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1 Introduction

At present, numerical simulations of complex partial differential equations for modern
real-life process are required. The process of simulating these equations by the well known
numerical discretization methods, e.g., finite difference method (FDM), finite element
method (FEM) and finite volume method (FVM), becomes more and more time and com-
putation consuming, due to the complexity of the problems and the need of large storage
of data. For this reason, finding methods that can significantly reduce the computation be-
come a popular issue. Reduce Order Modeling (ROM) is such a method that approximate
the original problems in much lower-dimensional spaces but still with acceptable accuracy.
The Proper Orthogonal Decomposition (POD) method is one of the most popular ROM
methods. It extracts basis functions from a set of data, and approximates these data by
the computed basis functions with much less degrees of freedom. In this thesis, POD will
be exclusively considered.
The convection-diffusion-reaction equations model the concentration of chemical species in
the reaction, diffusion and convection processes. It is well known that the Galerkin finite
element method (G-FEM) fails to solve the convection-dominated problems, due to the
sharp layers of the solution, and hence the Streamline-Upwind Petrov-Galerkin (SUPG)
method, one of the most popular stabilization discretization methods proposed in [2], is
applied.
Numerical research will focus on the study of the factors which may have impact on the
ROMs, e.g., the amount of snapshots taken from the finite element methods, the rank of
the extracted basis functions and different inner products for the computation of basis
functions, etc.
This thesis will be organized as follow. In Chapter 2, the derivation of POD method and
the computation of basis functions will be given as a review. In Chapter 3, the convection-
dominated convection-diffusion-reaction equations are introduced, and some properties of
these equations will be presented. Moreover, the time and space discretization method
applying on this type of equation will be given.
The numerical results will be shown in Chapter 4, in which five examples are studied.
The first one investigate the differences of applying G-FEM and SUPG-FEM on a rel-
atively simple convection-dominated equation and of using different inner products for
POD modes and ROMs.
The second and third examples form a comparison of using POD method for non-convection-
dominated problems and convection-dominated problems, and the fourth example mainly
investigate the impact of using two different inner products on the POD modes and ROMs
for a more complex convetion-dominated problem. The last example fetches the snapshots
from the analytical solution, and to see if this helps to get more accurate results compared
to the case by taking snapshots from SUPG-FEM.
Finally, a summary of the results and an outlook will be given in Chapter 5.
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2 Proper orthogonal decomposition method

The Proper Orthogonal Decomposition (POD) method is one of the most popular tech-
niques for the Reduced Order Modeling (ROM). It has been used in many areas like signal
analysis, fluid dynamics, image processing, and data compression, etc. The basic idea of
this method is to extract basis functions from a given set of data based on the least squares
method. This set of basis functions represents the given data in a good way and therefore
can be used for simulations where one expects to get similar data but using much less
degrees of freedom. The use of these basis functions in order to run cheap simulations
is called Reduced Order Modeling. Since the number of these basis functions is usually
much smaller than the dimension of the original data, which usually could be obtained by
solving the partial differential equations using the finite element method or from experi-
mental data. One can approximate the solutions in the new simulations with much fewer
number of degrees of freedom. By using the POD method, the reduced order model with
best approximation accuracy and very few degrees of freedom can be achieved.

2.1 The space-continuous case

For given n ∈ N, let
0 = t0 < t1 < · · · < tn = T

denote the discrete grid of time interval [0, T ], and ∆ti = ti − ti−1, i = 1, . . . , n. For the
sake of simplicity, it is assumed that the snapshots are computed at equidistant time steps
using the finite element method, i.e., ∆t1 = · · · = ∆tn. Consider a function u(t,x) :
[0, T ] × Ω → Rd, take u1, , u2, . . . , uM as discrete allocation of u(t,x) at discrete times
t1, t2, . . . , tM in [0, T ] (so-called ’snapshots’), i.e.,

ui = ui (x) = u(ti,x), (ti,x) ∈ [0, T ]×Ω

and define
V h = span{u1, u2, . . . , uM}.

V h is called the ensemble of snapshots {ui}, and assume dimV h = D, and it is assumed
that at least one of the snapshots is nonzero.
The goal of the POD method is to find the basis functions {ϕl (x) : Ω → Rd}Ll=1, for any
L ∈ {1, . . . , D}, that represent the original snapshot in the best possible way. These basis
functions span a subspace of the original space of the snapshots V h. In this subspace,
the mean square error between the elements ui and its orthogonal projection, which is
represented by the basis functions {ϕl (x)}Ll=1, is minimized, which gives the best approx-
imation

arg min
ϕ1,...,ϕL

M∑
m=1

τ

∣∣∣∣∣
∣∣∣∣∣u (tm,x)−

L∑
l=1

αl (tm)ϕl (x)

∣∣∣∣∣
∣∣∣∣∣
2

(2.1)
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2 Proper orthogonal decomposition method

subject to

(ϕi, ϕj) =

{
1, i = j,

0, i 6= j,
(2.2)

where τ is the equidistant time step, and {αl (t) : [0, T ]→ R}Ll=1 are the coefficients with
respect to time.
Note that (2.1) is the composite trapezoidal approximation with modification of the inte-
gral

arg min
ϕ1,...,ϕL

∫ T

0

∣∣∣∣∣
∣∣∣∣∣u (tm,x)−

L∑
l=1

αl (tm)ϕl (x)

∣∣∣∣∣
∣∣∣∣∣
2

.

It is assumed that the norm is induced by suitable inner product (·, ·), and the basis
functions {ϕl}Ll=1 are orthonormal with respect to this inner product.

For L = D, {ϕl}Dl=1 is an orthonormal basis of V h. From Hilbert space theory and
Parseval’s identity, every element um can be represented as

um =
D∑
l=1

(um, ϕl)ϕl. (2.3)

Hence we can represent αl (tm) as

αl (tm) = (um, ϕl) . (2.4)

Inserting expression (2.4) into (2.1), and using the orthonormality of {ϕl}Ll=1, problem
(2.1) can be reformulated as

arg min
ϕ1,...,ϕL

M∑
m=1

τ

(
um −

L∑
l=1

(um, ϕl)ϕl, um −
L∑
l=1

(um, ϕl)ϕl

)

= arg min
ϕ1,...,ϕL

M∑
m=1

τ

[
‖um‖2 −

(
2um

L∑
l=1

(um, ϕl)ϕl

)
+

L∑
l=1

(um, ϕl)
2

]

= arg min
ϕ1,...,ϕL

M∑
m=1

τ

[
‖um‖2 −

L∑
l=1

(um, ϕl)
2

]
.

(2.5)

Since τ is a constant, the result of (2.5) does not depend on τ . For simplifying, without
loss of generality, it is assumed that τ = 1.
Since the first term of (2.5) is a certain value which is independent of ϕl, problem (2.1)
is equivalent to maximizing the second term. To solve this optimization problem, the
method of Lagrange multipliers is considered as a useful strategy to find the local maxima
of the function

M∑
m=1

L∑
l=1

(um, ϕl)
2 .

The Lagrange functional is defined as

Λ (ϕ1, . . . , ϕL;λ1, . . . , λL) =

M∑
m=1

L∑
l=1

(um, ϕl)
2 −

L∑
l=1

λl[(ϕl, ϕl)− 1].
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2 Proper orthogonal decomposition method

The maxima of
∑M

m=1

∑L
l=1 (um, ϕl)

2 for the original constrained problem must be ob-
tained at the stationary points, i.e., it holds{

∂ϕl
Λ = 0,

∂λlΛ = 0.
(2.6)

The first condition of Eq.(2.6) is equivalent to

2
M∑
m=1

(um, ϕl) ·
∂(um, ϕl)

∂ϕl
− 2λl

∂(ϕl, ϕl)

∂ϕl
= 0.

The term ∂(um,ϕl)
∂ϕl

is the functional derivative of F = (um, ϕl) with respect to the functions
ϕl. To calculate it, the definition of the functional derivative is introduced.

Definition 2.1.1. Given a manifold M representing functions ρ and a functional F de-
fined as
F : M → R or F : M → C. The functional derivative is defined by∫

δF

δρ
(x)φ(x)dx = lim

ε→0

F (ρ+ εφ)− F (ρ)

ε

=

[
d

dε
F (ρ+ εφ)

]
ε=0

,

where φ is an arbitrary function, and the quantity εφ is called the variation of ρ.

For more details about the definition of the functional derivative, see [17].

Using the definition of functional analysis, one gets

∂(um, ϕl)

∂ϕl
= (um, v), ∀v ∈ V h.

By the similar calculation, it holds

∂(ϕl, ϕl)

∂ϕl
= (ϕl, v), ∀v ∈ V h.

Since v is independent of tm, the first condition of Eq.(2.6) can be reformulated as follows

M∑
m=1

(um, ϕl)(um, v) =

(
M∑
m=1

(um, ϕ)um, v

)
= λl(ϕl, v)

for all v ∈ V h. It is equivalent to

M∑
m=1

(um, ϕl)um = λlϕl, l = 1, . . . , L. (2.7)

For more details, see, e.g., [3][22].
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2 Proper orthogonal decomposition method

2.2 The space-discrete case

It is assumed that the snapshots are finite element solutions of partial differential equa-
tions, hence the function u (tm,x) can be written in discrete form by a finite number of
degrees of freedom. For convenience, in this section and also in the following chapter, the
dimension of the snapshot space will still be denoted as D, which is in general different
from the dimension D defined in the continuous case above. Let {xn}Nn=1 be the spatial
nodes of the finite element method, {ψn (x)}Nn=1 be the nodal basis with ψn (xk) = δnk.
Then we can represent ui and ϕl in the form

ui =

N∑
n=1

u (ti,xn)ψn (x) ,

ϕl =

N∑
n=1

ϕl (xn)ψn (x) .

