 Sparse Direct Solvers . 47
4.6.1 UMFPACK . 47

6 CONTENTS

4.6.2 PARDISO . 47

5 Numerical Studies for Steady-State Equations 49
5.1 The Stokes Problem . 49

5.1.1 Governing Equations and Their Discretization 49
5.1.2 Analytic Example . 50
5.1.3 Numerical Results . 51

5.2 The Steady-State Driven Cavity Problem
with Re = 1000 . 55
5.2.1 Implemented Example . 55
5.2.2 Numerical Results . 55

5.3 The Backward Facing Step Problem
with Re = 100 . 58
5.3.1 Implemented Example . 58
5.3.2 Numerical Results . 59

5.4 The Steady-State Flow Around a Cylinder
with Re = 20 . 62
5.4.1 Implemented Example . 62
5.4.2 Numerical Results . 62

5.5 Summary of Results . 69

6 Numerical Studies for Time-Dependent Navier-Stokes Equations 70
6.1 The Example with a Known Analytic Solution 70

6.1.1 Implemented Example . 70
6.1.2 Numerical Results . 71

6.2 The Instationary Flow Around a Cylinder
with Re = 100 . 74
6.2.1 Implemented Example . 74
6.2.2 Numerical Results . 74

6.3 Summary of Results . 79

7 Conclusion and Outlooks 80

List of Tables 83

List of Figures 85

Bibliography 87

1

Introduction

Navier-Stokes equations are the basic differential equations of the viscous in-
compressible fluid dynamics. They define one of the fundamental models in fluid
mechanics, which describes the movements of a wide class of real fluids. However
the solution of boundary problems for Navier-Stokes equations represents a complex
challenge of computational fluid dynamics.

Today the leading positions in the numerical solution of the differential equa-
tions are taken by the methods based on the use of the variational formulation
equivalent to an original differential boundary problem. This class includes different
variants of the finite element method (FEM). One of the important advantages of
the finite element method for problems of aerohydrodynamics is the efficiency of
the construction of finite element approximation on unstructured meshes and the
possibility of almost complete automation of all stages of solving the problem - from
mesh generating to building a global matrix of the resulting linear system.

The solving of systems of the linear algebraic equations arising from the dis-
cretization of nonlinear problems is an important step in the mathematical simula-
tion. A non-self-adjoint differential operator of the original problem raises a number
of difficulties in the application of many of the numerical methods. As a rule,
to non-self-adjoint operators correspond non-symmetric matrices of linear algebraic
systems, what complicates the solving of such systems.

The aim of this project is the study of different solution methods for linear
systems of saddle point form, with emphasis on iterative methods for large and sparse
problems, arising in finite element discretizations of incompressible flow problems.

In Chapter 2 the mathematical foundations for the incompressible steady-state
Navier-Stokes equations are introduced, whereas Chapter 3 presents the correspond-
ing unsteady case.

The subsequent chapter discusses basic algebraic properties of the saddle point
matrices, the overview of solution algorithms and detailed presentation of the Schur
complement reduction method, general strategies for preconditioning of the saddle
point system arising from the Navier-Stokes equations, popular techniques of block
preconditioners as the Least Squares Commutator (LSC) Preconditioner and the
Semi-Implicit Method for Pressure-Linked Equations (SIMPLE), based on the Schur
complement approximation, the overview of multigrid methods and the used sparse
direct solvers.

The numerical results can be found in Chapter 5 and Chapter 6. Finally a
summary of results is presented.

2

Steady-State Navier-Stokes Equations

This chapter introduces the mathematical foundations for the incompressible
steady-state Navier-Stokes equations. First, the base equations and boundary con-
ditions used in this work are presented. Subsequently, the derivation of the weak
formulation is briefly described. The next sections are used to present the lineariza-
tion methods, finite element discretization and the resulting for computational im-
plementation matrix-vector form. The presentation of this chapter mostly follows
[9] and [3].

2.1 Basic Equations

Consider the steady-state Navier-Stokes equations for the incompressible flow of
a Newtonian, viscous fluid, with constant viscosity:

−ν∆u+ (u · ∇)u+∇p = f in Ω,

∇ · u = 0 in Ω,

where

Ω ⊂ R
d − is a bounded domain with a Lipschitz boundary ∂Ω, d ∈ {2, 3},

u − is the fluid velocity,

p − is the pressure field,

ν > 0 − is the dimensionless viscosity coefficient,

f ∈ L2(Ω) − is the source term,

∇ − the gradient and

∇· − is the divergent operators.

The first equation represents conservation of momentum while the second one
represents the incompressibility condition, also referred to as mass conservation.
These equations are second order partial differential equations with respect to space.
Thus they have to be equipped with boundary conditions on the boundary Γ = ∂Ω
of Ω.

Chapter 2: Steady-State Navier-Stokes Equations 9

2.2 Boundary Conditions

There are several kinds of boundary conditions which can be prescribed for
incompressible flows.

Case 1. Dirichlet boundary conditions, no-slip boundary conditions, essential bound-
ary conditions.

Dirichlet boundary conditions describe the velocity field on a part of the bound-
ary or on the whole boundary

u(x) = g(x) in Γdiri ⊆ ∂Ω.

It models in particular prescribed inflows into Ω and outflows from Ω. The special
case

u(x) = 0 in Γdiri,

is called no-slip boundary condition. Let n be the unit normal vector in x ∈ Γnosl ⊂
Γdiri and t1, t2 unit tangential vectors such that {n, t1, t2} is an orthonormal system
of vectors. Then the no-slip boundary condition can be decomposed into three parts:

u(x) = 0 ⇐⇒ u(x) · n = 0, u(x) · t1 = 0, u(x) · t2 = 0

on Γnosl. The condition u(x) · n = 0 states that the fluid does not penetrate the
wall. The other conditions describe that the fluid does not slip along the wall. If
Dirichlet boundary conditions are prescribed on the whole boundary of Ω, there
are two additional issues. First, the pressure is determined only up to an additive
constant. An additional condition for fixing the constant is that the integral mean
value of the pressure should vanish

∫

Ω

p(x) dx = 0.

Second, it follows from the divergence-free constraint and the integration by
parts that the boundary condition has to satisfy the compatibility condition

0 =

∫

Ω

∇ · u(x) dx =

∫

Γ

(u · n)(s) ds =

∫

Γ

(g · n)(s) ds.

In the case of the Navier-Stokes equations and their special cases, Dirichlet
boundary conditions are so-called essential boundary conditions.

Case 2. Free slip boundary conditions, slip with friction boundary conditions.

The free slip boundary condition is applied on boundaries without friction. It
has the form

u · n = g on Γslip ⊂ Γ,

nT
St1 = 0 on Γslip,

where S(t, x) is the Cauchy stress tensor, that represents all internal forces of the
flow:

S = −ν∇u+ pI.

10 2.2 Boundary Conditions

If g = 0 on Γslip, there is no penetration through the wall.
The slip with linear friction and no penetration boundary condition has the form

u · n = 0 on Γslfr ⊂ Γ,

u · tk + β−1nT
Stk = 0 on Γslfr, k ∈ {1, 2} .

These boundary conditions state that the fluid does not penetrate the wall and it
slips along the wall while loosing energy. The difficulty in the application of this
boundary condition consists in the determination of the friction parameter β, which
might depend, e.g., on the local flow field and on the roughness of the wall.

Case 3. Outflow or do-nothing boundary conditions, natural boundary conditions.

For numerical simulations, the so-called outflow boundary condition or do-
nothing boundary condition

Sn = 0 in Γoutfl ⊂ Γ

is often applied. This boundary condition models the situation that the normal
stress, which is equal to the Cauchy stress vector, vanishes on the boundary part
Γoutfl. The do-nothing boundary condition is often used if no other outflow boundary
condition is available.

From the mathematical point of view, the do-nothing boundary conditions are
natural boundary conditions.

To simplify the presentation, only the problems with homogeneous Dirichlet
boundary conditions on the whole boundary will be taken into account.

In this thesis we thus consider the strong form of the stationary Navier-Stokes
problem

−ν∆u+ (u · ∇)u+∇p = f in Ω, (2.1)

∇ · u = 0 in Ω, (2.2)

u = 0 on Γ, (2.3)
∫

Ω

p(x) dx = 0. (2.4)

Chapter 2: Steady-State Navier-Stokes Equations 11

2.3 Weak Formulation

The numerical solution of the Navier-Stokes problem (2.1)-(2.4) with finite el-
ement methods is based on its variational or equivalently called weak formulation.
For this purpose, the following sub-spaces of the usual Lebesgue function space
L2(Ω) of square-integrable functions on Ω are used

L2
0(Ω) =

{

q : q ∈ L2(Ω) with

∫

Ω

q(x) dx = 0

}

,

H1(Ω) =
{

v : v ∈ L2(Ω), ∂iv ∈ L2(Ω), 1 ≤ i ≤ d
}

,

H1
0 (Ω) =

{

v : v ∈ H1(Ω) with v = 0 on Γ
}

,

where the value of v on the boundary is to be understood in the sense of traces.
Define

V = (H1
0 (Ω))

d, d ∈ {2, 3} and Q = L2
0(Ω).

Both spaces are Hilbert spaces. The inner product in V and the induced norm are
given by

(u,w)V =

∫

Ω

(∇v,∇w)(x)dx, ‖v‖V = ‖∇v‖L2(Ω) = (v,v)
1/2
V .

The inner product and the induced norm in Q are

(q, r)Q =

∫

Ω

(qr)(x)dx, ‖q‖Q = ‖q‖L2(Ω) = (q, q)
1/2
Q .

To obtain a weak formulation from the strong problem (2.1)-(2.4) one needs the
usual steps:

• multiplication of the momentum equation (2.1) with a test function v ∈ V
and of the continuity equation (2.2) with a test function q ∈ Q,

• integration over Ω and applying integration by parts.

Consequently one has
∫

Ω

−ν∆u · v +

∫

Ω

(u · ∇u) · v +

∫

Ω

∇p · v =

∫

Ω

f · v (2.5)
∫

Ω

q∇ · u = 0 (2.6)

for all v ∈ V and all q ∈ Q. Assume that the functions are sufficiently smooth.
Then the continuity requirements on the weak solution (u, p) can be reduced by
”transfering” derivatives onto the test functions v and q.

Consider the equation (2.5). The first term:

−

∫

Ω

ν∆u · v = −

∫

Ω

ν

d
∑

i=1

∆uivi, using integration by parts

= −

∫

Γ

d
∑

i=1

ν (∇ui · n) vi +

∫

Ω

ν
d

∑

i=1

∇ui∇vi

= −

∫

Γ

ν (∇u · v) · n+

∫

Ω

(ν∇u) : (∇v) .

12 2.3 Weak Formulation

Since the test functions are zero at the boundary, the first integral disappears and
one gets:

−

∫

Ω

ν∆u · v =

∫

Ω

(ν∇u) : (∇v) . (2.7)

Here ∇u : ∇v represents the componentwise scalar product

A : B =
d

∑

i=1

d
∑

j=1

Aij ·Bij.

The third integral in (2.5) can be transformed as:

∫

Ω

∇p · v =

∫

Ω

d
∑

i=1

∂p

∂xi
vi

=

∫

Ω

d
∑

i=1

∂

∂xi
(pvi)− p

∂vi
∂xi

=

∫

Ω

∇ · (pv)− p∇ · v, using the product rule,

=

∫

Γ

(pv) · n−

∫

Ω

p∇ · v, using the Gaussian theorem.

The first boundary integral vanishes and
∫

Ω

∇p · v = −

∫

Ω

p∇ · v. (2.8)

Combining (2.5), (2.7), and (2.8) gives

∫

Ω

(ν∇u) : (∇v) +

∫

Ω

(u · ∇u) · v −

∫

Ω

p∇ · v =

∫

Ω

f · v ∀v ∈ V.

Then the standard weak formulation is the following:
find u ∈ V and p ∈ Q such that

ν

∫

Ω

(∇u) : (∇v) +

∫

Ω

(u · ∇u) · v −

∫

Ω

p∇ · v =

∫

Ω

f · v ∀v ∈ V, (2.9)
∫

Ω

q∇ · u = 0 ∀q ∈ Q. (2.10)

The construction of the weak formulation implies that any solution of (2.1)-(2.4)
satisfies (2.9)-(2.10).

Introducing two continuous bilinear forms a : V ×V → R, b : V ×Q→ R and a
trilinear form c : V ×V ×V → R the weak formulation of steady-state Navier-Stokes
equations with homogeneous Dirichlet boundary conditions can be written in the
form: find (u, p) ∈ V ×Q such that for all v ∈ V and q ∈ Q

{

a(u,v) + b(v, p) + c(u,u,v) = 〈f ,v〉

b(u, q) = 0,
(2.11)

Chapter 2: Steady-State Navier-Stokes Equations 13

where
〈f ,v〉 = 〈f ,v〉V ′

,V = (f ,v),

a(v,w) = (ν∇v,∇w) ,

b(v, p) =− (∇ · v, p) ,

c(z,v,w) = ((z · ∇)v,w) .

(2.12)

Consider the space of weakly divergence-free functions

Vdiv = {v ∈ V : (∇ · v, q) = 0, ∀q ∈ Q} ,

where the divergence of the functions from Vdiv vanishes in the sense of L2(Ω), i.e.,
it is (∇ · v)(x) = 0 almost everywhere in Ω. Then, an associated reduced problem
can be introduced: find u ∈ Vdiv such that for all v ∈ Vdiv

a(u,v) + c(u,u,v) = 〈f ,v〉 . (2.13)

In the both variational formulations the term c(·, ·, ·) is trilinear, that makes the
whole problem nonlinear. For this term there are several forms

cconv(u,v,w) = ((u · ∇)v,w) : convective form,

cskew(u,v,w) =
1

2
(cconv(u,v,w)− cconv(u,w,v)) : skew-symmetric form.

The spaces V and Q defined above satisfy the inf-sup condition

∃β > 0 : inf
q∈Q,q 6=0

sup
v∈V,v 6=0

b(v, q)

‖v‖V ‖q‖Q
≥ β. (2.14)

This condition, which is also called Ladyzhenskaya-Babuška-Brezzi (LBB) condition,
is very important in order to guarantee a unique solution of the problem (2.11).

Theorem 2.1 (Existence and uniqueness of the Navier-Stokes problem
with homogeneous boundary condition). Let Ω ⊂ R

d, d ∈ {2, 3}, be a bounded
domain with Lipschitz boundary Γ and f ∈ (H−1(Ω))d. Then there exists at least
one weak solution (u, p) ∈ V ×Q, which satisfies (2.9)-(2.10) or equivalently (2.11).
If in addition the condition

ν−2 ‖f‖V ′ sup
u,v,w∈Vdiv

c(u,v,w)

‖u‖V ‖v‖V ‖w‖V
< 1 (2.15)

be fulfilled with V
′

= (H−1(Ω))d the dual space of Vdiv, then this solution is unique.

Proof. The proof can be found in [6], Chapter IV, Theorems 2.1 and 2.2.

Lemma 2.2 (Stability of the Navier-Stokes problem with homogeneous
boundary condition). Let (u, p) ∈ V ×Q be any solution of (2.9)-(2.10) or equiv-
alently (2.11), then

‖∇u‖L2(Ω) ≤
1

ν
‖f‖H−1(Ω) , (2.16)

‖p‖L2(Ω) ≤
1

β

(

2 ‖f‖H−1(Ω) +
C

ν2
‖f‖2H−1(Ω)

)

. (2.17)

Proof. The proof can be found in [9], Chapter V, Lemma 5.17.

14 2.4 Linearization

2.4 Linearization

As one can see, the Navier-Stokes equations are nonlinear because of the ex-
istence of the convective term. The usual approach to solve these equations is a
non-linear iteration with a linearized problem being solved at every step. Therefore
an ”initial guess” (u0, p0) ∈ V ×Q is given, a sequence of iterates

(u0, p0), (u1, p1), (u2, p2) . . . ∈ V ×Q

is computed, which converges (hopefully) to the solution of the weak formulation.
In this work two classical linearization procedures are introduced (see [3], §7.2.2).