(2.8)

By the practical requirements, it will be assumed that L 6 D and M � N .
Inserting (2.8) into (2.7) gives

M∑
m=1

(um, ϕl)um

=
M∑
m=1

(
um

TSϕl
)
um

T ~ψ

=UTUSϕl ~ψ

=λlϕl ~ψ

(2.9)

where ~ψ = (ψ1, · · · , ψN ) denotes the vector form of the local basis. For a function um ∈ V h,
um denotes the vector of its coefficients with respect to the basis {ψn}Nn=1 , and the same
for ϕl. The matrix S ∈ RN×N with Skn = (ψn, ψk) is obviously symmetric and positive
definite, and the matrix U is used to collect the snapshot data of u(t,x) on the nodes
{xn}Nn=1 at time t1, . . . , tM

U =


u1

1 u1
2 · · · u1

M

u2
1 u2

2 · · · u2
M

...
...

...
...

uN1 uN2 · · · uNM

 .

The matrix U ∈ RN×M is called snapshot matrix with (U)nm = u(tm,xn) = unm.
From the calculation of (2.9), the discrete eigenvalue problem can be obtained as

UUTSϕl = λlϕl, l = 1, . . . , L. (2.10)

Multiplying both sides of (2.10) from left by S1/2

S1/2UUTSϕl = λlS
1/2ϕl,

by the symmetry of S, it can be easily seen that the original eigenvalue problem (2.10)
can be reformulated as a new eigenvalue problem with the matrix S1/2UUTST/2 since

S1/2UUTST/2S1/2ϕl = λlS
1/2ϕl.
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2 Proper orthogonal decomposition method

Note that S1/2UUTST/2 = (S1/2U)(S1/2U)T ∈ RN×N is a symmetric matrix satisfying

zTS1/2UUTST/2z = ((S1/2U)T z)T ((S1/2U)T z) = ‖(S1/2U)T z‖22 > 0, ∀z ∈ RN .

where ‖ · ‖2 is the Euclidean norm. Hence it is positive semi-definite. By the properties
of the semi-definite matrix, it is known that all eigenvalues λ1 > λ2 > . . . > λL are real
and non-negative.

In practice, solving the eigenvalue problem (2.10) is in general computationally expensive
since N = dim(UUTS) is usually very large, and also this matrix is quite dense. It is
known that the eigenvalues of UUTS are precisely the real numbers λ that satisfy the
characteristic equation

det(UUTS − λIN ) = 0.

By the property of the determinant and Sylvester’s determinant theorem, it holds

det(UUTS − IN ) =λN det(
1

λ
UTSU − IM )

=λN−M det(UTSU − λIM ).

Hence the characteristic function of the matrix UTSU ∈ RM×M is the same as the matrix
UUTS, which implies that these two matrices have same eigenvalues. It is more economical
to solve the eigenvalue problem with matrix UTSU instead of UUTS as normally M � N .

To find the relation between the orthonormal eigenvectors of the two matrices UTSU
and UUTS, the method of singular value decomposition(SVD) is considered.

Theorem 2.2.1. (The singular value decomposition (SVD)) If A is a real m-by-n matrix,
and assume the rank of A is r, then there exist orthogonal matrices

W = [w1, . . . , wm] ∈ Rm×m and V = [v1, . . . , vn] ∈ Rn×n

such that
A = WΣV T ∈ Rm×n, p = min{m,n}

where

Σ =

(
S 0
0 0

)
S = diag(σ1, . . . , σr), σ1 ≥ σ2 ≥ . . . σr ≥ σr+1 = · · · = σp = 0, where {σi} are the square
roots of the eigenvlues of ATA.

Proof. The proof can be found in [15], pp 164-176.

For the SVD method, σi =
√
λi are called the singular values of A, where λi are the

eigenvalues (which are non-negative) of ATA. And the subscript r is the index of the
smallest positive eigenvalue of ATA. The columns of W and V are called the left and
right singular vectors of A corresponding to the eigenvalues σ1, σ2, . . . , σp, respectively.
For more details about this method, it is referred to [15][16].

Now consider again the matrix UUTS. By applying the SVD method, it holds

S1/2U = R

(
G 0
0 0

)
KT
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2 Proper orthogonal decomposition method

where G = diag{σ1, . . . , σD} ∈ RD×D is a diagonal matrix with decreasing positive sin-
gular values {σi}, i = 1, . . . , D, and R ∈ RN×N with columns {ri}Ni=1 and K ∈ RM×M
with columns {ki}Mi=1 are orthogonal matrices which consist of orthogonal eigenvectors

of S1/2UUTST/2 and UTSU corresponding to the eigenvalues λ1, λ2, . . . , λp, respectively.
These singular values {σi} are the square roots of non-zero eigenvalues of both UUTS and
UTSU . Moreover, it holds

ST/2Uki = σiri, UTS1/2ri = σiki for i = 1, . . . , D. (2.11)

On one hand, the SVD method guarantees the existences of the singular values {σi}.
On the other hand, it shows that the solutions ϕ1, ϕ2, . . . , ϕL of the optimization problem
are given by the first L columns of the matrix K, since

UTSU = K

(
G 0
0 0

)
RTR

(
G 0
0 0

)
KT = K

(
Q 0
0 0

)
KT

⇒
S1/2UUTST/2K = K

(
Q 0
0 0

)
where Q = diag{λ1, . . . , λD}.
In some literatures (e.g., [4]), the eigenvalues of the matrix UTSU are referred to be ”en-
ergy”, and the corresponding eigenvectors are called as proper orthogonal modes. Consider
the Frobenius norm of ST/2U , which is defined as

‖ST/2U‖F =

√√√√ N∑
i=1

N∑
j=1

x2
ij , (2.12)

where xij represents the element of matrix ST/2U at the i-th row and j-th column. One
can regard the Forbenius norm as an indication of the ”information” contained by the
matrix ST/2U . Furthermore, from the properties of the trace of the square matrix, one
gets the relations

tr(UTSU) =
∑
i

λi

tr(UTSU) = tr(ST/2UUTS1/2) =
N∑
i=1

N∑
j=1

x2
ij .

(2.13)

Inserting (2.13) into (2.12), it holds

‖ST/2U‖F =

√√√√ N∑
i=1

λi.

The relation between the ”energy” of the matrix and the eigenvalues, which is correspond-
ing to the proper orthogonal modes, can be seen as a hint of the choice of the optimal
number L of the POD modes, since the goal is to gain most information of the data matrix
by using the least number of POD modes. For this reason, one defines

E(l) =

√∑L
i=1 λi∑N
i=1 λi

(2.14)

as an indication of the magnitude of the preserved ”information” by POD modes.
Moreover, for the relation between the errors of the snapshots and the POD modeling and
the eigenvalues, the following proposition is introduced.
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2 Proper orthogonal decomposition method

Proposition 2.2.1. Consider

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣u (tm,x)−

L∑
l=1

αl (tm)ϕl (x)

∣∣∣∣∣
∣∣∣∣∣
2

. (2.15)

The sum of the error between the snapshots and the POD modelling is

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣u (tm,x)−

L∑
l=1

αl (tm)ϕl (x)

∣∣∣∣∣
∣∣∣∣∣
2

=
D∑

l=L+1

λi. (2.16)

Proof. The basic idea of proof could be found in [22] for the canonical inner product in
Rd. Here, the proof for arbitrary inner product will be given.

λl
(2.2)
= λl(ϕl, ϕl)

(2.7)
=

(
M∑
m=1

(um, ϕl)um, ϕl

)
=

M∑
m=1

(um, ϕl)(um, ϕl)

=
M∑
m=1

(um, ϕl)
2.

(2.17)

Inserting (2.3), (2.4) into (2.15), and using the orthonormality of {ϕi}Dl=1 yields

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣u (tm,x)−

L∑
l=1

αl (tm)ϕl (x)

∣∣∣∣∣
∣∣∣∣∣
2

=

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣

D∑
l=L+1

(um, ϕl)ϕl

∣∣∣∣∣
∣∣∣∣∣
2

=

M∑
m=1

D∑
l=L+1

(um, ϕl)
2 interchange of finite sums

=

D∑
l=L+1

M∑
m=1

(um, ϕl)
2

(2.17)
=

D∑
l=L+1

λl.

As it is already mentioned, the matrices UUTS and UTSU share the same eigenvalues
λ1, . . . , λD. For the sake of computational efficiency, it is generally considered to solve the
eigenvalue problems with the matrix UTSU in lieu of UUTS. The approach of computing
the eigenvalues of the matrix UTSU and obtain the eigenvectors ϕl is called method of
snapshots, it was first proposed in [20], see also [3].
By (2.4) and (2.8), it follows that

αl = UTSϕl ∈ RM . (2.18)

Multiplying (2.10) from left by the matrix UTS, and inserting Eq.(2.18) into it, then the
new eigenvalue problem is obtained

UTSUαl = λlαl, UTSU ∈ RM×M . (2.19)
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2 Proper orthogonal decomposition method

One can compute the eigenvectors {αl}Ll=1 by solving the eigenvalue problem (2.19). It
remains to induce the eigenvectors {ϕl}Ll=1 of the original eigenvalue problem (2.10) cor-

responding to {αl}Ll=1.
Multiplying (2.19) from left by U leads to

UUTSUαl = λlUαl.

It can be seen as a eigenvalue problem which has the same matrix UUTS as (2.10) but
with different eigenvectors.
Considering the second constrained condition of Lagrangian function

(ϕl, ϕl) = 1

which implies
‖ϕl‖ = 1, l = 1, . . . , L,

it is natural to set

ϕl =
1

‖Uαl‖
Uαl

where ‖Uαl‖ = (αTl U
TSUαl)

1/2.
Multiplying (2.19) from left by αTl leads to

αTl U
TSUαl = λlα

T
l αl.

It follows that ‖Uαl‖ = λ
1/2
l (αTl αl)

1/2. Hence,

ϕl =
1

‖Uαl‖
Uαl =

1

σl(α
T
l αl)

1/2
Uαl (2.20)

with σl =
√
λl.

Inserting (2.20) and (2.19) into (2.10), one gets

UUTSϕl =
1

σl(α
T
l αl)

1/2
U(UTSUαl) = λl

1

σl(α
T
l αl)

1/2
Uαl = λlϕl.

It shows that {ϕl}Ll=1 given in (2.20) indeed satisfy the original eigenvalue.

2.3 Applying the POD method on the fluctuations of functions

In practice, when applying the POD method to the equations with stationary Dirichlet
boundary conditions

u(t,x) = b(x) on[0, T ]× ∂Ω, for a certain value b(x) ∈ Rd,

often the fluctuations ū(t,x) of the function u(t,x) instead of the function u(t,x) itself is
used, for ease of observation. For this reason, firstly, one has to define the mean value of
the snapshots um = um (x) = u(tm,x).

u(x) =
1

M

M∑
m=1

um(x). (2.21)

The fluctuations are obtained by subtracting the mean value ū(x) from the snapshots
um

ûm = um − u(x), m = 1, . . . ,M,

12



2 Proper orthogonal decomposition method

and the ensemble of the fluctuations of the snapshots is denoted as

V̂ h = span{û1, û2, . . . , ûM}.

By this means, a snapshot matrix with respect to the fluctuations ū(t,x), which possess
homogeneous Dirichlet boundary conditions, is obtained. And the formula for ROM from
fluctuations can be represented as

uL = ū(x) +
L∑
l=1

α̂l(t)ϕ̂l(x).

Similarly to the case of u(t,x), one gets the objective basis functions {ϕ̂l (x) : Ω → Rd}Ll=1

by solving the optimization problem

arg min
ϕ̂1,...,ϕ̂L

M∑
m=1

∥∥∥∥∥ûm −
L∑
l=1

α̂l(tm)ϕ̂l(x)

∥∥∥∥∥
2

.

From which comes again the eigenvalue problem

Û ÛTSϕ̂l = λ′lϕ̂l, l = 1, . . . , L, (2.22)

where Û ∈ RN×M is the snapshot matrix of the fluctuations with (Û)nm = û(tm,xn).
For saving the computations, in practice, one solves the eigenvalue problems

ÛTSÛα̂l = λ′lα̂l, ÛTSÛ ∈ RM×M (2.23)

instead. Thereby, the eigenvectors {ϕ̂l}Ll=1 of the eigenvalue problem (2.23) are achieved
with the relation

ϕ̂l =
Û α̂l

‖Û α̂l‖
, l = 1, . . . , L, (2.24)

and hence the wanted basis function is obtained

ϕ̂l =
N∑
n=1

ϕ̂l(xn)ψn(x),

where ϕ̂l = (ϕ̂l(x1), ϕ̂l(x2), . . . , ϕ̂l(xN ))T denotes the vector of the coefficients of ϕ̂l with

respect to the nodal basis {ψn}Nn=1.
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3 Scalar convection-diffusion-reaction
equations

In this thesis, we discuss the applications of the POD method introduced in Chapter 2 on
scalar convection-dominated convection-diffusion-reaction equations.

3.1 The model problem

The convection-diffusion-reaction equation, as the name suggests, consists of the convec-
tion, diffusion, and reaction terms. It describes physical phenomena, which are due to the
reaction, diffusion and convection processes of a certain chemical species, and models the
concentration of these chemical species in the convection-diffusion-reaction process, see
[6].

Definition 3.1.1. General form of scalar convection-diffusion-reaction equations with ho-
mogeneous Dirichlet boundary condition.

Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a bounded domain with Lipschitz boundary ∂Ω. A time-
dependent convection-diffusion-reaction equation with homogeneous Dirichlet boundary
condition is given by

∂tu− ε∆u+ b · ∇u+ cu = f in (0, T ]× Ω,

u = 0 on [0, T ]× ∂Ω,

u(0,x) = u0(x) in Ω,

(3.1)

where ε > 0 is a constant diffusion coefficient, u0(x) is a given initial condition. The
functions b(t,x) and c(t,x) denote the given convection and reaction field, respectively.
It is assumed that b, c ∈ L2((0, T ); L∞).

Remark 3.1.1. The convection-dominated problem. As its name implies, the convection-
dominated problems arise in physical processes where convection essentially dominates
diffusion, i.e., ε � ‖b‖. It appears in many situations, e.g., from nature or some tech-
nical applications. The solutions of the convection-dominated problem generally possess
very small but important structures (or scales), such as the sharp layers, especially at
boundaries. Most of these small structures of the solutions are not resolved by the stan-
dard numerical methods, since the grids of the domain in common use for these numerical
methods are not fine enough to represent these small structures, hence special methods
are needed. More discussions can be found in [9][21] /

3.2 The weak formulation

Remark 3.2.1. Motivation. In general, one cannot expect a classical solution of (3.1),
since for the existence of a classical solution, the parameters have to be sufficiently smooth,

14



3 Scalar convection-diffusion-reaction equations

and in higher dimensions, the domain has to satisfy certain regularity conditions. Such
smoothness and regularity conditions are not satiesfied in applications. In the weak for-
mulation, such regularity assumptions can be reduced by integration and the transfer of
derivatives to the test function. For problem (3.1), due to the Dirichlet boundary con-
dition, the integral on the boundaries vanish, and one can search for the weak solutions
in the ansatz space H1

0 (Ω) and the same for the test space. Besides, the finite element
methods, which will be used for discretizting the partial differential equations, are based
on a weak formulation. For more details, see [8][9]. /

Consider problem (3.1). To get the weak form, one multiplies the differential equation
with an appropriate function v(x), with v = 0 on ∂Ω, integrating the resulting equation
on Ω and using integration by parts in space yields∫

Ω
(∂tu− ε∆u+ b · ∇u+ cu)(x)v(x)dx

=

∫
Ω

(∂tu · v)(x)dx−
∫
∂Ω
−ε(∇u · n)v(s)ds +

∫
Ω

(ε∇u · ∇v + (b · ∇u+ cu)v)(x)dx

=

∫
Ω

(∂tu · v + ε∇u · ∇v + (b · ∇u+ cu)v)(x)dx

=

∫
Ω
f(x)v(x)dx.

Here, n is the outward pointing unit normal vector on ∂Ω.

Definition 3.2.1. Weak formulation of (3.1). Let b,c ∈ L∞(Ω), f ∈ L2(Ω), and V =
H1

0 (Ω). Then, the weak form of (3.1) reads as follows: Find u ∈ V such that

(∂tu, v) + (ε∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v) ∀v ∈ V (3.2)

with the initial condition u(0,x) = u0(x), and (·, ·) denotes the inner product in L2(Ω). A
solution of (3.2) is called variational or weak solution. The space, in which the solution
is searched, is called solution space. The functions v(x) are called test functions, and the
space V is the test space.

To discuss the existence and uniqueness of the solution of the weak problem (3.2), firstly
consider the continuous bilinear form a(·, ·) : V × V → R, V = H1

0 (Ω),

a(u, v) =

∫
Ω

(ε∇u · ∇v + (b · ∇u+ cu)v)(x)dx. (3.3)

Proposition 3.2.1. The coercivity of (3.3). Let b ∈ C1(Ω̄), c ∈ C(Ω̄). Assume there is
a certain constant c0 such that 0 < c0 6 (−1

2∇·b + c)(t,x). Then, the bilinear form (3.3)
is coercive.

Proof. Choose the test function u = v ∈ V , insert it into (3.3)

a(v, v) =

∫
Ω

(ε∇v · ∇v + (b · ∇v + cv)v)(x)dx

Consider the term
∫

Ω b(x) · ∇v(x)v(x)dx, applying integration by parts with the homo-
geneous Dirichlet condition and using the product chain rule yields∫

Ω
b(x) · ∇v(x)v(x)dx =−

∫
Ω
∇ · (b(x)v(x))v(x)dx

=−
∫

Ω
(∇ · b(x))v(x)v(x)dx−

∫
Ω

b(x) · ∇v(x)v(x)dx,

15



3 Scalar convection-diffusion-reaction equations

which implies ∫
Ω

b(x) · ∇v(x)v(x)dx = −1

2

∫
Ω

(∇ · b(x))v(x)v(x)d(x).