2.4.1 The Newton’s Linearization Scheme

The iterate (uk, pk) is given. Start by computing the nonlinear residual associ-
ated with the weak formulation (2.11). This is the pair Rk(v), rk(q) satisfying

Rk = 〈f ,v〉 − c(uk,uk,v)− a(uk,v)− b(v, pk),

rk = −b(uk, q),

for any v ∈ V and q ∈ Q. Let

u = uk + δuk

and

p = pk + δpk

be the solution of (2.11). It is easy to see that the corrections δuk ∈ V and δpk ∈ Q
satisfy

D(uk, δuk,v) + a(δuk,v) + b(δpk,v) = Rk(v), (2.18)

−b(δuk, q) = rk(q) (2.19)

for all v ∈ V and q ∈ Q, where D(uk, δuk,v) is the difference in the nonlinear terms:

D(u, δu,v) = c(δu, δu,v) + c(δu,u,v) + c(u, δu,v).

Expanding D(uk, δuk, v) and dropping the quadratic term c(δu, δu,v) gives the
linear problem:
for all v ∈ V and q ∈ Q, find δuk ∈ V and δpk ∈ Q satisfying

c(δuk,uk,v) + c(uk, δuk,v) + a(δuk,v)− b(δpk,v) = Rk(v),

b(δuk, q) = rk(q).
(2.20)

The solution of (2.20) is the so-called Newton correction. Updating the previous
iterate via

uk+1 = uk + δuk, pk+1 = pk + δpk

defines the next iterate in the sequence.

Chapter 2: Steady-State Navier-Stokes Equations 15

2.4.2 The Picard’s Linearization Scheme

In terms of the representation (2.18)-(2.19), the quadratic term c(δuk, δuk, v) is
dropped along with the linear term c(δuk,uk,v). Thus, one has the following linear
problem:
for all v ∈ V and q ∈ Q, find δuk ∈ V and δpk ∈ Q satisfying

c(uk, δuk,v) + a(δuk,v)− b(v, δpk) = Rk(v),

b(δuk, q) = rk(q).
(2.21)

The solution of (2.21) is the Picard correction. Updating the previous iterate
via

uk+1 = uk + δuk, pk+1 = pk + δpk

defines the next iterate in the sequence. Substituting

δuk = uk+1 − uk, δpk = pk+1 − pk

into (2.21), one obtains an explicit definition for the new iterate:
for all v ∈ V and q ∈ Q, find uk+1 ∈ V and pk+1 ∈ Q such that

c(uk,uk+1, v) + a(uk+1,v)− b(v, pk+1) = 〈f ,v〉 ,

b(uk+1, q) = 0.
(2.22)

The formulation (2.22) is commonly referred to as the Oseen system. One can see
that comparing (2.21) with the weak formulation the Picard iteration corresponds
to a simple fixed point iteration strategy for solving (2.11), with the convection
coefficient evaluated at the current velocity. As a result, the rate of convergence of
the Picard iteration is only linear in general.

The main drawback of Newton’s method is that the radius of the ball of conver-
gence is typically proportional to the viscosity parameter ν. Thus, as the Reynolds
number is increased, better and better initial guesses are needed in order for the
Newton iteration to converge. The advantage of the Picard iteration is that, rela-
tive to Newton iteration, it has a huge ball of convergence.

16 2.5 Finite Element Discretization

2.5 Finite Element Discretization

The principal idea of using finite element methods consists in replacing the
infinite-dimensional spaces V and Q by a finite-dimensional velocity space V h and
a finite-dimensional pressure space Qh and to apply the Galerkin method.

If V h ⊂ V and Qh ⊂ Q, the finite element method is called conforming otherwise
it is called non-conforming. In this work only the conforming finite element method
is considered. For conforming spaces one can use the same bilinear and trilinear
forms as in the continuous case.

The spaces V h and Qh have to satisfy a discrete inf-sup condition

inf
qh∈Qh,qh 6=0

sup
vh∈V h,vh 6=0

b(vh, qh)

‖vh‖V h ‖qh‖Qh

≥ βh
is > 0.

The finite element formulation. Let V h be a velocity finite element space
and let Qh be a pressure finite element space. The finite element discretization of
the (2.11) is read as follows:
find (uh, ph) ∈ V h ×Qh such that

a(uh,vh) + b(vh, ph) + c(uh,uh,vh) =
〈

f ,vh
〉

∀vh ∈ V h (2.23)

b(uh, qh) = 0, ∀qh ∈ Qh. (2.24)

This problem is equivalent to:
find (uh, ph) ∈ V h ×Qh such that

a(uh,vh) + b(vh, ph) + c(uh,uh,vh)− b(uh, qh) =
〈

f ,vh
〉

,

∀(vh, qh) ∈ V h ×Qh.

The space
V h
div =

{

vh ∈ V h : b(vh, qh) = 0 ∀qh ∈ Qh
}

is the space of discretely divergence-free functions, which is not empty, because of
the fulfillment of the discrete inf-sup condition. It follows that the finite element
approximation of the velocity can be computed by solving the following problem:
find uh ∈ V h

div such that

ah(uh,vh) + ch(uh,uh,vh) =
〈

f ,vh
〉

, ∀vh ∈ V h
div. (2.25)

Existence and uniqueness of a solution are proved in the similar way as for the
continuous equation. In particular, a unique solution can be expected only for small
right-hand side or large viscosity. The condition (2.15) is sufficient and it will be
assumed.

Lemma 2.3 (Stability of the finite element solution). Let V h ×Qh be inf-sup
stable finite element spaces. Then, the finite element solution of the steady-state
Navier-Stokes equations with skew-symmetric form of the convective term is stable:

∥

∥∇uh
∥

∥

L2(Ω)
≤

1

ν
‖f‖H−1(Ω) , (2.26)

∥

∥ph
∥

∥

L2(Ω)
≤

1

βh
is

(

2 ‖f‖H−1(Ω) +
C

ν2
‖f‖2H−1(Ω)

)

. (2.27)

Chapter 2: Steady-State Navier-Stokes Equations 17

Theorem 2.4 (Finite element error estimate for the L2(Ω) norm of the
gradient of the velocity). Let Ω ⊂ R

d be a bounded domain with polyhedral
and Lipschitz-continuous boundary and let ν−2 ‖f‖H−1(Ω) be sufficiently small such
that in particular the Navier-Stokes equations (2.9)-(2.10) possess a unique solution
(u, p) ∈ V × Q. Assume that this problem is discretized with inf-sup stable finite
element spaces V h × Qh and denote by uh ∈ V h

div
the velocity solution. Then the

following error estimate holds

∥

∥∇(u− uh)
∥

∥

L2(Ω)
≤

≤ C

((

1 +
1

ν2
‖f‖H−1(Ω)

) (

1 +
1

βh
is

)

inf
vh∈V h

∥

∥∇(u− vh)
∥

∥

L2(Ω)

+
1

ν
inf

qh∈Qh

∥

∥p− qh
∥

∥

L2(Ω)

)

(2.28)

Theorem 2.5 (Finite element error estimate for the L2(Ω) norm of the
pressure). Let the assumptions of the Theorem 2.4 be fulfilled, then the following
error estimate for the pressure holds

∥

∥∇(p− ph)
∥

∥

L2(Ω)
≤

≤ Cν

(

1 +
1

ν2
‖f‖H−1(Ω)

)2 (
1

βh
is

+
1

(βh
is)

2

)

inf
vh∈V h

∥

∥∇(u− vh)
∥

∥

L2(Ω)

+C

(

1

βh
is

(

1 +
1

ν2
‖f‖H−1(Ω)

)

+

(

1 +
1

βh
is

))

inf
qh∈Qh

∥

∥p− qh
∥

∥

L2(Ω)
. (2.29)

The constants depend on the domain Ω.

18 2.6 Matrix-Vector Form

2.6 Matrix-Vector Form

In order to derive an algebraic system from (2.23)-(2.24), the spaces V h and
Qh are equipped with a basis. A standard approach for choosing the basis of the
vector-valued velocity space is as follows:

V h = span
{

φh
i

}3Nv

i=1

= span









































φh
i

0

0



















Nv

i=1

∪



















0

φh
i

0



















Nv

i=1

∪



















0

0

φh
i



















Nv

i=1























,

i.e.. each basis function does not vanish in one component only. Here, Nv is the
number of unknowns (degrees of freedom, d.o.f.) for one component of the velocity.
The pressure space is

Qh = span
{

ψh
i

}Np

i=1
,

where Np is the number of pressure degrees of freedom. Hence one has the unique
representation

uh =
3Nv
∑

j=1

uhjφ
h
j , ph =

Np
∑

j=1

phjψ
h
j , (2.30)

with unknown real coefficients ~u = (uhj)
3Nv

j=1 and ~p = (phj)
Np

j=1. Inserting (2.30) into
(2.23)-(2.24) leads to a nonlinear system of algebraic equations.

Linearization of this system using the Newton iteration gives:
find corrections δu ∈ V h and δph ∈ Qh (here the subscript k is dropped to avoid
notational clutter) satisfying

c(δuh,uh,vh) + c(uh, δuh,vh) + a(δuh,vh) + b(vh, δph) = Rk(vh), (2.31)

−b(δuh, qh) = rk(qh), (2.32)

for all vh ∈ V h and qh ∈ Qh. Here, Rk(vh) and rk(qh) are the nonlinear residuals
associated with the discrete formulation (2.23)-(2.24). The corrections δu and δph

can be also represented with basis functions as:

δuh =
3Nv
∑

j=1

∆uhjφ
h
j , δph =

Np
∑

j=1

∆phjψ
h
j . (2.33)

To define the corresponding linear algebra problem, substitute (2.30) and (2.33)
into (2.31)-(2.32). Then one obtains a system of linear equations





νA+N+W BT

B O









∆u

∆p



 =





f

g



 . (2.34)

The matrix A is called the vector-Laplacian matrix, and the matrix B is called

Chapter 2: Steady-State Navier-Stokes Equations 19

the divergence matrix. The entries are given by

A = (aij)
3Nv

i,j=1, aij =

∫

Ω

∇φi : ∇φj, (2.35)

B = (bkj)
Np,3Nv

k,j=1 , bkj = −

∫

Ω

ψk∇ · φj. (2.36)

The matrix N is the vector-convection matrix, and the matrix W is called the
Newton derivative matrix. Both matrices depend on the current estimate of the
discrete velocity uh, and their entries are

N = (nij)
3Nv

i,j=1, nij =

∫

Ω

(uh · ∇φj) · φi, (2.37)

W = (wij)
3Nv

i,j=1, wij =

∫

Ω

(φj · ∇uh) · φi. (2.38)

Notice that the Newton derivative matrix is symmetric. The right-hand side
vectors in (2.34) are the nonlinear residuals associated with the current discrete
solution estimates uh and ph, expanded via (2.30) and (2.33):

f = (fi)
3Nv

i=1 , fi =

∫

Ω

fi · φi −

∫

Ω

uh · ∇uh · φi − ν

∫

Ω

∇uh : ∇φi +

∫

Ω

ph(∇ · φi),

(2.39)

g = (gk)
Np

k=1, gk = −

∫

Ω

ψk(∇ · uh). (2.40)

The system (2.34) is referred to as the discrete Newton problem.
For Picard iteration, the Newton derivative matrix is omitted to give the discrete

Oseen problem:




νA+N BT

B O









∆u

∆p



 =





f

g



 . (2.41)

The algebraic systems that arise from the Navier-Stokes equations belong to the
type of linear systems in saddle point form and have block structure.

The numbers of blocks in the velocity-velocity couplings that have to be stored
are different for Picard and Newton methods. Using Newton’s method requires the
storage of more velocity-velocity matrix blocks. As a consequence, the computa-
tional costs for matrix assembling are larger. Therefore in this work the Picard’s
iteration method is used.

The matrix K = diag(K1, . . . , Kd) = νA+N is a block diagonal matrix, where
each block corresponds to a discrete convection-diffusion operator with appropriate
boundary conditions. In general K is non-symmetric, but the symmetric part of
K, H = 1

2
(K + KT), is positive semi-definite, when an appropriate (conservative)

discretization is used.
The rectangular matrix BT represents the discrete gradient operator while B

represents its adjoint, the (negative) divergence operator.
Properties of saddle point matrices such as invertibility, spectral properties,

conditioning and solution methods will be considered in Chapter 4.

3

Time-Dependent Navier-Stokes
Equations

The purposes of this chapter are analysis of the time-dependent Navier-Stokes
equations and the obtaining of the corresponding linear algebraic system. The pre-
sentation of this section follows [8] and [9].

3.1 Basic Equations

Consider the time-dependent incompressible flow of a Newtonian, viscous fluid,
with constant viscosity. This flow is governed by the incompressible Navier-Stokes
equations given (in dimensionless form) by

ut − ν∆u+ (u · ∇)u+∇p = f in (0, T]× Ω, (3.1)

∇ · u = 0 in [0, T]× Ω, (3.2)

u(0, ·) = u0 in Ω, (3.3)

u = g on [0, T]× Γ, (3.4)
∫

Ω

p(x) dx = 0 in [0, T] , (3.5)

where

Ω ⊂ R
d − is a bounded domain with a Lipschitz boundary Γ = ∂Ω, d ∈ {2, 3} ,

u − is the fluid velocity,

u0 − is the initial velocity,

p − is the pressure field,

ν = 1/Re > 0 − is the dimensionless viscosity coefficient,

f ∈ L2(Ω) − represents body forces,

g − is the given Dirichlet boundary data,

[0, T] − is a given time interval.

Chapter 3: Time-Dependent Navier-Stokes Equations 21

3.2 Weak Formulation

To simplify the presentation, also in the case of instationary Navier-Stokes equa-
tions, consider only the problems with homogeneous Dirichlet boundary conditions
on the whole boundary

u = 0 on [0, T]× Γ. (3.6)

One obtains a weak formulation from the strong problem (3.1)-(3.5) by usual
steps: multiplication (3.1), (3.2) with a corresponding test function (v, q) and in-
tegration over (0, T) × Ω, as well as application of integration by parts in order to
transfer the derivatives from the solution onto the test function. The result is the
following variational problem

find u : (0, T] → V and p : [0, T] → Q such that for all (v, q) ∈ (V,Q)

−

∫

Ω

ut · v + ν

∫

Ω

(∇u) : (∇v) +

∫

Ω

(u · ∇u) · v −

∫

Ω

p∇ · v =

∫

Ω

f · v
∫

Ω

q∇ · u = 0. (3.7)

or using the bilinear forms (2.12), introduced in Chapter 2, the weak formulation
of the non-stationary Navier-Stokes problem with homogeneous Dirichlet boundary
conditions can be written

find u : (0, T] → V and p : [0, T] → Q such that for all v ∈ V and q ∈ Q

−(ut,v) + a(u,v) + b(v, p) + c(u,u,v) = 〈f ,v〉

b(u, q) = 0.
(3.8)

Theorem 3.1 (Existence and uniqueness for weak solutions of the non-s-
tationary Navier-Stokes equations with homogeneous Dirichlet boundary
conditions). For given f and u0 such that

f ∈ L2(0, T ;H−1(Ω)), u0 ∈ H1
0 (Ω) (3.9)

there exists a weak solution u to the Navier-Stokes equations (3.1)-(3.5) satisfying

u ∈ L∞(0, T ;H1
0 (Ω)). (3.10)

Furthermore, if d = 2, u is unique.

Proof. The proof can be found in [12], Chapter 3, §3.1, §3.2.

22 3.3 Discretization

3.3 Discretization

The numerical solution of the time-dependent Navier-Stokes equations requires
their discretization in time and space as well as a linearization. There are different
approaches for all of these components. In this thesis the following strategy is used:

(i) Semi-discretization of (3.1)-(3.5) in time. An implicit time stepping scheme
will be applied first. The semi-discretization in time leads in each discrete
time step to a non-linear system of equations.

(ii) Variational formulation and linearization. The non-linear system of equations
is reformulated as a variational problem and the non-linear variational problem
is linearized by a Picard iteration.

(iii) Discretization of the linear systems in space. The linear system of equations
arising in each step of the fixed point iteration is discretized by a finite element
method using an inf-sup stable pair of finite element spaces.

Below all these steps are discussed in detail.

3.3.1 Semi-Discretization in Time

Let ∆tk be the current time step from tk−1 to tk, i.e., ∆tk = tk − tk−1. Then the
time stepping Crank-Nicolson scheme is given by

uk +
1

2
∆tk (−ν∆uk + (uk · ∇)uk) + ∆tk∇pk =

= uk−1 −
1

2
∆tk (−ν∆uk−1 + (uk−1 · ∇)uk−1) +

1

2
∆tk (fk−1 + fk) ,

∇ · uk = 0. (3.11)

One can prove, under a number of assumptions on the smoothness of the data,
that the error between the time discrete and the continuous velocity in L∞(0, T ;L2(Ω))
behaves like (∆t)2 for the equidistant time step ∆t. This scheme is A-stable and
may lead to numerical oscillations in problems with rough initial data or boundary
conditions. These oscillations are damped out only if sufficiently small time steps
are used [8].

3.3.2 Variational Formulation and Linearization

The solution of (3.11) will be approximated by a finite element method. The
basis of the finite element method is a variational formulation of (3.11), which can
be formulated as:

find (uk, pk) ∈ (V,Q) such that for all (v, q) ∈ (V,Q)

(uk,v) +
1

2
∆tk (a(uk,v) + c(uk,uk,v)) + ∆tkb(pk,v) =

= (uk−1,v)−
1

2
∆tk (a(uk−1,v) + c(uk−1,uk−1,v))

+
1

2
∆tk ((fk−1,v) + (fk,v)) ,

b(uk, q) = 0. (3.12)

Chapter 3: Time-Dependent Navier-Stokes Equations 23

The nonlinear system (3.12) is solved iteratively, starting with an initial guess
(u0

k, p
0
k). Given (um

k , p
m
k), the iterate (um+1

k , pm+1
k) is computed by solving

(um+1
k ,v) +

1

2
∆tk

(

a(um+1
k ,v) + c(um

k ,u
m+1
k ,v)

)

+∆tkb(p
m+1
k ,v) =

= (uk−1,v)−
1

2
∆tk (a(uk−1,v) + c(uk−1,uk−1,v)) +

+
1

2
∆tk ((fk−1,v) + (fk,v)) ,

0 = b(um+1
k , q) (3.13)

for all (v, q) ∈ (V,Q), m = 0, 1, 2 . . . That means, the linearization is done by a
Picard iteration. The initial guess is chosen to be the solution of the previous time
step (u0

k, p
0
k) = (uk−1, pk−1).

3.3.3 Discretization of the Linear Systems in Space

The equations (3.13) are discretized by a finite element method. Let (V h, Qh) be
a pair of finite element spaces which fulfill the inf-sup stability condition. Then, the
finite element problem has the following form (indices k, m, m+1 will be neglected):

find (uh, ph) ∈ V h ×Qh such that for all (vh, qh) ∈ V ×Q

(uh,vh) +
1

2
∆tk

(

a(uh,vh) + c(uh
old,u

h,vh)
)

+∆tkb(p
h,vh) =

= (uh
k−1,v

h)−
1

2
∆tk

(

a(uh
k−1,v

h) + c(uh
k−1,u

h
k−1,v

h)
)

+

+
1

2
∆tk

(

(fhk−1,v) + (fhk ,v)
)

,

0 = b(uh
k , q

h), (3.14)

where uh
old ∈ V h is the current approximation of the velocity; fhk−1 and fhk are finite

element representations of the right-hand side at the times tk−1 and tk respectively.
For more efficiency it is sufficient to solve the system (3.14) only approximately in
each time step of the fixed point iteration instead of solving it always accurately [8].

3.4 Matrix-Vector Form

To get the approximation of the solution, the functions uh(x, t), ph(x, t) are writ-
ten as linear combinations of time-independent basis functions with time-dependent
coefficients

uh(x, t) =
dNv
∑

j=1

uhj (t)φj(x) (3.15)

ph(x, t) =

Np
∑

j=1

phj (t)ψj(x), (3.16)

24 3.4 Matrix-Vector Form

where the basis functions {φi}
dNv

i=1 , {ψi}
Np

i=1 are exactly the same as in the steady
case of Chapter 2, Subsection 2.6; Nv is the number of degrees of freedom for one
component of the velocity, Np is the number of pressure degrees of freedom, d ∈
{2, 3} is the dimension of the problem.

Inserting (3.15), (3.16) into (3.14) leads to a linear system of algebraic equations





M+ 1
2
∆tk(νA+N) ∆tkB

T

B O









∆u

∆p



 =





f

g



 . (3.17)

The matrix M is a mass matrix and its entries are given by

M = (mij)
dNv

i,j=1, mij =

∫

Ω

φi : φj. (3.18)

The vector-Laplacian matrixA, the divergence matrixB and the vector-convection
matrix N were introduced in steady case by (2.35)-(2.37).

The right-hand side vectors are

f = (fi)
dNv

i=1 , fi =

∫

Ω

uh
oldφi −

1

2
∆tk

[

ν

∫

Ω

∇uh
old : ∇φi +

∫

Ω

(uh
old · ∇)uh

old · φi

]

+

+
1

2
∆tk

[∫

Ω

fi · φi +

∫

Ω

fhold · φi

]

, (3.19)

g = 0.

The algebraic system (3.17) belongs to the class of saddle point type systems.

4

Solvers for Linear Saddle Point Problems

This chapter is devoted to present:

• basic algebraic properties of the saddle point matrix A such as existence of
various factorizations, invertibility, spectral properties, and conditioning;

• overview of solution algorithms and detailed presentation of the Schur com-
plement reduction method;

• general strategies for preconditioning of the saddle point system arising from
the Navier-Stokes equations;

• two popular techniques of block preconditioners as Least Squares Commutator
(LSC) Preconditioner and Semi-Implicit Method for Pressure-Linked Equa-
tions (SIMPLE), based on the Schur complement approximation;

• overview of multigrid methods and

• overview of the used sparse direct solvers.

The presentation of this chapter is based on the works listed below. Sections
4.1, 4.2 and 4.3 follow [1]. The works [4], [5] and [10] are sources for the presentation
of Section 4.4. Section 4.5 follows [7].

4.1 Properties of Saddle Point Matrices

Throughout this section, we will assume that the systems of equations that
have to be solved have the form arising from Picard iteration (2.41) applied to the
Navier-Stokes equations





K BT

B O









u

p



 =





f

g



 , (4.1)

with K ∈ R
nv×nv , B ∈ R

np×nv , f ∈ R
nv and g ∈ R

np . Here nv = d × Nv, np = Np,
where Nv is the number of degrees of freedom for one component of the velocity,
Np is the number of pressure degrees of freedom, d is the dimension of the problem.
The saddle point matrix A ∈ R

(nv+np)×(nv+np) has the form

A =





K BT

B O



 . (4.2)

26 4.1 Properties of Saddle Point Matrices

Assume that the matrixK is nonsingular, then the saddle point matrixA admits
the following block triangular factorization

A =





K BT

B O



 =





I O

BK−1 I









K O

O S









I K−1BT

O I



 , (4.3)

where S = −BK−1BT is the Schur complement of K in A.
Also useful are the equivalent factorizations

A =





K O

B S









I K−1BT

O I



 (4.4)

and

A =





I O

BK−1 I









K BT

O S



 . (4.5)

From any of the block decompositions (4.3)-(4.5) it follows, that A is nonsingular,
if and only if S is, because exactly in this situation, all factors in (4.3)-(4.5) are
nonsingular.

4.1.1 Solvability Conditions

Consider the case, where K is symmetric positive definite. From linear algebra
it is known that the inverse of K is also symmetric positive definite and if BT has full
columnn rank, the matrix BK−1BT is a symmetric positive definite matrix. Thus,
the Schur complement S is a symmetric negative definite matrix.

It is obvious that S, and thus A, is invertible if and only if BT has a full column
rank, since in this case the Schur complement is symmetric negative definite. Then
the problem (4.1) has a unique solution.

If K is indefinite, then A may be singular, even if B has a full rank. However,
A will be invertible if K is positive definite on ker(B).

Theorem 4.1 (Necessary and sufficient condition for non-singularity of the
saddle point matrix). Assume that K is symmetric positive semidefinite and B
has full rank. Then a necessary and sufficient condition for the saddle point matrix
A to be nonsingular is

ker(K) ∩ ker(B) = {0} .

Proof. Let u =





x

y



 be such that

Au = 0.

Hence

Kx+BTy = 0

Bx = 0.

Chapter 4: Solvers for Linear Saddle Point Problems 27

It follows that
xTKx = −xTBTy = −(Bx)Ty = 0.

Since K is symmetric positive semidefinite,

xTKx = xTK1/2K1/2x = 0

implies
∥

∥K1/2x
∥

∥

2
= 0,

and therefore
K1/2x = 0 ⇒ Kx = 0.

This means that
x ∈ ker(K) ∩ ker(B),

thus
x = 0.

Also y = 0 since BTy = 0 and BT has a full rank. Therefore u = 0, and A is
nonsingular. This proves the sufficiency of the condition.

Assume now that ker(K) ∩ ker(B) 6= {0}. Take

x ∈ ker(K) ∩ ker(B), x 6= 0.

Let

u =





x

0



 .

Then we have
Au = 0.

It implies that A is singular. Hence, the condition is also necessary.

In general case a necessary condition for invertibility is provided by the following
theorem.

Theorem 4.2 (Necessary condition for non-singularity of the saddle point
matrix). If the matrix

A =





K BT

B O





is nonsingular, then rank(B) = np and rank





K

B



 = nv + np.

Proof. If rank(B) < np then there exists a nonzero vector y ∈ R
np with

BTy = 0.

Therefore, letting

u =





0

y



 ,

28 4.1 Properties of Saddle Point Matrices

we get

Au = 0,

a contradiction.

If rank





K

B



 < nv + np then there exists a nonzero vector x ∈ R
(nv+np) such

that




K

B



 x = 0.

Let

u =





x

0



 ,

then we get

Au = 0,

a contradiction.

It is easy to show that these conditions are not sufficient to ensure the invert-
ibility of A. Some additional conditions are needed. Recall that for any matrix
A ∈ R

n×n one can write A = H +H ′, where H = 1
2
(A + AT) and H ′ = 1

2
(A− AT)

are symmetric and skew-symmetric part of A, respectively.

Theorem 4.3 (Necessary and sufficient condition of invertibility of A).
Assume that H, the symmetric part of K, is positive semidefinite and B has full
rank. Then

(i) ker(H) ∩ ker(B) = {0} ⇒ A invertible,

(ii) A invertible ⇒ ker(K) ∩ ker(B) = {0} .

The converses of (i)-(ii) do not hold in general.

Proof. The proof is similar to the proof of the Theorem 4.1, and can be found in
[2], Lemma 1.1.

4.1.2 The Inverse of a Saddle Point Matrix

If K is nonsingular, then A is invertible if and only if S = −BK−1BT is non-
singular.

Lemma 4.4 (General formula for matrix inversion in block form). Let the
(m+ n)× (m+ n) matrix M be partitioned into a block form

M =





A B

C D



 ,

Chapter 4: Solvers for Linear Saddle Point Problems 29

where the m×m matrix A and n× n matrix D are invertible. Then




A B

C D









X Y

Z U



 =





Im O

O In





⇒





X Y

Z U



 =





(A− BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1



 .

Using the factorization (4.5) one can write the following expression for the A−1

A−1 =





K BT

B O





−1

=









I O

BK−1 I









K BT

O S









−1

=





K BT

O S





−1 



I O

BK−1 I





−1

.

(4.6)
Find the inverse for both matrices in (4.6) using the Lemma 4.4





K BT

O S





−1

=





K−1 −K−1BTS−1

O S−1



 , (4.7)





I O

BK−1 I





−1

=





I O

−BK−1 I



 . (4.8)

Multiplying (4.7) and (4.8), one rewrites (4.6)

A−1 =





K BT

B O





−1

=





K−1 +K−1BTS−1BK−1 −K−1BTS−1

−S−1BK−1 S−1



 . (4.9)

However, such an expression is of limited interest in the numerical solution of saddle
point problems.

In the finite element context the nonsingularity of A is not sufficient to ensure
meaningful computed solutions. In [9] is proved that B has full column rank if and
only if

inf
q∈R

nQ ,q 6=0

sup
v∈RnV ,v 6=0

vTBTq

‖v‖2 ‖q‖2
≥ β > 0.

In order for the discrete problem to be well-posed it is essential that the saddle
point matrices remain uniformly invertible as h, the mesh size parameter, goes to
zero. This means that an appropriate condition number of A remains bounded
as h → 0. Sufficient conditions for this to happen include the already-mentioned
discrete inf-sup (LBB) condition.

4.1.3 Spectral Properties of Saddle Point Matrices

Theorem 4.5 (Rusten and Winther (1992). Eigenvalue bounds for the
symmetric case). Assume K is symmetric positive definite and B has full rank.
Let µ1 and µn denote the largest and smallest eigenvalues of K, and let σ1 and σm

30 4.2 Overview of Solution Algorithms

denote the largest and smallest singular values of B. Let σ(K) denote the spectrum
of A. Then

σ(A) ⊂ I− ∩ I+,

where

I− =

[

1

2

(

µn −
√

µ2
n + 4σ2

1

)

,
1

2

(

µ1 −
√

µ2
1 + 4σ2

m

)]

and

I+ =

[

µn,
1

2

(

µ1 +
√

µ2
1 + 4σ2

1

)]

.

In the general case, not much can be said about the eigenvalues of A.

4.1.4 Conditioning Issues

Saddle point systems that arise in practice can be very badly conditioned. In
some cases the special structure of the saddle point matrix A can be exploited to
avoid or mitigate the effect of ill-conditioning.

Consider, for the simplicity, a standard saddle point problem, where K is sym-
metric positive definite and B has full rank. In this case A is symmetric and its
spectral condition number is given by

κ(A) =
max |λ(A)|

min |λ(A)|
.

From Theorem 4.5 one can see that the condition number of A grows unboundedly
as either µn = λmin(K) or σn = σmin(B) goes to zero (assuming that λmax(K) and
σmax(B) are kept constant). This growth of the condition number of A means that
the rate of convergence of most iterative solvers (like Krylov subspace methods)
deteriorates as the problem size increases. Preconditioning may be used to reduce
or even eliminate this dependency on h in many cases. Similar considerations apply
to nonsymmetric saddle point problems.

4.2 Overview of Solution Algorithms

Besides the usual classification on direct and iterative methods, solution algo-
rithms for linear saddle point problems can be subdivided into two categories, which
are called segregated and coupled (or ”all at once”) methods.

Segregated methods compute the two unknown vectors u and p separately. In
some cases it is u to be computed first, in others it is p. This approach involves the
solution of two linear systems of a size smaller than nv+np (called reduced systems),
one for each of u and p. Segregated methods can be either direct or iterative, or
involve a combination of the two. For example, one of the reduced systems could be
solved by a direct method and the other iteratively. One of the main representatives
of the segregated approach is the Schur complement reduction method, which is
based on a block LU factorization of A.

Coupled methods, on the other hand, deal with the system (4.1) as a whole, com-
puting u and p (or approximations to them) simultaneously and without making
explicit use of reduced systems. These methods include both direct solvers based on

Chapter 4: Solvers for Linear Saddle Point Problems 31

triangular factorizations of the global matrix A, and iterative algorithms like Krylov
subspace methods applied to the entire system, typically with some form of precon-
ditioning. Preconditioning tends to blur the distinction between direct and iterative
solvers, and also that between segregated and coupled schemes. This is because
direct solvers may be used to construct preconditioners, and also preconditioners
for coupled iterative schemes are frequently based on segregated methods.

4.3 The Schur Complement Reduction Method

Consider the saddle point system (4.1), or

Ku+ BTp = f

Bu = g. (4.10)

We assume that both K and A are nonsingular. By (4.3) this implies that S =
−BK−1BT is also nonsingular. Multyplying both sides of the first equation from
the right-hand side with BK−1, one obtains

Bu+ BK−1BTp = BK−1f.