Hence

a(v, v) =

∫
Ω

(
ε(∇v)2 +

(
−∇ · b

2
+ c

)
v2

)
(x)dx

By the assumption that

0 < c0 6 (−1

2
∇ · b + c)(t,x),

one obtains
a(v, v) > ε‖v‖2L2(Ω) = ε‖v‖2V , ∀v ∈ V, (3.4)

and this inequality is equivalent to the coercivity of a(·, ·).

Remark 3.2.2. Weaker assumptions of convection and reaction field b and c. The as-
sumptions in Proposition 3.2.1 for b and c can be relaxed by b, ∇b, c ∈  L∞(Ω), since
under these assumptions all the integrals are still well defined. /

For more details about the properties of a(·, ·), it is referred to [9].

Corollary 3.2.1. Existence and uniqueness of a solution of the weak problem (3.2). Let
the assumptions of Proposition.3.2.1 be satisfied. Then, (3.2) has a unique solution.

Proof. The proof of this corollary is similar to the proof of existence and uniqueness of
the solution for the time-dependent Navier-Stokes equations in [10], and for the general
linear second-order parabolic equations in [18].
Firstly consider the weak form of the convection-diffusion-reaction equations (3.2) in finite-
dimensional space. Since V = H1

0 (Ω), it admits an orthonormal basis {Φi}i>1. Define the
finite-dimensional subspace

V N = span{Φj}Nj=1 ⊂ V

and apply the Galerkin method to (3.2) in V N yields the approximate problems

(∂tu
N , vN ) + (ε∇uN ,∇vN ) + (b · ∇uN , vN ) + (cuN , vN ) = (f, vN ) ∀vN ∈ V N , (3.5)

and the initial condition uN (0) is the orthogonal projection in L2(Ω) of u0 on V N . It is
clear that (3.5) holds in particular for each basis functions Φj .
By the property of orthonormal basis, uN can be represented as

uN (t) =
N∑
j=1

αNj (t)Φj (3.6)

Inserting (3.6) into (3.5), one obtains the system of ordinary differential equations{
M d

dtα
N + aαN = F,

MαN (0) = α0,
(3.7)

with
M := (Φi,Φj), aij := (ε∇Φi,∇Φj) + (b · ∇Φi + cΦi,Φj),

16



3 Scalar convection-diffusion-reaction equations

αN = {αNj }Nj=1, Fj := (f,Φj), α0,j := (u0,Φj), i, j = 1, . . . , N.

By the Carathéodory theorem, there is a local solution αN ∈ H1(0, t) with 0 6 tn 6 T ,
i.e., uN ∈ H1(0, t;V ).
Secondly, the global existence is shown by proving the boundedness. Choosing uN (t) in
(3.5) as test function for arbitrary t ∈ (0, T ) one obtains(

d

dt
uN (t), uN (t)

)
+ a(uN (t), uN (t)) = (f, uN (t)). (3.8)

Using the product chain rule for first term, inserting (3.4) and Young’s inequality yields

1

2

d

dt
‖uN (t)‖2L2(Ω) + ε‖uN (t)‖2V 6

1

2ε
‖f‖2L2(Ω) +

ε

2
‖uN (t)‖2L2(Ω),

which gives
d

dt
‖uN (t)‖2L2(Ω) + ε‖uN (t)‖2V 6

1

ε
‖f‖2L2(Ω). (3.9)

Integrating (3.9) in [0, t] , t ∈ (0, T ] yields

‖uN (t)‖2L2(Ω) + ε

∫ t

0
‖uN (t)‖2V dτ 6

∫ t

0
‖u0‖2L2(Ω)dτ +

1

ε
‖f‖2L2(Ω)dτ. (3.10)

Thus uN is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V ), and the local existence of uN can
be extended to t = T .
Next step is to choose a subsequence {uNl}Nl>1 of {uN}N>1 such that

uNl
∗
⇀ u in L∞(0, T ;L2(Ω)),

uNl ⇀ u in L2(0, T ;V ).

as Nl →∞. Here, the notations
∗
⇀ and ⇀ mean weakly∗ convergent and weakly conver-

gent, respectively (see, e.g., [10], pp. 270-271).
This implies that there exits u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;V ) such that∫ T

0

(
uNl(t), φ(t)

)
⇀

∫ T

0
(u(t), φ(t)) ∀φ ∈ L∞(0, T ;L2(Ω)),

∫ T

0

(
∇uNl(t), ψ(t)

)
⇀

∫ T

0
(∇u(t), ψ(t)) ∀ψ ∈ L2(0, T ;L2(Ω))

as Nl →∞.
Let Ψ(t) ∈ C1

0 ((0, T )) and arbitrary v ∈ V , for the first term of (3.5), multiplying this
term by Ψ(t), apply integration by parts and with the property of weak convergence

lim
Nl→∞

∫ T

0

(
∂tu

Nl(t), v
)

Ψ(t)dt = − lim
Nl→∞

∫ T

0

(
uNl(t), v

) d
dt

Ψ(t)dt

= −
∫ T

0
(u(t), v)

d

dt
Ψ(t)dt

=

∫ T

0
(∂tu(t), v) Ψ(t)dt.

(3.11)
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For the rest terms at the left hand side of (3.5), let Ψ(t) ∈ C1
0 ([0, T ]) and arbitrary v ∈ V ,

it holds

lim
Nl→∞

∫ T

0
a(uNl , v)Ψ(t) = lim

Nl→∞

∫ T

0

(
(ε∇uNl ,∇v) + (b · ∇uNl + cuNl)

)
Ψ(t)dt

=

∫ T

0
((ε∇u,∇v) + (b · ∇u+ cu)) Ψ(t)dt

=

∫ T

0
a(u, v).

(3.12)

Next step is to show the satisfaction of the initial condition. The proof is quite similar to
the proof of Lemma 6.18 in [10]. Choose Ψ(t) = T−t

T , and arbitrary vNl ∈ V N . By the
fundamental theorem of calculus and using the product chain rule yields

−(u(0), v) =− lim
Nl→∞

(
u(0), vNl

)
= lim
Nl→∞

(
u(t), vNl

) T − t
T

∣∣∣∣T
t=0

= lim
Nl→∞

∫ T

0

d

dt

(
(u(t), vNl)

T − t
T

)
dt

= lim
Nl→∞

(∫ T

0
(∂tu(t), vNl)

T − t
T

dt− 1

T

∫ T

0

(
u(t), vNl

)
dt

)
.

(3.13)

From Eq.(3.2), one obtains that(
∂tu(t), vNl

)
=
(
f, vNl

)
− a(u(t), vNl). (3.14)

As (3.5) is satisfied for each Φj , it is also satisfied for vNl

(f, vNl) = (∂tu
Nl , vNl) + a(uNl , vNl). (3.15)

Inserting (3.14) and (3.15) into (3.13) yields

− lim
Nl→∞

(
u(0), vNl

)
= lim

Nl→∞

(∫ T

0

(
(f, vNl)− a(u, vNl)

) T − t
T

dt− 1

T

∫ T

0
(u(t), vNl)dt

)
= lim
Nl→∞

∫ T

0
(∂tu

Nl , vNl)
T − t
T

dt+ lim
Nl→∞

∫ T

0
a(uNl − u, vNl)

T − t
T

dt

− 1

T
lim

Nl→∞

∫ T

0
(u(t), vNl)dt.

(3.16)

Consider now Nl →∞. By (3.12) it follows that the term

lim
Nl→∞

∫ T

0
a(uNl − u, vNl)

T − t
T

dt

vanishes. Applying integration by parts in time and (3.11) to the rest terms of the right
hand side of Equation (3.16) yields

−(u(0), v) =− lim
Nl→∞

(u(0), vNl)

= lim
Nl→∞

(uNl , vNl)
T − t
T

∣∣∣∣T
t=0

+
1

T
lim

Nl→∞

∫ T

0

(
(uNl , vNl)− (u, vNl)

)
dt

=− lim
Nl→∞

(uNl(0), vNl).
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Hence the limit function u(t) satisfies the initial condition.
It remains to check the regularity of the time derivative term ∂tu(t). Define

Au ∈ V ′, (Au, v) = a(u, v),

from (3.2) one obtains

(∂tu(t), v) + (Au, v) = (f, v), ∀v ∈ V.

Since Au ∈ L2(0, T ;V ′) when u ∈ L2(0, T ;V ) (see, e.g., [6], pp 156-159), and by hypothesis
f ∈ L2(0, T ;V ′), ∂tu ∈ L2(0, T ;V ′).
Applying the same approach of the derivation of (3.10), the following inequality holds for
u(t)

‖u(t)‖2L2(Ω) + ε

∫ t

0
‖u(t)‖2V dτ 6

∫ t

0
‖u0‖2L2(Ω)dτ +

1

ε

∫ T

0
‖f‖2L2(Ω)dτ (3.17)

and the uniqueness results from (3.17), since if there exits another solution v, assume
w = u − v, it is clear that w also satisfies (3.2) with w(0) = 0 and f = 0 in the sense of
distribution. Inserting w into (3.17) yields

‖w(t)‖2L2(Ω) + ε

∫ t

0
‖w(t)‖2V dτ 6 0, (3.18)

This implies ‖w‖L∞(0,T ;L2(Ω)) = 0 and ‖w‖L2(0,T ;V ) = 0. Hence there exits unique solution
u(t) ∈ L2(0, T ;V ) ∩ L∞(0, T ;L2(Ω)).