Using Bu = g and rearranging, one finds

BK−1BTp = BK−1f− g, (4.11)

a reduced system of order m = Np for p involving the (negative) Schur complement
−S = BK−1BT . Once p∗ has been computed from (4.11), u∗ can be obtained by
solving

Ku = f−BTp∗, (4.12)

a reduced system of order n = Nv for u involving the (1, 1) block, K. Note that
this is just block Gaussian elimination applied to (4.1). Indeed, using the block LU
factorization (4.5) one gets the transformed system





I O

BK−1 I









K BT

B O









u

p



 =





I O

−BK−1 I









f

g



 ,

that is,




K BT

O S









u

p



 =





f

g −BK−1f



 .

Solving this block upper triangular system by block backsubstitution leads to the
two reduced systems (4.11) and (4.12) for p and u. These systems can be solved
either directly or iteratively. In the important special case where K and −S are
symmetric positive definite, highly reliable methods such as Cholesky factorization
or the conjugate gradient (CG) method can be applied.

This approach is attractive if the order m of the reduced system (4.11) is small
and if linear systems with coefficient matrix K can be solved efficiently.

32 4.3 The Schur Complement Reduction Method

The main disadvantage is the fact that the Schur complement S = −BK−1BT

may be completely full and too expensive to compute or to factor. Numerical insta-
bilities may also be a concern when forming S, especially when K is ill-conditioned.

If S is too expensive to form or factor, Schur complement reduction can still be
applied by solving (4.11) by iterative methods that do not need access to individual
entries of S, but only need S in the form of matrix-vector products. The Schur
complement system (4.11) may be rather ill-conditioned, in which case precondi-
tioning will be required. Preconditioning the system (4.11) is nontrivial when S is
not explicitly available.

In the next section technologies of efficient preconditioning algorithms for the
Navier-Stokes equations are discussed.

Chapter 4: Solvers for Linear Saddle Point Problems 33

4.4 Preconditioning

The term preconditioning refers to transforming the linear system Ax = b into
another system with more favourable properties for its iterative solution. A precon-
ditioner is a matrix P or P−1 that effects such a transformation. Generally speaking,
preconditioning attempts to improve the spectral properties of the system matrix.

For symmetric problems, the rate of convergence of Krylov subspace methods
like CG or MINRES depends on the distribution of the eigenvalues of A. Ideally,
the preconditioned matrix will have a smaller spectral condition number, and/or
eigenvalues clustered around 1.

For nonsymmetric problems the situation is more complicated, and the eigen-
values may not describe the convergence of nonsymmetric matrix iterations like
GMRES. Nevertheless, a clustered spectrum (away from 0) often results in rapid
convergence.

For saddle point problems, the construction of high-quality preconditioners ne-
cessitates exploiting the block structure of the problem, together with detailed
knowledge about the origin and structure of the various blocks. The choice of
a preconditioner is strongly problem-dependent. For example, techniques that give
excellent results for the time-dependent flow problem may be completely inadequate
for the steady-state case.

In the context of the Navier-Stokes equations, block preconditioners are mostly
based on the block LDU factorization (4.3)

A =





K BT

B O



 =





I O

BK−1 I









K O

O S









I K−1BT

O I



 ,

where S is the Schur complement disccused above. Most preconditioners are based
on a combination of these blocks and a suitable approximation of the Schur com-
plement matrix.

Consider the following strategy [4], that is derived from the block factorization:





K BT

B O



 =





I O

BK−1 I









K BT

O S



 . (4.13)

This implies that





K BT

B O









K BT

O S





−1

=





I O

BK−1 I



 , (4.14)

which suggests a preconditioning strategy for (4.1). If it were possible to use the
matrix

P =





K BT

O S



 (4.15)

as a right-oriented preconditioner, then the preconditioned operator would be the
one given in (4.14).

34 4.4 Preconditioning

Consider the following generalized eigenvalue problem, one can determine the
eigenvalues of the preconditioned system





K BT

B O









u

p



 = λ





K BT

O S









u

p



 . (4.16)

From the first row of (4.16) one obtains

(1− λ)(Ku+ BTp) = 0.

This is only possible if λ = 1 or Ku + BTp = 0. In the first case one has an
eigenvalue equal to 1 of multiplicity Nv. For the second case it is

u = −K−1BTp.

From the second row of (4.16) it follows

Bu− λSp = 0.

Substituting u = −K−1BTp in the previous equation gives

−BK−1BTp = λSp. (4.17)

It means that one has λ = 1 with multiplicity Np. In practice, one cannot use
S = −BK−1BT in (4.11), but (4.17) shows that a good approximation of the Schur
complement matrix will influence the good convergence of the preconditioned system
with P .

Following [4], when any preconditioner P is used in a Krylov subspace iteration,
each step requires the application of P−1 to a vector. To see the computational
issues, it is useful to express P−1 in factored form





K BT

O S





−1

=





K−1 O

O I









I −BT

O I









I O

O S−1



 . (4.18)

This shows that two nontrivial operations are required to apply P−1: application of
S−1 to a vector in the discrete pressure space, and application of K−1 to a vector in
the discrete velocity space. These tasks are too expensive for a practical computation
due to the expensive calculations and storage of such matrices. In general, K−1 is
approximated by a matrix K̂−1 obtained by a small number of iterations with an
iterative method.

Thus, the block triangular preconditioning (4.13) involves the solution of the
transformated system

Pz = r,

where

z =





zu

zp



 and r =





ru

rp



 .

The algorithm below describes the process of solving.

Chapter 4: Solvers for Linear Saddle Point Problems 35

Algorithm 4.1 (Basic Form of the Preconditioner P).

1. Solve Szp = rp.

2. Update ru = ru −BT zp.

3. Solve Kzu = ru.

As one can see the preconditioner belongs to segregated approach and involves
the solution of two subproblems, one associated with the pressure and the other
with the velocity problem.

As mentioned above, the Schur complement matrix is not formed, but approx-
imated by a simple matrix Ŝ. How this approximation is done defines the various
block preconditioners. Now two popular techniques of block preconditioners are
reviewed.

4.4.1 The Least Squares Commutator Preconditioner

The method Least Squares Commutator (LSC) preconditioner was presented by
Elman et al. [4] in 2006. The method is based on approximating the commutator
of the convection-diffusion operator with the gradient operator.

The convection-diffusion operator defined on the velocity space can be written
as

L = −ν∆+wh · ∇, (4.19)

where wh is the approximation to the discrete velocity, computed in the most recent
Picard iteration. Suppose that there is an analogous operator

Lp = (−ν∆+wh · ∇)p, (4.20)

defined on the pressure space. It is not necessary to ascribe any physical meaning
to this operator, it will only be used to construct an algorithm. Consider the com-
mutator of the convection-diffusion operators with the gradient operator, as follows

ε = L∇−∇Lp = (−ν∆+wh · ∇)∇−∇(−ν∆+wh · ∇)p. (4.21)

If wh is constant, then this expression would be zero on the interior of Ω, and
it is small for smooth w. So if Kp is a discretization of (4.20), then the discrete
commutator

εh = KBT − BTKp (4.22)

will also be small. This means that

KBT ≈ BTKp. (4.23)

To isolate the Schur complement one has to multiply (4.23) from left by BK−1 and
from right by K−1

p . Thus, an approximation to the Schur complement matrix takes
the form

S = −BK−1BT ≈ Ŝ = −(BBT)K−1
p . (4.24)

To approximate the matrix operator Kp also the idea that the discrete commu-
tator (4.22) becomes small is used. This is done by solving a least squares problem.

36 4.4 Preconditioning

Suppose kj is the j-th column of the matrix Kp, then the least squares problem with
respect to the Euclidean norm has the form

min
∥

∥

∥BTkj −
[

KBT
]

j

∥

∥

∥

2
, (4.25)

where
[

KBT
]

j
is the jth column of the matrix KBT . The normal equations associ-

ated with this problem are

(

BT
)T
BTkj =

(

BT
)T [

KBT
]

j
(

BBT
)

kj = B
[

KBT
]

j
. (4.26)

An equivalent formulation is that Kp minimizes the Frobenius norm of the error in
the complete system

min
∥

∥BTKp −KBT
∥

∥

F
. (4.27)

According to (4.26) the solution is

Kp =
(

BBT
)−1

BKBT . (4.28)

The resulting Schur complement preconditioner becomes

S = −BK−1BT ≈ −(BBT)−1BKBT (BBT)−1. (4.29)

To accelerate convergence Elman et al. [4] proposed alternate solutions of (4.23).
These modifications include the use of diagonal scaling in (4.27). Consider

M−1
2 BTKp ≈M−1

2 KM−1
1 BT , (4.30)

where M2 and M1 are diagonal matrices. The operator M−1
2 can be thought of as

a weight matrix that transforms (4.27) into a weighted least-squares problem. The
introduction of M−1

1 can be viewed as a way to precondition K and BT so that they
are more amenable to commuting. Multiplying (4.30) from the left by BK−1M2,
one obtains

BK−1M2M
−1
2 BTKp ≈ BK−1M2M

−1
2 KM−1

1 BT

BK−1BTKp ≈ BK−1KM−1
1 BT

BK−1BTKp ≈ BM−1
1 BT

BK−1BT ≈ (BM−1
1 BT)K−1

p .

Then the inverse Schur complement is approximated by

(

BK−1BT
)−1

≈ Kp(BM
−1
1 BT)−1, (4.31)

where
Kp =

(

BM−2
2 BT

)−1
BM−2

2 KM−1
1 BT . (4.32)

The net effect of ”preconditioning” the commutator equation in this way is that
a new definition of Kp is given and the inverse discrete Poisson operator is now
replaced by a discrete variable-coefficient diffusion operator, when M1 is a diagonal
matrix.

Chapter 4: Solvers for Linear Saddle Point Problems 37

The strategy for choosing of a diagonal matrix M1 consists in the idea that a
version of the commutator is small on some components of the pressure space. In
[4] Elman suggested to choose as M1 the diagonal matrix whose entries are those on
the diagonal of the velocity mass matrix Qv

M1 = Q̂v = diag(Qv), (4.33)

with

Qv = qij, qij =

∫

Ω

φj · φi,

where {φi} is the basis for the discrete velocity space. As M2 is chosen the matrix

M
1/2
1 to make the two variable-coefficient Poisson operators identical.

The resulting approximation to the Schur complement matrix S with these
choices for M1 and M2 looks like

Ŝ = −(BQ̂−1
v BT)(BQ̂−1

v KQ̂−1
v BT)−1(BQ̂−1

v BT), (4.34)

and the corresponding inverse matrix is

Ŝ−1 = −(BQ̂−1
v BT)−1(BQ̂−1

v KQ̂−1
v BT)(BQ̂−1

v BT)−1. (4.35)

Using a block triangular matrix preconditioner

P =





K BT

O Ŝ



 (4.36)

with Ŝ from (4.34) in the (2, 2) block is called least-squares commutator precondi-
tioning. Implementing the strategy involves two discrete Poisson solves and matrix-
vector productes with the matrices B, BT , K and Q̂−1

v . The main advantage of the
least-square approach is that it is fully automated, it is defined in terms of matrices
such as K and B available in the statement of the problem.

The algorithm for the LSC preconditioner reads

Algorithm 4.2 (LSC preconditioner).

1. Solve SP z
∗
p = rp, where SP = BQ̂−1

v BT .

2. Update rp = BQ̂−1
v KQ̂−1

v BT z∗p .

3. Solve SP zp = −rp.

4. Update ru = ru −BT zp.

5. Solve Kzu = ru.

38 4.4 Preconditioning

4.4.2 The SIMPLE Preconditioner

The SIMPLE method (Semi-Implicit Method for Pressure-Linked Equations)
has been introduced by Patankar & Spalding [11] as an iterative method to solve
the finite volume discretized incompressible Navier-Stokes equations. The algorithm
is based on the following steps

• First the pressure is assumed to be known from the previous iteration.

• Then the velocity is solved from the momentum equations. The newly obtained
velocities do not satisfy the continuity equation since the pressure is only a
guess.

• In the next substeps the velocities and pressures are corrected in order to
satisfy the discrete continuity equation.

The algorithm follows from a block LU decomposition (4.4)




K BT

B O









u

p



 =





K O

B −BK−1BT









I K−1BT

O I









u

p



 =





f

g



 . (4.37)

The approximation K−1 as D−1 = diag(K)−1 leads to the SIMPLE algorithm. In
this case the approximation of the Schur complement matrix is given by

Ŝ = −BD−1BT ,

and the decomposition looks like




K BT

B O



 ≈





K O

B Ŝ









I D−1BT

O I



 . (4.38)

Thus, one iteration of SIMPLE corresponds to the solving of the following system




K O

B Ŝ









I D−1BT

O I









δu

δp



 =





f

g



−





K BT

B O









δu(k)

δp(k)



 =





ru

rp



 , (4.39)

which can be represented as




K O

B Ŝ









δu∗

δp∗



 =





ru

rp



 , (4.40)

and




I D−1BT

O I









δu

δp



 =





δu∗

δp∗



 . (4.41)

After recursively solving these two systems, one has to update the velocities and
pressure from the previous iteration





u(k+1)

p(k+1)



 =





u(k)

p(k)



+ ω





δu

δp



 , (4.42)

Chapter 4: Solvers for Linear Saddle Point Problems 39

where ω is a parameter in (0, 1] that damps the pressure update.
The main attraction of SIMPLE is that it is easy to implement. SIMPLE does

not affect the terms that operate on the velocity, but it perturbs the pressure op-
erator in the momentum equation. When D−1 is a good approximation to K−1,
then the error of this method is closed to a zero matrix. The results of the work [5]
show that the diagonal approximation can yield poor results because the diagonal
approximation does not capture enough information about the convection operator.
This means that effectiveness of SIMPLE diminishes for flows that are convection-
dominated. The next disadvantage is that the method performs worse when the
spatial mesh size becomes small.

Algorithm 4.3 (SIMPLE preconditioner).

1. u(k), p(k) are given.

2. Set ru = f−Ku(k) − BTp(k), rp = g −Bu(k).

3. Solve Kδu∗ = ru.

4. Solve Ŝδp∗ = rp − Bδu∗.

5. Update δp = δp∗.

6. Update δu = δu∗ −D−1BT δp∗.

7. Update u(k+1) = u(k) + ωuδu, p(k+1) = p(k) + ωpδp.

40 4.5 Coupled Multigrid

4.5 Coupled Multigrid

The next preconditioner, which is studied in this work, is a coupled multigrid
method and it will be briefly described in this subsection.

A multigrid method is defined by

− the grid hierarchy,

− the grid transfer operators (function prolongation, defect restriction and func-
tion restriction),

− the smoother on finer levels,

− the coarse grid solver.

4.5.1 Transfer Between the Levels of the Multigrid Hierar-
chy

The function prolongation

Consider the transfer (prolongation) from a finite element space V h
l−1 to a finite

element space V h
l . Let Tl−1 and Tl be the corresponding triangulations of the domain

Ω such that Tl originates either from refinement of Tl−1 or Tl−1 = Tl. The second
case is relevant in the multiple discretisation multilevel method.

Let Σh
l be a discontinuous finite element space defined on Tl

Σh
l =

{

w ∈ L2(Ω) : w|K ∈ Sh
l (K) K ∈ Tl

}

.

The choice of the local spaces Sh
l (K) depends on V h

l−1 and V h
l . It has to be done

such that the inclusion
V h
l−1 + V h

l ⊂ Σh
l (4.43)

holds.
The transfer operator is based on the concept of nodal functionals. For each

mesh cell K ∈ Tl and for the finite element space Σh
l exists a local finite element

basis
{

ψh
l,j

∣

∣

K

}

and a dual basis
{

NK
l,j

}

of local nodal functionals such that

NK
l,j

(

ψh
l,j

∣

∣

K

)

= δij , 0 ≤ i, j ≤ dim
(

Sh
l (K)

)

,

where δij is the Kroneker delta.
Let

{

ϕh
ij

}

be a finite element basis of V h
l . The indices j are called nodes or

degrees of freedom. The set of all nodes of V h
l is denoted by Il(V

h
l). The set of local

nodes with respect to the mesh cell K is given by

Il
(

K,V h
l

)

=
{

i ∈ Il
(

V h
l

)

: supp
(

ϕh
l,i

)

∩K 6= 0
}

. (4.44)

Furthermore, for any node j ∈ Il
(

V h
l

)

is defined

Tl,j =
{

K ∈ Tl : j ∈ Il
(

K,Σh
l

)}

, (4.45)

Chapter 4: Solvers for Linear Saddle Point Problems 41

the set of all mesh cells who are connected to the node j. Then, the global nodal
functional which is associated with a node j ∈ Il

(

V h
l

)

and whose argument is a
function wh ∈ Σh

l is defined by the arithmetic mean of local nodal functionals

Nl,j

(

wh
)

=
1

card (Tl,j)

∑

K∈Ti,j

NK
l,j

(

wh
∣

∣

K

)

, wh ∈ Σh
l ,

where card (Tl,j) denotes the number of mesh cells in Tl,j. The transfer operator for
the prolongation is defined with the help of the global nodal functionals:

P l
l−1 : Σ

h
l → V h

l P l
l−1

(

wh
)

=

dim(V h
l)

∑

i=1

Nl,i(w
h)ϕh

l,i. (4.46)

From the inclusion (4.43) follows that this operator is defined especially for functions
from V h

l−1.
Let

{

ϕh
l−1,i

}

be a finite element basis of V h
l−1 and

wh
l−1 =

dim(V h
l)

∑

i=1

wl−1,iϕ
h
l−1,i ∈ V h

l−1.

For evaluating the coefficient of ϕh
l,i for the prolongated function, one has to compute

Nl,i

(

wh
l−1

)

=
1

card (Tl,i)

∑

K∈Tl,i

NK
l,i

(

wh
l−1

∣

∣

K

)

=
1

card (Tl,i)

∑

K∈Tl,i

dim(V h
l−1)

∑

j=1

wl−1,jN
K
l,i

(

ϕh
l−1,j

∣

∣

K

)

.

An algorithm for computing the prolongation (4.46) looks as follows.

Algorithm 4.4 (Prolongation). Given the coefficient vector wl−1 of the finite
element function wh

l−1 ∈ V h
l−1.

1: wl = 0
2: card = 0
3: for K ∈ Tl do

4: for i ∈ Il(K,V
h
l) do

5: for j := 0; j < dim(V h
l−1); j ++ do

6: if supp(ϕl−1,j)
h |K ∩K = 0 then

7: continue
8: end if

9: wl(i) := wl(i) + wl−1(j)N
K
l,i

(

ϕh
l−1,j |K

)

10: card(i) := card(i) + 1
11: end for

12: end for

13: end for

14: for i := 0; i < dim(V h
l); i++ do

15: wl(i) := wl(i)/card(i)

42 4.5 Coupled Multigrid

16: end for

The defect restriction

The definition of the operator for the defect restriction R∗,l−1
l : (V h

l)
∗ → (V h

l−1)
∗

uses the prolongation operator given in (4.46). Let dl ∈ (V h
l)

∗ be a given defect
functional, its restriction to (V h

l−1)
∗ is defined by

∫

Ω

R∗,l−1
l (dl)ϕ

h
l−1dx =

∫

Ω

dlP
l−1
l (dl)(ϕ

h
l−1)dx ∀ϕh

l−1 ∈ V h
l−1.

The function restriction

In the multigrid approaches for solving the linear saddle point problem, the
matrix of this problem has to be assembled also on the coarse levels. Therefore,
the finite element functions wh

old and wh
k−1 must be available on the coarse grids.

A restriction operator Rl−1
l : V h

l → V h
l−1 which maps a finite element function from

the finite element space connected to level l in the multilevel hierarchy to a finite
element function connected to level l − 1 is necessary. A function restriction which
is based on local L2-projections and averaging is used.

The bases of V h
l , V

h
l−1 are again denoted by

{

ϕh
l,j

}

,
{

ϕh
l−1,i

}

. Let wh
l ∈ V h

l with

wh
l =

dim(V h
l)

∑

i=1

wl,iϕ
h
l,i

be given. The goal is to compute a function

Rl−1
l (wh

l) =

dim(V h
l−1)

∑

i=1

wl−1,iϕ
h
l−1,i.

Consider a mesh cell K on the geometric grid which is connected with V h
l−1 and

assume that K possesses an affine reference transformation. Local values of the
unknown coefficients wl−1,i are determined by the local L2-projection

card(Il(K,V h
l
))

∑

i=1

wl,i|K
(

ϕh
l,i, ϕ

h
l−1,j

)

K
=

card(Il−1(K,V h
l−1

))
∑

i=1

wl−1,i|K
(

ϕh
l−1,i, ϕ

h
l−1,j

)

K

for all j ∈ Il−1(K,V
h
l−1), where Il(K,V

h
l) is defined in(4.44). The transformation to

the reference cell K̂ gives

card(Il(K,V h
l
))

∑

i=1

wl,i|K

∫

K̂

ϕ̂h
l,iϕ̂

h
l−1,j |detJK(x̂)| dx̂ =

=

card(Il−1(K,V h
l−1

))
∑

i=1

wl−1,i|K

∫

K̂

ϕ̂h
l−1,iϕ̂

h
l−1,j |detJK(x̂)| dx̂

Chapter 4: Solvers for Linear Saddle Point Problems 43

for all j ∈ Il−1(K,V
h
l−1). Since |detJK(x̂)| is constant, this relation simplifies to

card(Il(K,V h
l
))

∑

i=1

wl,i|K

∫

K̂

ϕ̂h
l,iϕ̂

h
l−1,jdx̂ =

card(Il−1(K,V h
l−1

))
∑

i=1

wl−1,i|K

∫

K̂

ϕ̂h
l−1,iϕ̂

h
l−1,jdx̂

(4.47)
for all j ∈ Il−1(K,V

h
l−1). This is a linear system of the form

Gwl|K = Mwl−1|K .

Thus, the local values of the unknown coefficients are given by

wl−1|K = M−1Gwl

∣

∣

K
= Rwl|K . (4.48)

The matrix R is independent of K. That means, for all other mesh cells whose
bases on the reference mesh cell have the same form as for K, one also needs the
matrix R. This will be the case very often. E.g., if the grids are uniformly refined
and the same finite element space is used on every level, the matrix R is needed for
each mesh cell on each level. This matrix R will be computed once and then stored
in a data base. Then, only a local matrix-vector product has to be computed in
(4.48) which leads to a very fast algorithm. The final restriction is computed by an
averaging

wl−1,i =
1

card(Tl−1,i)

∑

K∈Tl−1,i

wl−1,i|K .

For mesh cells with a non-affine reference transformation, it is used for simplicity
also (4.47) such that they are handled in the same way as mesh cells with an affine
transformation. One can consider this approach also as a function restriction which
is a local L2-pojection on the reference mesh cell and which is an approximation of
a L2-projection on the original mesh cell.

4.5.2 The Vanka Smoothers

The coupled multigrid method is used with local smoothers, so-caled Vanka-type
smoothers. Vanka-type smoothers can be considered as block Gauss-Seidel methods.
Let Vh and Qh be the set of velocity and pressure degrees of freedom, respectively.
These sets are decomposed into

Vh = ∪J
j=1V

h
j , Qh = ∪J

j=1Q
h
j . (4.49)

The subsets are not required to be disjoint.
Let Aj be the block of the matrix A which is connected with the degrees of

freedom of Wh
j = Vh

j ∪ Qh
j , i.e. the intersection of the rows and columns of A with

the global indices belonging to Wh
j ,

A =





Aj Bj

Cj 0



 ∈ R
dim(Wh

j)×dim(Wh
j).

44 4.5 Coupled Multigrid

In addition, define

Dj =





diag(Aj) Bj

Cj 0



 ∈ R
dim(Wh

j)×dim(Wh
j).

Similarly, denote by (·)j the restriction of a vector on the rows corresponding to
the degrees of freedom on Wh

j . Each smoothing step with a Vanka-type smoother
consists in a loop over all sets Wh

j , where for each Wh
j a local system of equations

connected with the degrees of freedom in this set is solved. The local solutions are
updated in a Gauss-Seidel manner. The diagonal Vanka smoother computes the
velocity and pressure values connected to Wh

j by





w

r





j

:=





w

r





j

+D−1









f

g



−A





w

r









j

.

The full Vanka smoother computes new velocity and pressure values by




w

r





j

:=





w

r





j

+A−1









f

g



−A





w

r









j

.

The general strategy for choosing the sets Vh
j and Qh

j is as follows. First, pick
some pressure degrees of freedom which define Qh

j . Second, Vh
j is formed by all

velocity degrees of freedom which are connected with the pressure degrees of freedom
from Qh

j by non-zero entries in the matrix C.

4.5.3 The Multiple Discretisation Multilevel Method

A multilevel method for higher order finite element discretisations is based on
a multilevel method with a stable lowest order non-conforming finite element dis-
cretisation. This approach is called multiple discretisation multilevel method. In
this approach, the multilevel hierarchy possesses one level more than the geometric
grid hierarchy. On the finest geometric grid, level L, two discretisations are applied.
One of them, which forms the finest level of the multilevel hierarchy, is the discreti-
sation which we are interested in, e.g., a higher order discretisation. The second
discretisation on the geometric level L is a lowest order non-conforming discreti-
sation with upwind. On all coarser geometric levels, also a stabilized lowest order
non-conforming discretisation is applied.

Algorithm 4.5 (Multigrid method for the solution (4.1)).

1: multigrid(level)
2: if level == 0 then //coarsest level
3: compute norm of the initial residual res0 = res
4: while res > coarse red factor·res0 do
5: apply coarse smoother and compute update
6: compute new iterate by adding the old iterate and the update damped

with smooth damp factor

Chapter 4: Solvers for Linear Saddle Point Problems 45

7: compute norm of the residual res
8: if coarse maxit reached then
9: break

10: end if
11: end while
12: else//finer levels
13: for j = 0; j < pre smooth; j ++ do
14: apply smoother and compute update
15: compute new iterate by adding the old iterate and the update damped

with smooth damp factor

16: end for
17: compute defect
18: restrict defect to level-1
19: for i = 0; i < recursion(i); i++ do multigrid(level-1)
20: prolongate update from level-1
21: compute new iterate by adding the old iterate and the update damped

with prolo damp factor

22: end for
23: for j = 0; j < post smooth; j ++ do
24: apply smoother and compute update
25: compute new iterate by adding the old iterate and the update damped

with smooth damp factor

26: end for
27: end if
28: return

The multigrid method can be controlled with the following parameters:

− mg type: type of the multigrid method (standard or multiple discretization).

− mg cycle: type of the multigrid cycle. This parameter defines the array
recursion in line 21, e.g., recursion(i) = 1 for the V -cycle and recursion(i) =
2 for the W -cycle.

− smoother: type of the smoother (diagonal or full, mesh cell or pressure node
oriented).

− pre smooth: number of pre-smoothing steps on the finer levels, line 14.

− post smooth: number of post-smoothing steps on the finer levels, line 26.

− smooth damp factor fine: damping factor for smoothing iteration on the
finest level, this parameter replaces on the finest level smooth damp factor in
lines 15 and 25.

− smooth damp factor: damping factor for smoothing iteration on all coarser
levels, lines 15 and 25.

− prolo damp factor fine: damping factor for the update on the finest level,
this parameter replaces on the finest level prolo damp factor in lines 21.

46 4.5 Coupled Multigrid

− prolo damp factor: damping factor for the update on all coarser levels, line
21.

− coarse smoother: smoother on the coarsest grid.

− coarse maxit: maximal number of iterations on the coarsest grid.

− coarse red factor: factor for the reduction of the Euclidean norm of the
initial residual after which the iteration on the coarsest grid stops.

Chapter 4: Solvers for Linear Saddle Point Problems 47

4.6 Sparse Direct Solvers

In this thesis, besides the methods explained above, two standard sparse direct
solvers are used for solving the linear system with nonsymmetric matrix. These
solvers are popular in the scientific-technical community and are free accessible on
the internet.

4.6.1 UMFPACK

The first of the solvers is UMFPACK. The principal author is Timothy A. Davis
of the University of Florida [13]-[14]. The tested version (version 4.1) is written in C;
the original code was developed by Davis and Duff in Fortran 77 [15]. UMFPACK
is a code for the direct solution of the systems of linear equations

Ax = b

using the Unsymmetric MultiFrontal method. The matrix A is assumed to be a
square, sparse and unsymmetric. It is decomposed into:

PAQ = LU,

where L and U are sparse lower and upper triangular matrices, respectively. The
column reordering Q is chosen to give a good a priory upper bound on fill-in and
to refine the numeric factorization. The row ordering P is determined during the
numeric factorization to maintain numeric stability and to preserve sparsity.

The solution of the linear system involves the following phases:

• column pre-ordering: the initial ordering Q is determined to reduce fill-in
without regard to numeric values;

• symbolic factorization: this phase determines upper bounds on the memory
usage, the floating-point operation count, and the number of non-zeros in the
LU factors;

• numeric factorization: the column reordering Q is refined to reduce fill-in, and
the row ordering P is computed based on sparsity-preserving criteria as well
as numeric considerations (relaxed threshold partial pivoting);

• solution of linear system: given the LU factors and the right-hand side b,
the linear system is solved by forward and backward substitution. Iterative
refinement is performed optionally.

UMFPACK is available at http://www.suitesparse.com.

4.6.2 PARDISO

The second solver is PARDISO by Schenk and Gärtner, 2005. This package
is a software for solving large sparse symmetric and non-symmetric linear systems
on shared-memory and distributed-memory architectures. PARDISO calculates the
solution of a set of sparse linear equations with multiple right-hand sides, using

48 4.6 Sparse Direct Solvers

a parallel LU , LDL or LLT factorization. It is written using a combination of
Fortran 77 and C source code and is included in Intel Math Kernel Library (see
https://software.intel.com/en-us/intel-mkl/details).

The solver uses a combination of left- and right-looking Level-3 BLAS super
nodes techniques. In order to improve sequential and parallel sparse numerical fac-
torization performance, the algorithms are based on a Level-3 BLAS update, and
pipelining parallelism is exploited with a combination of left- and right-looking super
node techniques. The parallel pivoting methods allow complete super node pivot-
ing in order to balance numerical stability and scalability during the factorization
process.

Further details can be found in the literature [16]-[18].

5

Numerical Studies for Steady-State
Equations

This chapter deals with numerical studies of different solvers for the steady-state
case. Special attention is paid to the study of the effectiveness of methods based on
block preconditioning and the Schur complement approximation. At first the limit
case of the Navier-Stokes equations - the Stokes problem - is considered. Afterwards
three benchmark problems - the driven cavity problem, the backward facing step
problem and the flow around a cylinder - are presented.

The numerical simulations were performed using the program package MooNMD
by John and Matthies, 2004 [7]. The main purpose of the computational analysis
was the comparison of the performance of the solvers, which already are part of the
”classical code” of MooNMD

• direct solvers UMFPACK,

• generalized minimal residual method GMRES, used without preconditioning,

• GMRES with the standard multigrid method as preconditioner,

• GMRES with the multiple discretization multilevel method as preconditioner
(see [8], section 3.2, p. 166)

with block preconditioning methods such as

• GMRES with Least Squares Commutator (LSC) Preconditioner with direct
solver UMFPACK to solve the Poisson subproblems at each step and

• GMRES with Semi-Implicit Method for Pressure-Linked Equations (SIMPLE)
with direct solver UMFPACK to solve the linear system at each step.