3.3 The Galerkin method

Remark 3.3.1. The discretization of (3.2). Since the weak formulation (3.2) is time-
dependent, the discretizations are needed both for time and space. In this thesis, the
method of Rothe, which applies first the discretization in time and then in space, is
considered. /

Let t1, . . . , tn represents the discrete times in [0, T ], where t0 = 0 and tn = T . Let
uk be the solution at time tk, k = 1, 2, . . . , n. For simplifying, the equidistant time step
∆t = tk − tk−1 will be assumed.
Since the diffusive term may cause a stiff problem, the explicit Euler method becomes
very insufficient to achieve stable solutions unless very small time steps ∆t are applied,
which is impractical. For the reasons of easy implementation and the good stability of
the solutions, the one-step backward Euler scheme is considered to discretize the problem
(3.2) in time. It is given as follows: For k=1,2,. . . , find uk ∈ V such that ∀v ∈ V

(uk, v) + ∆t[(ε∇uk,∇v) + (bk · ∇uk + cuk, v)] = (uk−1, v) + ∆t(fk, v). (3.19)

Remark 3.3.2. The Galerkin finite element formulation. Let {T h} be a family of reg-
ular triangulations consisting of mesh cells {K}. For simplifying, the triangulations are
assumed to be quasi-uniform, and h is the diameter of all mesh cells K. Let V h ⊂ V
be conforming finite element space. Then the Galerkin finite element formulation of
problem (3.19), which replaces the space V in (3.19) by V h, reads as follows: Find
uhk ∈ V h : [0, T ]→ V h, h = 1, 2, . . . such that

(uhk − uhk−1, v
h) + ∆t[(ε∇uhk ,∇vh) + (bk · ∇uhk + cuhk , v

h)] = ∆t(fk, v
h) (3.20)

for all vh ∈ V h and uh(0,x) = uh0(x) ∈ V h, where uh(0,x) is an approximation of u(0,x),
for example, an appropriate interpolation or a projection. /
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3 Scalar convection-diffusion-reaction equations

3.4 The Streamline-Upwind Petrov-Galerkin (SUPG) method

It is well known that for small ε, the Galerkin method fails to compute useful numerical
solutions, since the computed solutions are spoiled globally with spurious oscillations.
As it is mentioned in Remark 3.2.1, the solution usually possesses structures like layers,
particularly at boundaries. Those structures, which are not resolved by the Galerkin
finite element space, are important. For more discussions, see e.g., [9]. For this reason,
one considers the Streamline-Upwind Petrov-Galerkin (SUPG) method.

Remark 3.4.1. Introduction of the Streamline-Upwind Petrov-Galerkin (SUPG) method.
The Streamline-Upwind Petrov-Galerkin (SUPG) method is a very popular stabilized finite
element method, which is proposed in [2]. It combines the ideas of using the Galerkin
discretization and the minimization of the residual. /

Definition 3.4.1. Streamline-Upwind Petrov-Galerkin (SUPG) method.
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element method has the form: Find
uh ∈ V h, such that

ah(uh, vh) = fh(vh) ∀vh ∈ V h (3.21)

with

ah(v, w) := a(v, w) +
∑
K∈T

∫
K
δK (−ε∆v + b · ∇v + cv) (b · ∇w)(x)dx,

fh(w) := (f, w) +
∑
K∈T

∫
K
δKf(b · ∇w)(x)dx.

Here, {δK} are user-chosen weights, which are called stabilization parameters or SUPG
parameters.

Definition 3.4.2. SUPG (SD) norm. Let

−1

2
∇ · b(x) + c(x) > c0 > 0.

be satisfied. For ∀v ∈ V h, the SUPG inner product is defined by

(u, v)SD = ε(∇u,∇v) + c(u, v) +
∑
K∈T h

(δ
1/2
K b · ∇u, δ1/2

K b · ∇v) (3.22)

and the corresponding SUPG norm by

|‖v|‖SUPG :=

ε|v|21 + c0‖v‖20 +
∑
K∈T h

‖δ1/2
k (b · ∇v)‖20,K

1/2

, (3.23)

where ‖ · ‖0,K denotes the norm in L2(K).

Remark 3.4.2. Concerning the SUPG method.

• The SUPG method can be considered as as a Petrov-Galerkin method with the test
space

span{w(x) +
∑
k∈T h

δKb(x) · ∇w(x)}.
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• The SUPG method introduces artificial diffusion only in streamline direction b(x) ·
∇w(x). From this property, the SUPG method is also called ”Streamline Diffusion
FEM (SDFEM)” method.

• δK is called stabilization parameters or SUPG parameters. Normally, it is a general
function, but in practice it is often chosen as a piecewise constant function.

• For more details, see [19].
/

Remark 3.4.3. Choice of the stabilization parameter δK . It is well known that for
steady-state problems, the stabilization parameter is chosen to depend on the mesh width
such that δK = O(h) from finite element analysis, see [19]. In the case of time-dependent
problem, an optimal error estimate was proved for δK = O(4t). However, for the spe-
cial case that the time-continuous limit is approached, the SUPG stabilization parameter
vanishes and one turns to Galerkin finite element method. This behavior is shown to
be not correct by numerical studies, see [12]. For this reason, the simplified problems
that the convection and diffusion being time independent was considered, and it can be
proven that δK = O(h) is the choice from optimal error estimates for certain temporary
discretization schemes in [12]. Besides, as discussed in Remark 3.1.1, the difficulty in
solving the convection-dominated problem arises from the application of the coarse mesh
which is generally much coarser than the width of the sharp layer, rather than the time
step. Hence it is more appropriate to choose the stabilization parameter depending on
mesh width from the practical point of view, see [5]. For general time-continuous case,
the choice for the stabilization parameter is an open problem. In summary, it is strongly
suggested to define the stabilization parameters by δK = O(h) for the SUPG method to
compute the snapshots. See details in [12].
/

Remark 3.4.4. The backward Euler method together with the SUPG method applying
on (3.20) has the form:

(uhk − uhk−1, v
h) + ∆taSUPG,h(uhk , v

h) =∆t(fk, v
h) + ∆t

∑
K∈T h

δK(fk,bk · ∇vh)K

−
∑
K∈T h

δK(uhk − uhk−1,bk · ∇vh)K
(3.24)

with the bilinear form

aSUPG,h(uhk , v
h) =(ε∇uhk ,∇vh) + (bk · ∇uhk + cuhk , v

h)

+
∑
K∈T h

δK(−ε∆uhk + bk · uhk + cuhk ,bk · ∇vh)K
(3.25)

for all vh ∈ Vh, and the initial condition uh0(x) = uh(0,x) is given. Here, {δk} have to be
chosen appropriately. Note that choosing one parameter δK = h for all mesh cells K is
feasible only if the uniformity of the triangulations is assumed. /

3.5 ROMs based on the POD method.

In this section, to obtain the SUPG reduced order model, the POD method for the reduced
order modeling of time-dependent problem is applied to (3.24). The SUPG-ROM was
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proposed, see, e.g., [1]. Using the same notations as in Chapter 2, the POD basis functions
{ϕ̂l}Ll=1 are computed from the fluctuations ûm(x) instead of functions um(t,x).
As it is defined in Chapter 2, {û1, . . . , ûM} denote the snapshots of the fluctuations, which
are obtained by solving Eq.(3.25), and

V̂ h = span{û1, . . . , ûM}.

It is assumed that at least one of {ûi}Mi=1 is nonzero.
It is already introduced the way to calculate the POD modes in Chapter 2. Let VL be the L-
dimensional space spanned by the POD basis functions ϕ̂1, . . . , ϕ̂L, for any L ∈ {1, . . . , D′},
where D′ is the dimension of V̂ h. It is obvious that the relation VL ⊇ V̂ h holds. Let
ûL(t,x) + ū(x) express the ROM approximation of the SUPG solution, where

ū(x) =
1

M

M∑
m=1

um(x)

and denote the ROM approximation at time instance tk as ûlk(x) + ū(x), which will be
written as ûLk + ū for short.

Remark 3.5.1. The relation between the dimension of the snapshot space D and the
dimension of the fluctuation space D′. Assume {b1, . . . , bD} is a set of basis vectors of the
snapshot space V h, then D′ = D if ū(x) and {bi} are linear dependent, or else D′ = D+1.
/

To build the ROM based on the POD method, firstly express the reduced order solution
uLk by the linear combination of the first L POD modes

uLk = ū(x) +

L∑
l=1

α̂l(tk)ϕ̂l, (3.26)

where {α̂l(tk)} are the undetermined coefficients with respect to time.
Inserting (3.26) into (3.24), yields the backward/SUPG reduced order model: For k =
1, 2, . . . find ûLk =

∑L
l=1 α̂l(tk)ϕ̂l ∈ VL such that ∀vL ∈ VL(

L∑
l=1

α̂l(tk)ϕ̂l −
L∑
l=1

α̂l(tk−1)ϕ̂l, v
L

)
+ ∆taSUPG,h

(
L∑
l=1

α̂l(tk)ϕ̂l, v
L

)
=∆t(fk, v

L) + ∆t
∑
K∈T l

δrK(fk,bk · ∇vL)K

−
∑
K∈T l

δrK

(
L∑
l=1

α̂l(tk)ϕ̂l −
L∑
l=1

α̂l(tk−1)ϕ̂l,bk · ∇vL
)
K

−∆taSUPG,l(ū, v
L).