5.1 The Stokes Problem

5.1.1 Governing Equations and Their Discretization

The Stokes equations describe very slow flows with a high viscosity. They are
a limit case of the Navier-Stokes equations, where the viscous term Re−1∆u domi-
nates the convective term (u · ∇)u and the convective term can be neglected. The

50 5.1 The Stokes Problem

momentum equation of the Stokes equations becomes a linear equation and the re-
sulting problem reads as follows:
find (u, p) : Ω× Ω → R

d × R, such that,

−ν∆u+∇p = f in Ω, (5.1)

∇ · u = 0 in Ω. (5.2)

On the boundary consider Dirichlet and Neumann-type conditions. Therefore
split Γ = ∂Ω into two disjoint parts ΓD, ΓN such that Γ = Γ̄D ∪ Γ̄N , |ΓD| > 0, then
the boundary conditions are given by

u = 0 on ΓD, (5.3)

(ν∇u− pI) · n = s on ΓN , (5.4)

where n is the outward-pointing normal to the boundary, and s ∈ H−1/2(ΓN).
The weak form of the Stokes problem is: given f ∈ L2(Ω),

find (u, p) ∈ (V ×Q) such that

(∇u,∇v)− (∇ · v, p) = (f ,v) + 〈s,v〉ΓN
∀v ∈ V, (5.5)

−(∇ · u, q) = 0 ∀q ∈ Q, (5.6)

where

〈s,v〉ΓN
=

∫

ΓN

s · v, (5.7)

and
V =

{

v ∈ (H1(Ω))d : v|ΓD
= 0

}

, Q = L2
0(Ω). (5.8)

The Stokes problem has unique solution and this solution depends continuously on
the right-hand side of (5.5)-(5.6) (see [20]). The discrete version of (5.5)-(5.6) is
formulated as:

Given the finite-dimensional subspaces V h ⊂ V and Qh ⊂ Q,
find (uh, ph) ∈ V h ×Qh such that

(ν∇uh,vh)− (ph,∇ · vh) = (f ,vh) +
〈

s,vh
〉

ΓN
∀vh ∈ V h, (5.9)

(qh,∇ · uh) = 0 ∀qh ∈ Qh. (5.10)

Following the standard steps of the Galerkin method one obtains the linear
system of equations, which has the same form as in the general case of the Navier-
Stokes equations





K BT

B O









u

p



 =





f

g



 ,

and to which the methods discussed in Chapter 4 can be applied.

5.1.2 Analytic Example

Consider the square domain Ω = (0, 1)2, Re = 1 (ν = 1
Re

= 1) and the source
term

f =





π2

2
sin(π

2
x) cos(π

2
y)− 1

−π2

2
cos(π

2
x) sin(π

2
y)



 ∈ L2(Ω).

Chapter 5: Numerical Studies for Steady-State Equations 51

Figure 5.1 illustrates the sketch of the domain with four disjoint boundary parts.
The boundary conditions look as follows

• On Γ0 and Γ1 the Dirichlet boundary conditions prescribe the inflow and out-
flow into Ω

u|Γ0
=





− sin(π
2
x)

−0.5 + x



 , (5.11)

u|Γ1
=





− cos(π
2
y)

0.5



 . (5.12)

• On Γ2 and Γ3 the Neumann conditions specify the natural boundary conditions

s|Γ2
=





π
2
sin(π

2
x)

−0.5 + x



 , (5.13)

s|Γ3
=





0.5 + π
2
cos(π

2
y)

−1



 . (5.14)

The functions

u =





− sin(π
2
x) cos(π

2
y)

cos(π
2
x) sin(π

2
y) + x− 0.5



 , p = 0.5− x (5.15)

are the analytic solution of the problem (5.1)-(5.4), representing steady-state hori-
zontal flow in a channel driven by a pressure difference between the two ends. The
streamfunctions, velocity and pressure are presented in Figure 5.2.

5.1.3 Numerical Results

The simulations were carried out with the standard Galerkin method for the inf-
sup stable pairs of the finite element spaces P2/P1 on the triangular grids and Q2/Q1

Figure 5.1 – 2D Stokes problem, domain.

52 5.1 The Stokes Problem

on the quadrilateral grids with two uniform refinement steps at the beginning. Table
5.1 illustrates the corresponding geometry levels.

Table 5.1 – 2D Stokes problem, geometry levels

Cells d.o.f.
Level

P2/P1 Q2/Q1 P2/P1 Q2/Q1

4 512 256 2467 2467

5 2048 1024 9539 9539

6 8192 4096 37507 37507

The iteration is terminated when either the Euclidean norm of the residual is
smaller than 10−8 or the maximum number of iterations at a level is achieved (it
has been set to 100000).

Tables 5.2-5.4 illustrate the actual results. The trends are as follows. For the
both discretizations the direct solver UMFPACK was the fastest method, whereas
GMRES without preconditioning was the worst. On the coarse grid LSC precondi-
tioner was better than multigrid preconditioners, but on the fine meshes the multiple
discretization multilevel method was faster. The CPU time for SIMPLE precondi-
tioner was much better than for GMRES without preconditioning, but worse in
comparison with other methods.

Figure 5.2 – 2D Stokes problem, streamfunction (top left), velocity (top right) and
pressure.

Chapter 5: Numerical Studies for Steady-State Equations 53

Table 5.2 – 2D Stokes problem, P2/P1 and Q2/Q1 discretizations, CPU times (s) for
direct solver UMFPACK.

Level P2/P1 Q2/Q1

4 0.036 0.1

5 0.17 0.3

6 1 1.4

Table 5.3 – 2D Stokes problem, P2/P1 discretization, GMRES without precondition-
ing and with coupled multigrid, the multiple discretization multilevel, SIMPLE and
LSC preconditioners.

Level Parameters GMRES GMRES+
MG

GMRES+
MDML

GMRES+
SIMPLE

GMRES+
LSC

4
Iterations 19189 6 6 268 28

Time (total), s 10 0.53 0.44 0.5 0.1

5
Iterations 74596 6 7 520 42

Time (total), s 171 1.8 1.55 5 0.9

6
Iterations 497223 6 7 1172 64

Time (total), s 4160 5.9 5.4 80.5 10.4

Table 5.4 – 2D Stokes problem, Q2/Q1 discretization, GMRES without precondi-
tioning and with coupled multigrid, the multiple discretization multilevel, SIMPLE
and LSC preconditioners.

Level Parameters GMRES GMRES+
MG

GMRES+
MDML

GMRES+
SIMPLE

GMRES+
LSC

4
Iterations 17166 8 8 239 11

Time (total), s 9.6 0.99 0.69 0.6 0.17

5
Iterations 64774 8 8 454 13

Time (total), s 147.8 3.35 2.5 5.7 0.98

6
Iterations 837597 8 8 984 16

Time (total), s 7603 13.2 8.8 59.6 9.7

54 5.1 The Stokes Problem

Figure 5.3 – 2D Stokes problem, CPU times (s) for P2/P1 and Q2/Q1 discretizations
for direct solver UMFPACK, GMRES without preconditioning and with SIMPLE and
LSC preconditioners.

Chapter 5: Numerical Studies for Steady-State Equations 55

5.2 The Steady-State Driven Cavity Problem

with Re = 1000

5.2.1 Implemented Example

Numerical experiments in the steady-state case of the Navier-Stokes equations
are presented for the widely studied benchmark problem - 2D driven cavity problem.
Consider incompressible flow in a square domain Ω = (0, 1)2 (cavity) with an upper
lid moving with a velocity U as shown in Figure 5.4. On the other boundaries zero
Dirichlet boundary conditions are used.

Let the Reynolds number of the flow be Re = 1000 .

Figure 5.5 shows the velocity field and pressure field for an example solution to
a 2D lid driven cavity on the geomtery level 5.

5.2.2 Numerical Results

The solution was carried out with the standard Galerkin method for the inf-sup
stable pair of the finite element spaces Q2/P

disc
1 on the quadrilateral mesh. Table

5.5 illustrates the corresponding geometry levels.

Table 5.5 – 2D driven cavity problem, geometry levels

Level Cells d.o.f.

4 256 2946

5 1024 11522

6 4096 45570

The Picard iteration is terminated when either the euclidean norm of the residual
is smaller than 10−10 or the maximum number of iterations at a level is achieved (it
has been set to 500).

Figure 5.4 – 2D driven cavity problem, domain.

56

5.2 The Steady-State Driven Cavity Problem

with Re = 1000

Figure 5.5 – 2D driven cavity problem, streamfunctions and 3D pressure rendering.

The stopping criteria for the GMRES iterations are either the Euclidean norm
of the residual is smaller than 10−10 or the maximum number of iterations at a level
is achieved (it has been set to 100000).

The stopping criteria for the case of the flexible GMRES with coupled multigrid
and the multiple discretization multilevel method are either at most 5 iterations for
solution of linear system were performed or the euclidean norm of the residual is
reduced by factor 10. The multigrid methods were applied with the F (2, 2)-cycle,
where the number of pre and post smoothing steps is 2. The damping factor of
Vanka smoother is 0.8.

Table 5.6 – 2D driven cavity problem, Q2/P
disc
1 discretization, Re = 1000, compari-

son of the direct solver, GMRES without preconditioning and GMRES with coupled
multigrid, the multiple discretization multilevel, SIMPLE and LSC preconditioners.

Level Parameters UMFPACK GMRES GMRES
+MG

GMRES
+MDML

GMRES
+SIMPLE

GMRES
+LSC

4

Nonlinear iterations 13 69 32 37 24 44

GMRES iterations - 753279 155 180 240000* 1361

Time (total), s 0.5 461 3.8 4.3 7127 6.1

5

Nonlinear iterations 24 106 27 28 17 36

GMRES iterations - 10234567 128 133 170000* 939

Time (total), s 4 3389 13.2 12 25273 31.9

6

Nonlinear iterations 23 38 29 27 14 32

GMRES iterations - 3513510* 138 120 1400000* 830

Time (total), s 23.1 46683 56.4 42.1 97899 279

* - the method did not converge

Table 5.6 and Figure 5.6 illustrate the actual results. The direct solver UMF-
PACK demonstrated again the fastest CPU time. On the fine grid GMRES without
preconditioning did not converge within the prescribed maximal number of steps,
whereas the SIMPLE preconditioner did not converge on all geometry levels. The
LSC preconditioner showed good convergence although was inferior to the direct
solver and multigrid preconditioners.

Chapter 5: Numerical Studies for Steady-State Equations 57

Figure 5.6 – 2D driven cavity problem, Re = 1000, Q2/P
disc
1 discretization, CPU

times (s) for direct solver UMFPACK, GMRES without preconditioning and GM-
RES with coupled multigrid, the multiple discretization multilevel, SIMPLE and LSC
preconditioners. Number of the linear iterations for GMRES methods.

58

5.3 The Backward Facing Step Problem

with Re = 100

5.3 The Backward Facing Step Problem

with Re = 100

5.3.1 Implemented Example

Consider L-shaped domain Ω shown in Figure 5.7. This problem geometry
represents a flow in a rectangular duct with a sudden expansion.

Figure 5.7 – 2D backward facing step problem, domain.

On the inflow boundary (x = 0, 0.5 ≤ y ≤ 1) a Poiseuille flow profile is imposed

ux = 12(1− y)(2y − 1), uy = 0, p = −2νx,

which is a parabolic inflow boundary condition.
On the outflow boundary (x = 4, 0 ≤ y ≤ 1) the do-nothing condition

Sn = 0

is considered.
On the walls the no-slip boundary conditions

u(x) = 0

are used.
Let the Reynolds number of the flow be Re = 100.
Figures 5.8-5.9 show velocity, pressure, streamlines and a three-dimensional ren-

dering of the pressure solution, which was obtained by numerical simulations on the
geometry level 5.

Chapter 5: Numerical Studies for Steady-State Equations 59

Figure 5.8 – 2D backward facing step problem, velocity (top) and pressure (bottom).

Figure 5.9 – 2D backward facing step problem, streamlines (top) and 3D pressure
rendering (bottom).

5.3.2 Numerical Results

The solution was carried out with the standard Galerkin method for the inf-sup
stable pair of the finite element spaces Q2/Q1 on the quadrilateral mesh. Table 5.7

60

5.3 The Backward Facing Step Problem

with Re = 100

illustrates the corresponding geometry levels.

Table 5.7 – 2D backward facing step problem, geometry levels

Level Cells d.o.f.

4 1792 16611

5 7168 65475

6 28672 259971

The Picard iteration is terminated when either the euclidean norm of the residual
is smaller than 10−10 or the maximum number of iterations at a level is achieved (it
has been set to 500).

The stopping criteria for the GMRES iterations are either the Euclidean norm
of the residual is smaller than 10−10 or the maximum number of iterations at a level
is achieved (it has been set to 100000).

The stopping criteria for the case of the flexible GMRES with coupled multigrid
and the multiple discretization multilevel method are either at most 5 iterations for
solution of linear system were performed or the euclidean norm of the residual is
reduced by factor 10. The multigrid methods were applied with the F (2, 2)-cycle,
where the number of pre and post smoothing steps is 2. The damping factor of
Vanka smoother is 0.8.

Table 5.8 – 2D backward facing step problem, Q2/Q1 discretization, Re = 100,
comparison of the direct solver and GMRES with coupled multigrid, the multiple
discretization multilevel, SIMPLE and LSC preconditioners.

Level Parameters UMFPACK GMRES GMRES
+MG

GMRES
+MDML

GMRES
+SIMPLE

GMRES
+LSC

4

Nonlinear iterations 16 11 25 25 11 12

GMRES iterations - 85065 72 47 850 45

Time (total), s 5.7 415 56.6 22.5 38 11

5

Nonlinear iterations 16 15 24 25 12 14

GMRES iterations - 1500000* 45 45 1806 67

Time (total), s 36 23772 142.6 87 421 130

6

Nonlinear iterations 16 14 23 23 11 11

GMRES iterations - 1400000* 40 42 3283 75

Time (total), s 269 92343 580 329 6156 1368

* - the method did not converge

We observe, that on the coarse grids the LSC preconditioner was worse than
the direct solvers, but better than the preconditioner based on the coupled multi-
grid methods. While on the fine grids the LSC method was slower than these two
solvers. Based on the outcomes of this and previous simulations, GMRES without
preconditioning and with SIMPLE preconditioner will no longer be considered, since
both of these methods showed the worst result.

Chapter 5: Numerical Studies for Steady-State Equations 61

Figure 5.10 – 2D backward facing step problem, Re = 100, Q2/Q1 discretization,
CPU times (s) for direct solver UMFPACK and GMRES with coupled multigrid, the
multiple discretization multilevel, SIMPLE and LSC preconditioners. Number of the
linear iterations for GMRES methods.

62

5.4 The Steady-State Flow Around a Cylinder

with Re = 20

5.4 The Steady-State Flow Around a Cylinder

with Re = 20

5.4.1 Implemented Example

This benchmark problem was defined by Schäfer and Turek in [19]. Consider
a flow in a two-dimensional domain with a two-dimensional cylinder (circle), see
Figure 5.11 for a sketch of this domain.

The dynamic viscosity of the fluid is given by µ = 10−3Pa s and its density
by ρ = 1kg/m3. These values are approximately the coefficients for water. The
parabolic inflow profile is given by

v(0m, y) =
1

0.412





1.2y(0.41− y)

0



m/s, 0m ≤ y ≤ 0.41m. (5.16)

At the top and the bottom of the channel and at the surface Γbody of the cylinder,
no-slip boundary conditions are prescribed. With respect to the outlet do-nothing
boundary conditions are used

Sn = (−µ∇v + P I)n = 0N/m2 on Γoutfl, (5.17)

where n is the outward pointing unit normal vector. The mean inflow velocity is
given by

Umean =
1

0.412

∫ 0.41

0
1.2y(0.41− y)dy
∫ 0.41

0
dy

m/s =
1

5

0.413

0.413
= 0.2m/s. (5.18)

Based on the mean inflow, the diameter d = 0.1m of the cylinder, and the
kinematic viscosity µ/ρ, the Reynolds number of the flow is Re = 20. There are no
external forces acting on the flow, i.e., fext = 0N/m3.

Using the characteristic length scale L = 1m and the characteristic velocity scale
U = 1m/s, one obtains the steady-state Navier-Stokes equations (2.1)-(2.4) with
ν = µ/(ρUL) = 10−3 and accordingly Re = (UL)/ν = 1000, the inflow condition

v(0, y) = 0.41−2





1.2y(0.41− y)

0



 0 ≤ y ≤ 0.41,

and the outflow condition

Sn = (−ν∇v + pI)n = 0 on Γoutfl.

Figures 5.12-5.13 present the solution, which was obtained by numerical simu-
lations with do-nothing outflow boundary conditions.

5.4.2 Numerical Results

As in previous cases the solution was carried out with the standard Galerkin
method. The inf-sup stable pair of the finite element spaces P2/P1 on the triangle

Chapter 5: Numerical Studies for Steady-State Equations 63

Figure 5.11 – 2D stationary flow around cylinder, domain

Figure 5.12 – 2D stationary flow around cylinder, velocity (top) and pressure (bot-
tom).

Figure 5.13 – 2D stationary flow around cylinder, streamfunction (left) and pressure
isosurfaces (right).

grids and Q2/P
disc
1 on the quadrilateral grids were used. Table 5.9 illustrates the

corresponding geometry levels.

The Picard iteration is terminated when either the Euclidean norm of the resid-
ual is smaller than 10−10 or the maximum number of iterations at a level is achieved

64

5.4 The Steady-State Flow Around a Cylinder

with Re = 20

Table 5.9 – 2D stationary flow around cylinder, geometry levels

Cells d.o.f.
Level

P2/P1 Q2/P disc
1

P2/P1 Q2/P disc
1

0 388 208 1926 2440

1 1552 832 7344 9456

2 6208 3328 28656 37216

3 24832 13312 113184 147648

4 99328 53248 449856 588160

(it has been set to 500).
The stopping criteria for the GMRES iterations are either the Euclidean norm

of the residual is smaller than 10−10 or the maximum number of iterations at a level
is achieved (it has been set to 100000). The rest simulation parameters are the same
as for the driven cavity and backward facing step problems.

All simulations were implemented for two initial guesses: zero initial guess and
extrapolated solution from the coarse grid.

Table 5.10 – 2D stationary flow around cylinder, Re = 20, P2/P1, comparison of the
iteration counts and the total CPU times (s) at each level for zero initial guess.

Level Parameters UMFPACK PARDISO FGMRES
+MG

FGMRES
+MDML

GMRES
+LSC

0

Nonlinear iterations 21 21 22 22 24

Linear iterations - - 101 95 440

Time (total) 0.4 0.8 7.23 3.64 0.7

1

Nonlinear iterations 16 16 17 16 21

Linear iterations - - 79 75 5941

Time (total) 1.3 2.6 14.4 12.3 4.8

2

Nonlinear iterations 15 15 16 16 17

Linear iterations - - 72 72 6183

Time (total) 7.4 12.9 58.4 45.5 34

3

Nonlinear iterations 15 15 15 15 17

Linear iterations - - 66 50 2429

Time (total) 74.3 69.3 218.3 127.9 259

4

Nonlinear iterations 14 14 15 14 19

Linear iterations - - 58 42 18833

Time (total) 656.9 372.9 760 440.8 2337

Table 5.10 and Table 5.11 illustrate the performance of the above mentioned
methods for the case of P2/P1: the number of iterations and the total computing
times for two initial guesses respectively.

Table 5.12 and Table 5.13 give the same information for the finite element spaces
Q2/P

disc
1 .

Chapter 5: Numerical Studies for Steady-State Equations 65

Table 5.11 – 2D stationary flow around cylinder, Re = 20, P2/P1, comparison of
the iteration counts and the total CPU times (s) at each level for initial guess as
extrapolated solution from the coarse grid.

Level Parameters UMFPACK PARDISO FGMRES
+MG

FGMRES
+MDML

GMRES
+LSC

0

Nonlinear iterations 21 21 22 22 24

Linear iterations - - 101 95 4440

Time (total) 0.38 0.68 6.81 3.46 0.7

1

Nonlinear iterations 12 12 12 11 14

Linear iterations - - 57 52 2850

Time (total) 0.99 1.8 10.3 8.3 4

2

Nonlinear iterations 8 8 10 9 11

Linear iterations - - 46 37 3108

Time (total) 4.1 6.1 38.7 24.1 25

3

Nonlinear iterations 5 5 7 6 9

Linear iterations - - 25 15 3405

Time (total) 24.3 21.4 83.3 40.1 176

4

Nonlinear iterations 2 3 5 4 7

Linear iterations - - 16 72 4276

Time (total) 139.3 71.7 211.6 75.7 1503

Table 5.12 – 2D stationary flow around cylinder, Re = 20, Q2/P
disc
1 , comparison of

the iteration counts and the total CPU times (s) at each level for zero initial guess.

Level Parameters UMFPACK PARDISO FGMRES
+MG

FGMRES
+MDML

GMRES
+LSC

0

Nonlinear iterations 17 17 22 17 18

Linear iterations - - 108 81 1333

Time (total) 0.36 0.6 2.74 1.4 0.7

1

Nonlinear iterations 16 16 19 16 17

Linear iterations - - 93 77 1127

Time (total) 1.8 2.7 5.9 5 4

2

Nonlinear iterations 15 15 15 15 20

Linear iterations - - 65 70 2185

Time (total) 11.9 13 18.6 19.2 36

3

Nonlinear iterations 15 15 15 15 17

Linear iterations - - 59 67 2429

Time (total) 93 65 69 74.8 259

4

Nonlinear iterations failed 14 14 471 21

Linear iterations - - 44 2353 4977

Time (total) - 356 208 10460 2257

66

5.4 The Steady-State Flow Around a Cylinder

with Re = 20

Table 5.13 – 2D stationary flow around cylinder, Re = 20, Q2/P
disc
1 , comparison

of the iteration counts and the total CPU times (s) at each level for initial guess as
extrapolated solution from the coarse grid.

Level Parameters UMFPACK PARDISO FGMRES
+MG

FGMRES
+MDML

GMRES
+LSC

0

Iterations 17 17 22 17 18

Linear iterations - - 108 81 1333

Time (total) 0.4 0.6 2.7 1.4 0.7

1

Iterations 11 11 14 12 12

Linear iterations - - 67 53 551

Time (total) 1.5 2.1 4.3 3.5 3

2

Iterations 8 8 9 8 10

Linear iterations - - 37 32 485

Time (total) 7.8 7.6 10.6 8.7 20

3

Iterations 6 6 6 6 10

Linear iterations - - 19 18 584

Time (total) 55.2 31.6 22.3 20.8 159

4

Iterations failed 3 5 250 6

Linear iterations - - 14 1249 279

Time (total) - 96.7 67 5586 1462

Chapter 5: Numerical Studies for Steady-State Equations 67

Figure 5.14 – 2D stationary flow around cylinder, Re = 20, CPU times (s) for direct
solvers UMFPACK, PARDISO and GMRES with coupled multigrid, the multiple
discretization multilevel and LSC preconditioners.

68

5.4 The Steady-State Flow Around a Cylinder

with Re = 20

Figure 5.15 – 2D stationary flow around cylinder, Re = 20, number of linear iter-
ations for GMRES with coupled multigrid, the multiple discretization multilevel and
LSC preconditioners.

Chapter 5: Numerical Studies for Steady-State Equations 69

5.5 Summary of Results

In the stationary examples presented in this thesis, we could generally observe

• the iterative method GMRES without preconditioning has showed the worst
results in all examples.

• The direct solvers UMFPACK and PARDISO were the fastest methods. An
exception made only the examples on finer grids with the large numbers of
degrees of freedom.

• Considering only GMRES with block preconditioning based on the Schur com-
plement approximation such as SIMPLE and LSC preconditioners one can see
that LSC preconditioner proved to be cheaper. This concerns both the number
of nonlinear and linear iterations and CPU times. In all presented examples
this method demonstrates the most acceptable results. Its computing time,
for example for 2D Stokes’s problem, was more than one hundred times better
than the computing time of GMRES and it is about 6-7 times better than
SIMPLE. For Navier-Stokes examples we have similar results.

• But the comparison of the block preconditioning with the preconditioning
based on the coupled multigrid methods leads us to the conclusion that the
last methods are much faster. Their results are comparable with direct solvers
and in cases with the large numbers of degrees of freedom even better.

6

Numerical Studies for Time-Dependent
Navier-Stokes Equations

This chapter presents a numerical study of different solvers for the unsteady
Navier-Stokes equations on the two examples - a problem with a known analytic
solution and laminar flow around a cylinder. The numerical simulations also were
performed using the program package MooNMD [7] and the following methods were
tested

• direct solvers UMFPACK and PARDISO,

• generalized minimal residual method GMRES, used without preconditioning,

• GMRES with the standard multigrid method as preconditioner,

• GMRES with the multiple discretization multilevel method as preconditioner,

• GMRES with Least Squares Commutator (LSC) Preconditioner and

• GMRES with Semi-Implicit Method for Pressure-Linked Equations (SIMPLE).

6.1 The Example with a Known Analytic Solu-

tion

6.1.1 Implemented Example

Consider the square domain Ω = (0, 1)2 and the solution of (3.1)-(3.5) given by

u1 = 2π sin(t) sin2(πx) sin(πy) cos(πy),

u2 = −2π sin(t) sin(πx) cos(πx) sin2(πy), (6.1)

p = 20 sin(t)

(

x2y −
1

6

)

,

with u = (u1, u2)
T .

The right-hand side f is chosen such that (u1, u2, p)
T is the solution of (3.1)-(3.5)

with the initial conditions
u(0, ·) = 0

and the homogeneous Dirichlet conditions on the boundary.

Chapter 6: Numerical Studies for Time-Dependent Navier-Stokes Equations 71

t = 0.01

t = 2.50

t = 5.00

Figure 6.1 – 2D instationary analytic example, Q2/P
disc
1 discretization, Re = 1000,

streamfunctions (left) and pressure (right).

The Reynolds number of the flow is Re = 1000 and the final time is set to be
T = 5. The streamfunctions, velocity and pressure are presented in Figure 6.1 for
the different time points.

6.1.2 Numerical Results

As usual the solution was carried out with the standard Galerkin method. Dis-
cretization in time was done with help of the Crank-Nicolson scheme (3.11) and
computations were done for the time step ∆t = 0.01.

The discretization in space was performed with quadrilateral finite elements,

72 6.1 The Example with a Known Analytic Solution

using the inf-sup stable Q2/P
disc
1 pair of finite elements spaces. Table 6.1 illustrates

the corresponding geometry levels.

Table 6.1 – 2D instationary analytic example, geometry levels

Level velocity d.o.f. pressure d.o.f. total d.o.f.

3 578 192 770

4 2178 768 2946

5 8450 3072 11522

6 33282 12288 45570

The Picard iteration is terminated when either the Euclidean norm of the resid-
ual is smaller than 10−8 or the maximum number of iterations at a level is achieved
(it has been set to 500).

The stopping criteria for the GMRES iterations are either the Euclidean norm
of the residual is smaller than 10−8 or the maximum number of iterations at a level
is achieved (it has been set to 10000).

The stopping criteria for the case of the flexible GMRES with coupled multigrid
and the multiple discretization multilevel method are either at most 5 iterations for
solution of linear system were performed or the euclidean norm of the residual is
reduced by factor 10. The multigrid methods were applied with the F (1, 1)-cycle
without damping.

Table 6.2 – 2D instationary analytic example, Q2/P
disc
1 discretization, Re = 1000,

∆t = 0.01, solvers’ comparison at t = 0.01.

Level Parameters UMFPACK GMRES GMRES
+MG

GMRES
+MDML

GMRES
+SIMPLE

GMRES
+LSC

3
Nonlinear iterations 2 1 3 4 4 1

GMRES iterations - 4080 5 9 40000* 5

4
Nonlinear iterations 2 2 3 4 27 1

GMRES iterations - 14666 5 9 270000* 4

5
Nonlinear iterations 2 10 3 4 227 1

GMRES iterations - 96352 5 9 2270000* 4

6
Nonlinear iterations 1 6 4 4 42 1

GMRES iterations - 57376 4 7 420000* 3

* - the method did not converge

Table 6.3 and Figure 6.2 show the following result. GMRES without precondi-
tioning was the worse. The SIMPLE preconditioner did not converge on all geometry
levels. The behavior of the LSC preconditioner in the instationary case was the same
as in the case of the steady-state problems. It worked cheaper on the coarse grids
and was slower than direct solvers and multigrid methods on the fine grids. GMRES
with coupled multigrid preconditioners were the fastest methods on the fine grids.

Chapter 6: Numerical Studies for Time-Dependent Navier-Stokes Equations 73

Table 6.3 – 2D instationary analytic example, Q2/P
disc
1 discretization, Re = 1000,

total time (s) of studying solvers for t = 0 . . . 5, ∆t = 0.01.

Level UMFPACK GMRES GMRES
+MG

GMRES
+MDML

GMRES
+LSC

3 11 187 14 21 13

4 51 1914 54 77 64

5 258 39497 179 304 416

6 1549 117106 715 1205 4114

Figure 6.2 – 2D instationary analytic example, Re = 1000, Q2/P
disc
1 discretiza-

tion, CPU times (s) for direct solver UMFPACK, GMRES without preconditioning
and GMRES with coupled multigrid, the multiple discretization multilevel and LSC
preconditioners.

74

6.2 The Instationary Flow Around a Cylinder

with Re = 100

6.2 The Instationary Flow Around a Cylinder

with Re = 100

6.2.1 Implemented Example

Back to the problem discussed in Section 5.4, but in the case of unsteady flow
and with five times stronger inflow. This problem is given in

Ω = {(0, 2.2)× (0, 0.41)} \
{

x : (x− (0.15, 0.15))2 ≤ 0.052
}

,

see Figure 5.11.
The kinematic viscosity of the fluid is given by ν = 10−3m2/s. At the boundary

x = 0 the steady-state inflow condition

v(0m, y) =
1

0.412





6y(0.41− y)

0



m/s, 0m ≤ y ≤ 0.41m (6.2)

is used. At the boundary x = 2.2 the outflow condition (do-nothing condition)

Sn = (−ν∇v + P I)n = 0N/m2 on Γoutfl (6.3)

is applied. On other parts of the boundary no-slip conditions are prescribed.
The initial condition is a fully developed flow field that has to be computed in

a preprocessing step.
Based on the mean inflow velocity U = 1m/s, the diameter of the cylinder

L = 0.1m and the kinematic viscosity, the Reynolds number of the flow is Re = 100.
The final time is set to be T = 0.34. In the fully developed periodic regime, a vortex
shedding (von Kármán vortex street) can be observed behind the obstacle, see Figure
6.3.

6.2.2 Numerical Results

The Navier-Stokes equations were discretized in space, using the inf-sup stable
pair of the finite element spaces P2/P1 on the triangle grids and Q2/P

disc
1 on the

quadrilateral grids. In Table 6.4 the corresponding geometry levels are described.

Table 6.4 – 2D instationary flow around cylinder, geometry levels

velocty d.o.f. pressure d.o.f. total d.o.f.
Level

P2/P1 Q2/P disc
1

P2/P1 Q2/P disc
1

P2/P1 Q2/P disc
1

3 25408 27232 3248 9984 28656 37216

4 100480 107712 12704 39936 113184 147648

5 399616 428416 50240 159744 449856 588160

Discretization in time was done with help of the Crank-Nicolson scheme (3.11)
and computations were done for the time step ∆t = 0.005.

The Picard iteration is terminated when either the Euclidean norm of the resid-
ual is smaller than 10−8 or the maximum number of iterations at a level is achieved
(it has been set to 30).

Chapter 6: Numerical Studies for Time-Dependent Navier-Stokes Equations 75

(a)

(b)

(c)

Figure 6.3 – 2D instationary flow around cylinder, Re = 100, (a) - pressure, (b) -
magnitude of velocity and (c) - streamfunctions at t = 0.005.

The stopping criterion for the GMRES iterations are either the Euclidean norm
of the residual is smaller than 8 · 10−9 or the maximum number of iterations at a
level is achieved (it has been set to 10).

The stopping criterion for the case of the flexible GMRES with coupled multigrid
and the multiple discretization multilevel method is either at most 10 iterations for
solution of linear system were performed or the Euclidean norm of the residual is
reduced by factor 10. The multigrid methods were applied with the F (1, 1)-cycle
without damping.

Table 6.5 and Table 6.6 illustrate the performance of the above mentioned meth-
ods for the case of P2/P1: the number of iterations and the total computing times.
Table 6.7 and Table 6.8 give the same information for the finite element discretiza-

76

6.2 The Instationary Flow Around a Cylinder

with Re = 100

tion Q2/P
disc
1 .

Table 6.5 – 2D instationary flow around cylinder, P2/P1 discretization, Re = 100,
∆t = 0.005, solvers’ comparison at t = 0.005.