(3.27)

Here, δrK is the stabilization parameters from SUPG method in ROM simulations. For the
choice of stabilization parameters from SUPG method in ROM simulations (noted as δrk),
the same form as the finite element SUPG discretization is preferable, i.e., δrK = O(h).
The discussions can be found in [5].
By solving (3.27), the coefficients α̂l(tk) are determined, and hence follows the reduced
order solution uLk .
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For the following numerical examples which will be presented, the analytical solutions are
already known. The code MooNMD [11] was used to run the numerical experiments.
Since in some examples in this section, the main topic is to compare the results, e.g.,
the POD modes and the ROMs, produced by different inner products, hence in these
examples the different notations have to be considered. For convenience, the general
notations without any specified explanations will be used for the case of L2 inner product.
One can evaluate the results by not only ROM solutions, but also the errors to some
extent, e.g., the errors between the analytical solutions and the finite element solutions,
and the errors between the analytical solutions and the ROM solutions. The form of the
discrete analog of the errors is given, e.g., for the ROM solutions by

1

M

M∑
k=1

‖uk − (ū+ uLk )‖∗ (4.1)

where ‖ · ‖∗ denotes a certain norm, and uk denotes the analytical solution of the contin-
uous problem at time instance tk, see [5].

4.1 Hump changing its height in two dimensions

This example is taken from [14]. It is defined in the domain Ω = (0, 1)2 and (0,T)=(0,2).
The coefficients in (3.1) are chosen to be ε = 10−6, b = (2, 3)T and c=1.
This problem has the analytic solution of the form

u(t, x, y) = sin(πt)x(1− x)y(1− y)

×

[
1

2
+
arctan(2ε−1/2(0.252 − (x− 0.5)2)− (y − 0.5)2))

π

]
.

In this example, the comparisons of applying G-FEM and SUPG-FEM on this convection-
dominated problem will be made, and the impact of using different spatial levels on both
finite element solutions and the ROMs will be shown.Furthermore, applying different inner
products on the computations of the POD modes and the ROMs will also be studied.
The backward Euler scheme was applied for time discretization with the length of time
step ∆t equal to 10−3. Since the value of ε is very small, this problem is a convection-
dominated problem. It is generally known that for small ε, as discussed in Remark 3.1.1,
the solution of this problem has a layer by construction. Hence a useful stabilization
method is needed.
Fig. 4.1 offers a comparison of using Galerkin finite element method (left) and the SUPG
method (right).For simplification, the applications of these two methods for obtaining the
snapshots will be denoted as G-FEM and SUPG-FEM. By observation of Fig. 4.1, it can
be obviously seen that the solution of G-FEM is globally polluted and possesses a wide
range of spurious oscillations, while the solution of SUPG-FEM is relatively smooth with
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a few oscillations on the right upper side of the plane.

Figure 4.1: Example 4.1: Solutions of G-FEM and SUPG-FEM at t=0.5 with spatial level
7.
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Figure 4.2: Example 4.1: Solutions of g5, g6 and g7 at t=0.5.

Fig. 4.2 and Fig. 4.3 present the results of G-FEM with spatial levels 5, 6 and 7 (denoted
as g5, g6 and g7)(upper) and SUPG-FEM with spatial levels 5, 6 and 7 (denoted as s5,
s6 and s7)(lower). From Fig. 4.3, it can be observed that, for SUPG-FEM, more details
in the simulations are shown if higher spatial levels are applied, and the results become
more accurate. The situation for G-FEM is different, there are always global spurious
oscillations. It is worth mentioning that, when comparing the solutions of s5 and s6 in
Fig. 4.3, though the spurious oscillations become smaller in general, the big oscillations
appear at the boundary of the right upper side.

25



4 Numerical studies

Figure 4.3: Example 4.1: Solutions of s5, s6 and s7 at t=0.5.

Since SUPG-FEM gives a better performance than the G-FEM in the simulations of
convection-dominated problem, one computes the snapshots with SUPG-FEM, and takes
every tenth snapshots such that there were 201 snapshots in total.
The application of the SUPG method on the reduced order problems will be denoted as
SUPG-ROM for the purpose of distinguishing from SUPG-FEM. Similarly for G-ROM.
Fig. 4.4 offers the temporal evolution of L2(Ω) and H1(Ω) errors for the solutions of SUPG-
FEM with levels 4, 5, 6, 7 and the G-FEM with level 7. Observe the discrete L2(Ω) errors
in the left panel, it can be readily seen that the higher the level of grid for SUPG-FEM
used, the smaller errors are produced. Furthermore, in spite of the fact that the finest
level for G-FEM is used, compare to the solutions of s5, s6 and s7, the solution of g7 still
causes the largest errors. The plot of the discrete H1(Ω) errors in the right panel shows
similar results, and the differences of errors for G-FEM and SUPG-FEM are even larger.

Figure 4.4: Example 4.1: L2(Ω) (left) and H1(Ω) (right) errors for s4, s5, s6, s7 and g7.
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From the fact that there always exist spurious oscillations even if SUPG-FEM is applied,
one cannot expect to obtain only one POD mode for the POD basis, since this implies
the fact that this problem can be solved accurately by finite element method, and such
a method is not known so far, see [13]. As a result, in this example, one obtains 4 POD
modes for L2 and H1 inner products, and 14 POD modes for SD inner product. Fig. 4.5
shows the eigenvalues with respect to different inner product L2, H1, and SD with three
different spatial levels. Among these POD modes, the eigenvalues corresponding to ϕ1 for
each inner product and spatial level dominate other eigenvalues notably. From (2.14), it
is known that the first POD modes have taken nearly all ”information” from the origin
data, and the rest POD modes mainly come from the oscillations.

Figure 4.5: Example 4.1: POD eigenvalues for H1, L2, and SD inner product with spatial
levels 5, 6, and 7.

Figure 4.6: Example 4.1: B1
L2(top left), B1

H1(top right), B1
SD(bottom) for spatial level 7.

For simplification, the i-th POD modes computed from different inner products will be
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written as Bim, and the ROMs for different inner products will be denoted as ROMm,
m ∈ {L2, H1, SD}. Fig. 4.6 presents the pictures of B1

L2 , B1
H1 and B1

SD, the second and
third POD modes for L2 inner product are given in Fig. 4.7. From Fig. 4.6, one can barely
find any differences between these three results of ϕ1. As a consequence, the corresponding
ROMs for r=1 depicted in Figs. 4.8-4.9 also behave quite similar for each spatial level.
One can observe in Fig. 4.8- 4.10 that the ROMs behave quite similar for each level in
spite of using different scalar products.

Figure 4.7: Example 4.1: B2
L2(left), B3

L2(right) with spatial level 7.
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Figure 4.8: Example 4.1: ROMH1 − l5, ROML2 − l5, and ROMSD − l5 (from top left to
bottom) at t=0.5 for r=1.

Figure 4.9: Example 4.1: ROM(H1)− l6, ROM(H1)− l6, and ROM(H1)− l6 (from left
to right) at t=0.5 for r=1.
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Figure 4.10: Example 4.1: ROMH1 − l7, ROMH1 − l7, and ROMH1 − l7 (from left to
right) at t=0.5 for r=1.

Figs. 4.11-4.12 present ROML2 for different r with spatial level 5 and 7, which will be
expressed as ROML2 − l5 and ROML2 − l7, respectively. In Fig. 4.11, the ROML2 − l5
changes slightly with increasing r, meanwhile ROML2−l7 are almost the same for different
r. As a result, it seems that in this example, the influence on ROMs by different r becomes
less as the grids become finer.
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Figure 4.11: Example 4.1: ROML2 for r=1, 2 and 3 (from left to bottom) at t=0.5 for
spatial level 5.

Figure 4.12: Example 4.1: ROML2 for r=1, 2 and 3 (from top left to bottom) at t=0.5 for
spatial level 7.
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Figure 4.13: Example 4.1: L2(0, T ;L2(Ω)) (top) and L2(0, T ;H1(Ω)) (bottom) errors from
ROML2 ,ROMH1 , ROMSD with spatial level 5, 6 and 7 and from the solutions
of s5, s6, s7.

Fig. 4.13 gives the plots of errors in discrete L2(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)) norms
of ROMs for different inner products and for spatial levels 5, 6 and 7 with respect to r.
The similar behaviours can be observed for both: the errors are reduced for both ROMs
and SUPG-FEM due to the refinement of the grid. Concerning the L2(0, T ;L2) errors in
the left panel, the ROMs yield more accurate results than SUPG-FEM for level 5. For
level 6, the errors of ROMs are comparable to that of SUPG-FEM. Moreover, the SUPG-
FEM performs better than ROMs for level 7. Whereas, observations in the right panel
shows that, w.r.t the discrete L2(0, T ;H1) errors, SUPG-FEM always performs better than
ROMs for all spatial levels. See in Figs. 4.14-4.15 the corresponding temporal evolution of
errors for r=3 in both norm. For r 63, the errors of ROMs in L2(0, T ;H1) norm decrease
slightly with increasing r for each level, while such a behavior appears only for level 5
in L2(0, T ;L2) norm. In spite of different scalar products, some similar behaviors can be
observed for both error norms: firstly, the errors are reduced for both SUPG-FEM and
ROMs due to the refinement of the grid. Secondly, the impact of different inner products
is negligible for each spatial level. This is in accordance with the observations in Fig. 4.6
for B1L2 , B1H1 , B1SD and Figs. 4.8- 4.10 for ROML2 , ROMH1 , ROMSD.
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Figure 4.14: Example 4.1: L2(Ω) error from SUPG solution and ROML2 , ROMH1 and
ROMSUPG with spatial levels 5 (top left), 6 (top right) and 7 (bottom) for
r=3.

Figure 4.15: Example 4.1: H1(Ω) error from SUPG solution and ROML2 , ROMH1 and
ROMSD with spatial levels 5 (top left), 6 (top right) and 7 (bottom) for r=3.
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4.2 Traveling wave for non-convection-dominated case

This example is taken from [7]. It is given in the domain Ω = (0, 1)2 and (0,T)=(0,1).
The coefficients in (3.1) are chosen to be ε = 10−4, b = (cos(π/3), sin(π/3))T , and c=1.

Similar to Example 4.1, this problem has a prescribed solution, which is defined by

u(t, x, y) =0.5 sin(πx) sin(πy)

[
tanh(

x+ y − t− 0.5√
ε

) + 1

]
. (4.2)

The right-hand side f , the initial condition u0, and the boundary condition were chosen
such that (4.2) satisfies the boundary value problem, see [6].

In this example, mainly the G-FEM was applied for computing the snapshots and also the
construction of the ROMs, and the L2 inner product is applied for the computation of the
POD modes and ROMs. The first three POD modes from different amount of snapshots
will be presented. In addition, the sensitivity of the ROMs with respect to the rank of the
POD modes used for building the ROMs and the amount of snapshots fetched from the
finite element solution will be explored. Finally, the corresponding error behavior will be
studied and discussed.

The backward Euler scheme was applied for temporal discretization with the length of
time step ∆t = 10−3. All the test problems were defined in the unit square. For the coars-
est grid (call it ’level 0’), the unit square was divided by diagonal from bottom left to top
right into two triangles. For the construction of the further finer grids, the uniform grid
refinement was applied. Here in this example, snapshots were computed on level 7, i.e.,
h = 1.1 ·10−2, with 16641 degrees of freedom. This example is not a convection-dominated
problem, since the layer width

√
ε = 10−2 is of similar size as the grid size, which implies

that the grid is sufficiently fine to resolve the layer. Hence the application of stabilization
method is not necessary, and G-FEM suffices to give non-oscillating solutions. This is
verified by Fig. 4.16. To obtain the snapshots, the Galerkin conforming piecewise (P1)
finite element method was used.

Figure 4.16: Example 4.2: the solution at t=0.1 for G-FEM.

To investigate the sensitivity of the numerical results of the reduced-order model with
respect to the different amount of snapshots, every twice, fourth, tenth, twentieth, fiftieth,
hundredth and the full solutions were stored. By this means, the snapshots are fetched
evenly from the finite element solution (since the total amount of the full solutions are
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divided evenly by these numbers). Moreover, the initial solution is always included in
every snapshot set. Therefore 11, 21, 51, 101, 251, 501 and 1001 snapshots were used for
the computation of snapshots, respectively.

Number of snapshots 11 21 51 101 251 501 1001

Rank of POD modes 10 20 50 100 131 131 132

Table 4.1: Example 4.2: Ranks of POD modes for 11, 21, 51, 101, 251, 501, and 1001
snapshots (from left to right).

Fig. 4.18- 4.24 show the pictures of the snapshot mean value given by (2.21) and the first
three POD modes ϕ1, ϕ2 and ϕ3, for 11, 21, 51, 101, 251, 501, and 1001 snapshots, respec-
tively. For simplification, the i-th POD mode using different amount of snapshots will be
denoted as Bi(n), and the ROMs using different amount of snapshots will be expressed as
ROM(m), m ∈ {11, 21, 51, 101, 251, 501, 1001}. Tab. 4.1 presents the dimension of these
7 snapshot spaces. Define the maximal value of the dimensions among all the snapshot
spaces as threshold rank. It shows that the dimension of the snapshot space V h increases
as the amount of snapshots increases until the threshold rank has been reached. Fig. 4.17
gives the plot of eigenvalues corresponding to the POD modes for each snapshot space.
Note that the eigenvalues practically decrease exponentially with the rank of POD modes
increasing, which implies that the eigenvalues reduce rapidly, especially for the first and
the second eigenvalues such that the former one is significantly larger than the second one.

Figure 4.17: Example 4.2: POD eigenvalues for 11, 21, 51, 101, 251, 501, and 1001
snapshots.
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Figure 4.18: Example 4.2: snapshot mean value and B1(11), B2(11), and B3(11).

Figure 4.19: Example 4.2: snapshot mean value and B1(21), B2(21), and B3(21).
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Figure 4.20: Example 4.2: snapshot mean value and B1(51), B2(51), and B3(51).

Figure 4.21: Example 4.2: snapshot mean value and B1(101), B2(101), and B3(101).
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Figure 4.22: Example 4.2: snapshot mean value and B1(251), B2(251), and B3(251).

Figure 4.23: Example 4.2: snapshot mean value and B1(501), B2(501), and B3(501).
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Figure 4.24: Example 4.2: Snapshot mean value and B1(1001), B2(1001), and B3(1001)
(from top to bottom).

In Figs. 4.18- 4.21, the pictures of the snapshot mean value and B1(m), B2(m) and
B3(m), m ∈ {11, 21, 51} are getting smoother and show more details as the amount of
snapshots is becoming larger. Nevertheless, the pictures in Fig. 4.21- 4.24 show quite
similar results when the amount of snapshots is equal or bigger than 101.

In Fig. 4.25, the ROM(1001)s at t=1.0 are depicted for different r. It is observed that
as r become higher, the size of spurious oscillations of ROMs decreases. For r=100, the
performance of ROMs becomes very close to the solution of G-FEM in Fig. 4.16. The
similar results are also obtained for 101, 251 and 501 snapshot spaces, and the correspond-
ing pictures won’t be shown here for the sake of brevity.
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Figure 4.25: Example 4.2: ROM(1001)s at t=1.0 for r=10, 20, 40, 60, 80, 100 (from top
left to bottom right).

It is already known that the POD basis is computed from the snapshot spaces. To
study the impact of different snapshot spaces on the resulting ROMs, fixed values of r
is considered for different snapshot spaces. For r=50, concerning the spurious oscilla-
tions, ROM(101), ROM(251), ROM(501) are similar, and perform slightly better than
ROM(51). Meanwhile, see in Fig. 4.27 for low r, e.g., r equal to 20, despite the fact that
there are always big spurious oscillations on the plane for each snapshot space, the ROMs
for snapshots equal or larger than 51 yield much better results than ROM(21). Yet the
differences between ROM(m)s, m ∈ {51, 101, 251, 501, 1001} are negligible.
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Figure 4.26: Example 4.2: ROM(m), m ∈ {51, 101, 251, 501} at t=0.5 (from top left to
bottom right) for r=50.
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Figure 4.27: Example 4.2: ROM(m), m ∈ {21, 51, 101, 251} at t=1.0 (from top left to
bottom) for r=20.

Figure 4.28: Example 4.2: L2(0, T ;L2) (left) and L2(0, T ;H1) (right) errors for different
snapshots.

The plots in Fig. 4.28 present the resulting errors in discrete L2(0, T ;L2(Ω)) norm
and the L2(0, T ;H1(Ω)) norm. It is observed that, concerning both kinds of errors, the
accurate ROM in this example is achieved for m > 101 and r > 100. In the left plot for
L2(0, T ;L2) errors, the errors for ROM(11) and ROM(21), which are much larger than
the errors for the rest ROMs, increase as the rank of POD modes become higher. For
the snapshots which are equal or larger than 51, concerning the errors, even though the
amount of snapshots increases, which implies that the behaviour of the ROMs remains
unchanged. In addition, as r increases, the errors for these ROMs keep decreasing, except
for the case of ROM(51) for r>30, the errors of which stay almost the same. For r from
5 to 10, the errors damp fastest, and with r being higher, the damping speed becomes
slower. The reason for this behavior can be achieved by observations in Fig. 4.17 that
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since the eigenvalues decrease rapidly, the information of data given by the corresponding
POD modes decrease fast based on (2.14). For r is equal or higher than 60, the accuracies
of the ROM(m)s, m∈ {101, 251, 501, 1001} are getting closer to the one by G-FEM, but
never exceed it. This behavior is in contrast to the case of discrete L2(0, T ;H1) norm, in
which the errors caused by ROMs are less than the ones by G-FEM for r>70.
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4.3 Traveling wave for convection-dominated case

The studied equation in this section share the same coefficients and conditions as in Ex-
ample 4.2, except that the constant diffusion coefficient is set to ε = 10−6. And the way
to choose snapshots is the same to Example 4.2 that 11, 21, 51, 101, 251, 501 and 1001
snapshots were stored for the computation of different POD bases. What’s more, for the
computation of snapshots and the construction of ROMs, P1 finite element method was
used on spatial level 7, and the L2 inner product is applied for the computation of the
POD modes and ROMs. For the time discretization, the backward Euler method was
considered on equidistant time intervals with ∆t = 10−3.