Level Parameters UMFPACK PARDISO FGMRES
+MG

FGMRES
+MDML

GMRES
+LSC

3
Nonlinear iterations 3 3 4 6 7

Linear iterations - - 16 20 55

4
Nonlinear iterations 3 3 5 6 7

Linear iterations - - 7 19 92

5
Nonlinear iterations 3 3 4 5 7

Linear iterations - - 6 13 167

Table 6.6 – 2D instationary flow around cylinder, P2/P1 discretization, Re = 100,
∆t = 0.005, total time (s) of studying solvers for t = 0 . . . 0.34.

Level UMFPACK PARDISO GMRES
+MG

GMRES
+MDML

GMRES
+LSC

3 84 108 558 984 382

4 759 989 1564 3423 2506

5 8876 9517 5604 10145 20236

Table 6.7 – 2D instationary flow around cylinder, Q2/P
disc
1 discretization, Re = 100,

∆t = 0.005, solvers’ comparison at t = 0.005.

Level Parameters UMFPACK PARDISO FGMRES
+MG

FGMRES
+MDML

GMRES
+LSC

3
Nonlinear iterations 3 3 7 6 7

Linear iterations - - 31 25 26

4
Nonlinear iterations 3 3 5 5 7

Linear iterations - - 13 17 37

5
Nonlinear iterations 3 3 5 5 6

Linear iterations - - 12 14 44

Table 6.8 – 2D instationary flow around cylinder, Q2/P
disc
1 discretization, Re = 100,

∆t = 0.005, total time (s) of studying solvers for t = 0 . . . 0.34.

Level UMFPACK PARDISO GMRES
+MG

GMRES
+MDML

GMRES
+LSC

3 145 143 819 683 464

4 1171 1085 1448 1555 2731

5 9781 9363 5582 7343 14048

In the case of both discretizations GMRES with standard multigrid precondi-
tioner was the fastest solver on the fine grids. On the coarse grid the best results

Chapter 6: Numerical Studies for Time-Dependent Navier-Stokes Equations 77

Figure 6.4 – 2D instationary flow around cylinder, Re = 100, ∆t = 0.005, total time
(s) of studying solvers for t = 0 . . . 0.34.

had the direct solvers. The LSC preconditioner demonstrated the same results as
in the previous examples.

78

6.2 The Instationary Flow Around a Cylinder

with Re = 100

Figure 6.5 – 2D instationary flow around cylinder, Re = 100, ∆t = 0.005, t =
0.005, number of linear iterations for GMRES with coupled multigrid, the multiple
discretization multilevel and LSC preconditioners.

Chapter 6: Numerical Studies for Time-Dependent Navier-Stokes Equations 79

6.3 Summary of Results

Considering the solvers for the time-dependent Navier-Stokes equations one can
observe:

• the iterative method GMRES with Semi-Implicit Method for Pressure-Linked
Equations (SIMPLE) preconditioner had the worst result;

• from the remaining methods GMRES without preconditioning was the slowest;

• on the grids with a small number of degrees of freedom the results of the direct
solver and GMRES with the studied preconditioners (the standard multigrid,
the multiple discretization multilevel method and LSC) were comparable and
not much different from each other;

• on finer grids (d.o.f. > 400000) the best result demonstrated the flexible GM-
RES with the coupled multigrid preconditioners.

7

Conclusion and Outlooks

The subject of this project was to analyze different solution methods for linear
systems in saddle point form, arising in finite element discretizations of incompress-
ible flow problems.

Firstly the mathematical foundations for the incompressible Navier-Stokes equa-
tions and the corresponding saddle point systems were presented. Afterwards the
basic properties of the saddle point matrices and the solution algorithms were stud-
ied. Special attention was paid to different techniques of preconditioning and the
following preconditioners were considered in detail

• the standard multigrid method,

• the multiple discretization multilevel method,

• Least Squares Commutator (LSC) preconditioner and

• Semi-Implicit Method for Pressure-Linked Equations (SIMPLE).

As a numerical experiment the analysis of the above-mentioned methods and the
comparison of their results with direct methods were carried out. The numerical
tests showed:

• the direct solvers are the best choice for the problems with a number of degrees
of freedom smaller than 400000;

• for the problems on the fine grids with a large number of degrees of freedom
the one of the Krylov subspace methods for non-symmetric matrices such as
flexible GMRES used with the preconditioner based on the coupled multigrid
methods is optimal;

• SIMPLE preconditioner shows adequate results only in the case, if diag(K)−1

is a good approximation to K−1. But diagonal approximation can yield poor
results because the diagonal approximation does not capture enough informa-
tion about the convection operator. This means that effectiveness of SIMPLE
diminishes for flows that are convection-dominated. This fact was well demon-
strated with our computational experiments. For the convection-dominated
problems with a large Reynolds number (see Table 5.6 and Table 6.2) the
flexible GMRES with SIMPLE preconditioner did not converge within the
prescribed maximal number of steps. While in the problems with a small

Chapter 7: Conclusion and Outlooks 81

Reynolds number the SIMPLE preconditioner demonstrates the convergence
still worse than the other preconditioners;

• LSC preconditioner reveals the acceptable results on all studied examples, but
its performance differs on coarse and fine grids. For example, on the coarse
grids LSC preconditioner is worse than the direct solvers, but better than
the preconditioner based on the coupled multigrid methods. While on the
fine grids it has demonstrated the results, which are worse than the results of
multigrid preconditioners and of direct solvers.

In a future one can extend the results to the three-dimensional case and check
whether the conclusions, made above, are confirmed in this case.

Also the further investigations could consider the other block preconditioner
based on the Schur complement approximation such as the exact and inexact pres-
sure convection-diffusion preconditioners or modifications of SIMPLE algorithm as
SIMPLEC and SIMPLER in order to compare their performance with other ap-
proaches.

List of Tables

5.1 2D Stokes problem, geometry levels 52
5.2 2D Stokes problem, P2/P1 and Q2/Q1 discretizations, CPU times (s)

for direct solver UMFPACK. 53
5.3 2D Stokes problem, P2/P1 discretization, GMRES without precondi-

tioning and with coupled multigrid, the multiple discretization mul-
tilevel, SIMPLE and LSC preconditioners. 53

5.4 2D Stokes problem, Q2/Q1 discretization, GMRES without precondi-
tioning and with coupled multigrid, the multiple discretization mul-
tilevel, SIMPLE and LSC preconditioners. 53

5.5 2D driven cavity problem, geometry levels 55
5.6 2D driven cavity problem, Q2/P

disc
1 discretization, Re = 1000, com-

parison of the direct solver, GMRES without preconditioning and
GMRES with coupled multigrid, the multiple discretization multi-
level, SIMPLE and LSC preconditioners. 56

5.7 2D backward facing step problem, geometry levels 60
5.8 2D backward facing step problem, Q2/Q1 discretization, Re = 100,

comparison of the direct solver and GMRES with coupled multigrid,
the multiple discretization multilevel, SIMPLE and LSC precondi-
tioners. 60

5.9 2D stationary flow around cylinder, geometry levels 64
5.10 2D stationary flow around cylinder, Re = 20, P2/P1, comparison of

the iteration counts and the total CPU times (s) at each level for zero
initial guess. 64

5.11 2D stationary flow around cylinder, Re = 20, P2/P1, comparison of
the iteration counts and the total CPU times (s) at each level for
initial guess as extrapolated solution from the coarse grid. 65

5.12 2D stationary flow around cylinder, Re = 20, Q2/P
disc
1 , comparison

of the iteration counts and the total CPU times (s) at each level for
zero initial guess. 65

5.13 2D stationary flow around cylinder, Re = 20, Q2/P
disc
1 , comparison

of the iteration counts and the total CPU times (s) at each level for
initial guess as extrapolated solution from the coarse grid. 66

6.1 2D instationary analytic example, geometry levels 72
6.2 2D instationary analytic example, Q2/P

disc
1 discretization, Re = 1000,

∆t = 0.01, solvers’ comparison at t = 0.01. 72
6.3 2D instationary analytic example, Q2/P

disc
1 discretization, Re = 1000,

total time (s) of studying solvers for t = 0 . . . 5, ∆t = 0.01. 73

Chapter 7: LIST OF TABLES 83

6.4 2D instationary flow around cylinder, geometry levels 74
6.5 2D instationary flow around cylinder, P2/P1 discretization, Re = 100,

∆t = 0.005, solvers’ comparison at t = 0.005. 76
6.6 2D instationary flow around cylinder, P2/P1 discretization, Re = 100,

∆t = 0.005, total time (s) of studying solvers for t = 0 . . . 0.34. 76
6.7 2D instationary flow around cylinder, Q2/P

disc
1 discretization, Re =

100, ∆t = 0.005, solvers’ comparison at t = 0.005. 76
6.8 2D instationary flow around cylinder, Q2/P

disc
1 discretization, Re =

100, ∆t = 0.005, total time (s) of studying solvers for t = 0 . . . 0.34. . 76

List of Figures

5.1 2D Stokes problem, domain. 51

5.2 2D Stokes problem, streamfunction (top left), velocity (top right) and
pressure. 52

5.3 2D Stokes problem, CPU times (s) for P2/P1 and Q2/Q1 discretiza-
tions for direct solver UMFPACK, GMRES without preconditioning
and with SIMPLE and LSC preconditioners. 54

5.4 2D driven cavity problem, domain. 55

5.5 2D driven cavity problem, streamfunctions and 3D pressure rendering. 56

5.6 2D driven cavity problem, Re = 1000, Q2/P
disc
1 discretization, CPU

times (s) for direct solver UMFPACK, GMRES without precondition-
ing and GMRES with coupled multigrid, the multiple discretization
multilevel, SIMPLE and LSC preconditioners. Number of the linear
iterations for GMRES methods. 57

5.7 2D backward facing step problem, domain. 58

5.8 2D backward facing step problem, velocity (top) and pressure (bottom). 59

5.9 2D backward facing step problem, streamlines (top) and 3D pressure
rendering (bottom). 59

5.10 2D backward facing step problem, Re = 100, Q2/Q1 discretization,
CPU times (s) for direct solver UMFPACK and GMRES with coupled
multigrid, the multiple discretization multilevel, SIMPLE and LSC
preconditioners. Number of the linear iterations for GMRES methods. 61

5.11 2D stationary flow around cylinder, domain 63

5.12 2D stationary flow around cylinder, velocity (top) and pressure (bot-
tom). 63

5.13 2D stationary flow around cylinder, streamfunction (left) and pressure
isosurfaces (right). 63

5.14 2D stationary flow around cylinder, Re = 20, CPU times (s) for direct
solvers UMFPACK, PARDISO and GMRES with coupled multigrid,
the multiple discretization multilevel and LSC preconditioners. 67

5.15 2D stationary flow around cylinder, Re = 20, number of linear itera-
tions for GMRES with coupled multigrid, the multiple discretization
multilevel and LSC preconditioners. 68

6.1 2D instationary analytic example, Q2/P
disc
1 discretization, Re = 1000,

streamfunctions (left) and pressure (right). 71

Chapter 7: LIST OF FIGURES 85

6.2 2D instationary analytic example, Re = 1000, Q2/P
disc
1 discretiza-

tion, CPU times (s) for direct solver UMFPACK, GMRES without
preconditioning and GMRES with coupled multigrid, the multiple
discretization multilevel and LSC preconditioners. 73

6.3 2D instationary flow around cylinder, Re = 100, (a) - pressure, (b) -
magnitude of velocity and (c) - streamfunctions at t = 0.005. 75

6.4 2D instationary flow around cylinder, Re = 100, ∆t = 0.005, total
time (s) of studying solvers for t = 0 . . . 0.34. 77

6.5 2D instationary flow around cylinder, Re = 100, ∆t = 0.005, t =
0.005, number of linear iterations for GMRES with coupled multigrid,
the multiple discretization multilevel and LSC preconditioners. 78

Bibliography

[1] M. Benzi, G.H. Golub and J. Liesen: Numerical Solution of Saddle Point
Problems, Acta Numerica, Cambridge University Press/ Cambridge, 1-137, 2005

[2] M. Benzi, G.H. Golub: A preconditioner for generalized saddle point problems,
SIAM J. Matrix Anal. Appl., 26: 20-41, 2004

[3] H.C. Elman, D.J. Silvester and A.J. Wathen: Finite Elements and Fast
Iterative Solvers, Numerical Mathematics and Scientific Computation, Oxford
University Press/ Oxford, 2005

[4] H.C. Elman, V.E. Howle, J. Shadid, R. Shutterworth and R. Tumi-

rano: Block Preconditioner Based on Approximate Commutators, SIAM J. Sci.
Comput., 27 (5): 1651-1668, 2006

[5] H.C. Elman, V.E. Howle, J. Shadid, R. Shutterworth and R. Tu-

mirano: A Taxonomy and Comparison of Parallel Block Multi-Level Precon-
ditioners for the Incompressible Navier-Stokes Equations, J. of Computational
Physics, 227: 1790-1808, 2008

[6] V. Girault, P.A. Raviart: Finite Element Methods for Navier-Stokes Equa-
tions - Theory and Algorithms, Volume 5 of Springer Series in Computational
Mathematics, Springer Verlag/ Berlin, 1986

[7] V. John, G. Matthies: Moonmd - a program package based on mapped finite
element methods, Computing and Visualization in Science, 6: 163-170, 2004

[8] V. John, G. Matthies, J. Rang: A comparison of time-
discretization/linearization approaches for the incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg., 195: 5995-6010, 2006

[9] V. John: Numerical Methods for Incompressible Flow Problems, Lecture notes/
Berlin, 2014

[10] A. Segal, M. ur Rehman, C. Vuik: Preconditioners for Incompressible
Navier-Stokes Solvers, Numerical Mathematics, 3(3): 245-275, 2010

[11] S. V. Patankar, D.A. Spalding: A Calculation Procedure for Heat, Mass
and Momentum Transfer in Three Dimensional Parabolic Flows, Int. J. Heat
and Mass Trans., 15: 1787-1806, 1972

[12] R. Temam: Navier-Stokes Equations - Theory and Numerical Analysis, North-
Holland Publishing Company/ Amsterdam - New York - Oxford, 1977

Chapter 7: BIBLIOGRAPHY 87

[13] T.A. Davis: Algorithm 832: UMFPACK, an unsymmetric-pattern multifrontal
method, ACM Trans. Mathematical Software, 30(2): 196-199, 2004

[14] T.A. Davis: A column pre-ordering strategy for the unsymmetric-pattern mul-
tifrontal method, ACM Trans. Mathematical Software, 34(2): 165-195, 2004

[15] T.A. Davis, I.S. Duff: An unsymmetric-pattern multifrontal method for
sparse LU factorization, Technical Report RAL-93-036, Rutherford Appleton
Laboratory, 1993

[16] O. Schenk, A. Waechter, and M. Hagemann: Matching-based Prepro-
cessing Algorithms to the Solution of Saddle-Point Problems in Large-Scale Non-
convex Interior-Point Optimization, Journal of Computational Optimization and
Applications, 36(2-3): 321-341, 2007

[17] O. Schenk, M. Bollhoefer, and R. Roemer: On large-scale diagonaliza-
tion techniques for the Anderson model of localization, SIAM Review 50, 91-112,
2008

[18] M. Luisier, O. Schenk et.al.: Fast Methods for Computing Selected Ele-
ments of the Green’s Function in Massively Parallel Nanoelectronic Device Sim-
ulations, Euro-Par, LNCS 8097, 2013 F. Wolf, B. Mohr, and D. an Ney (Eds.),
Springer-Verlag/ Berlin - Heidelberg, 533-544, 2013

[19] M. Schaf̈er, S. Turek: The benchmark problem “Flow around a cylinder“.
Flow Simulation with HighPerformance, Computers II. Notes on Numerical Fluid
Mechanics, vol. 52, Hirschel EH (ed.). Vieweg: Wiesbaden, 547-566, 1996

[20] A. Ern, J.L. Guermond: Theory and Practice of Finite Elements, Volume
159 of Springer Series in Applied Mathematical Sciences, Springer Verlag/ New
York, 2004