Example 4.3.1. Applying SUPG-FEM for the computation of snapshots.

In this example, the SUPG-FEM was applied for the computation of snapshots, and SUPG
stabilized ROMs (SUPG-ROM) were studied. Besides, the comparisons of applying the
Galerkin method and the SUPG method will be presented.

Figure 4.29: Example 4.3.1: Solution at t=0.8 by G-FEM (left) and SUPG-FEM (right).

The solution of this problem by G-FEM at t=0.8 is shown in the left panel of Fig. 4.29.
It can be seen that there are large spurious oscillations, especially for the area below the
plane. The explanation of this behavior comes from the fact that the problem becomes a
convection-dominated problem due to the reduced value of ε. Hence the application of a
suitable stabilization method is needed. The right plot of Fig. 4.29 presents the solution
by SUPG-FEM, which seems to be much smoother and reasonable.
The snapshots are computed by SUPG-FEM for the reason discussed above. In Tab. 4.2,
the ranks of the POD basis for each snapshot-space are shown. Different from Example
4.2 for ε = 10−4, there exits no threshold rank for these 7 snapshot spaces. As the number
of snapshots increases, the rank increases as well. In particular, for 501 and 1001 snap-
shots, the ranks are even twice higher than the corresponding values in Example 4.2, see
Tab. 4.1. In practice, the magnitude of r reflects the complexity of the problem to some
extent. This seems to be due to the small ε that even though the stabilization method was
used, there are always more oscillations than in the non-convection-dominated problem
in Example 4.2. Hence Example 4.3.1 is considered as a more complicated problem than
Example 4.2.
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Number of snapshots 11 21 51 101 251 501 1001

Rank of POD modes 10 20 50 100 246 352 376

Table 4.2: Example 4.3.1: Ranks of POD modes for 11, 21, 51, 101, 251, 501 and 1001
snapshots (from left to right).

Figure 4.30: Example 4.3.1: POD eigenvalues for 11, 21, 51, 101, 251, 501 and 1001
snapshots.

Fig. 4.30 shows the eigenvalues for different snapshot spaces. For 251, 501, and 1001
snapshots, the total amounts of eigenvalues are much bigger than the corresponding ones
in Tab. 4.1 in Example 4.2. Meanwhile, similar as that in Example 4.2 ( see in Fig. 4.30),
there is also a steep drop around r≈130. Hence the extra POD modes for snapshots from
SUPG-FEM may come from the numerical artefacts, since although the SUPG-FEM is
used for stabilization, there are still spurious oscillations in the solution, which therefore
come into the snapshots.
The comparisons of the eigenvalues for case ε = 10−4 in Example 4.2 and ε = 10−6 in
this example are given in Fig. 4.31 for r6150. For very low r, e.g., r 6 15, the eigenvalues
for both are quite similar. As r becomes larger, the eigenvalues for ε = 10−4 damp faster
than the corresponding ones for ε = 10−6 for each snapshot space. Notice that there is a
steep drop around r≈130, which is similar as that in Example 4.2.

Figure 4.31: Example 4.3.1: Comparisons of eigenvalues between ε = 10−4 and ε = 10−6.
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To distinguish the first POD modes B1 from Example. 4.2, the first POD modes from
snapshots obtained by SUPG-FEM will be denoted as SUPG − B1. Fig. 4.32 offers the
first POD modes from 21, . . . , 1001 snapshots. Similar behavior as that in Example 4.2
is observed: the POD modes are getting smoother as the amount of snapshots increases.
For the amount of snapshots m > 251, it seems that the POD modes achieve its highest
accuracy, and remain unchanged despite of the increase of m.

Figure 4.32: Example 4.3.1: SUPG − B1(m), m ∈ {21, 51, 101, 251, 501, 1001}(from top
left to bottom right).
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Figure 4.33: Example 4.3.1: Solution of SUPG-FEM at t=1.0.

For the goal of investigating the sensitivity of the ROMs with respect to r, like in Ex-
ample 4.2, ROM(1001) for different r are shown in Fig. 4.34. One gets some similar
observations to the case ε = 10−4 using G-FEM: as r increases, the oscillations decrease,
and the ROMs perform better. For r>60, the ROMs behave very similar, and the result
for r=150 is quite close to the solution of the SUPG-FEM, see Fig. 4.33. In addition, it is
worth mentioning that even though the SUPG-FEM was applied for stabilization, some
small oscillations always exist.
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Figure 4.34: Example 4.3.1: ROM(1001) at t=1.0 for r=10, 30, 60, 90, 120, 150 (from top
left to bottom right).

To investigate how the amount of snapshots effects the ROMs, the ROMs of r = 20, 50
using different amount of snapshots are considered, as in Example. 4.2. Unlike the situation
in Example 4.2 for ε = 10−4, the ROM(21) in Fig. 4.35 for r=20 obtains much less spurious
oscillations than the corresponding one in Fig. 4.27. This may be due to the usage of
the stabilization method. When comparing the pictures in Fig. 4.36 (representing the
ROMs for r=50), it is observed that ROM(101), ROM(251) and ROM(501) perform
quite similar, and only slightly better than ROM(51). It seems that, for fixed r, the
ROMs from big amount of snapshots show better behavior than the ROMs from small
amount of snapshots, until the amount of snapshots becomes big enough (in this case, it
is m = 101).
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Figure 4.35: Example 4.3.1: ROM(m), m ∈ {21, 51, 101, 251} (from top left to bottom
right) for r=20.

Figure 4.36: Example 4.3.1: ROM(m), m ∈ {51, 101, 251, 501} (from top left to bottom
right)at t=1.0 for r=50.

In Fig. 4.37 the discrete errors in L2(0, T ;L2) and L2(0, T ;H1) norm are shown. From
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the plots of both errors, it suggests that the accurate ROM is obtained for m > 251 and
r > 150. For ROMs from all snapshot spaces, the increase of r generally results in decreas-
ing errors (except for ROM(11) and ROM(21) in L2(0, T ;H1) norm, in which the errors
slightly increase). When comparing to the error plot in Fig. 4.28 for Example 4.2, a similar
behavior as that in Example 4.2 is observed: with respect to errors, the ROMs perform
better as the number of snapshots being higher. For the number of snapshots equal or
larger than 251, the error curves are nearly overlapping. The discrete L2(0, T ;L2) error
plot shows that for very low r615, ROM(m),m ∈ {51, 101, 251, 501, 1001} are similar.
For r>50, the ROMs are better than the solution of G-FEM, and approaching closely to
the solution of SUPG-FEM, but always not being better than it.
Compare to the errors in L2(0, T ;L2) norm, the plot of discrete L2(0, T ;H1) error given in
the lower panel of Fig. 4.37 shows some different behaviors: for the amount of snapshots
equal or higher than 51, the errors decay linearly as the rank of POD modes increases. In
addition, the errors for G-FEM are remarkable, which are much larger than the errors for
all ROMs and SUPG-FEM. Unlike in the Example 4.2, concerning the errors in discrete
L2(0, T ;H1) norm, even though the differences between ROMs and SUPG-FEM become
fewer and fewer with higher r, the SUPG-FEM always shows better performance.

Figure 4.37: Example 4.3.1: L2(0, T ;L2(Ω)) (top) and L2(0, T ;H1(Ω)) (bottom) error for
different snapshots.
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It is worth mentioning that, in Fig. 4.28 for Example 4.2, somehow the errors for
ROM(11) and ROM(21) slightly increase in discrete L2(0, T ;L2) norm and fast increase
in discrete L2(0, T ;H1) norm. For ROM(51), the errors, especially in discrete L2(0, T ;H1)
norm, first decrease and then turn to increase around r = 30 with r increasing. Whereas
in Fig. 4.37 for this example, the errors for ROM(11), ROM(21) and ROM(51) in both
norms gradually decrease or only slightly increase as r increase.
The corresponding temporal evolution of the error in L2(Ω) norm for r = 10, 45, 100, 150
are depicted in Fig. 4.38. Despite the fact that the error curves are quite oscillating all
the time for all r, the trend of error proceeding becomes more stable (the turnings of the
error curves are more predictable) with higher r. Moreover, the behaviors in the tempo-
ral evolution of errors, which coincide with the averaged errors in Fig.4.37 are observed:
ROMs(51) generally behave less accurate, and ROM(m)s,m ∈ {101, 251, 501, 1001} yield
similar results for higher r.

Figure 4.38: Example 4.3.1: Temporal evolution of errors in L2(Ω) norm for r=15, 45, 100
and 150 (from top left to bottom right).
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Example 4.3.2. Comparisons of applying different inner products H1 and L2 on the
computation of the POD modes and the ROMs.

This example will mainly focus on the following studies: the comparisons of eigenvalues
behavior and the corresponding POD modes, of the ROMs, and of the error behaviors
between the usage of H1 and L2 inner products.
In Example 4.1, the sensitivity of ROMs and the POD modes with respect to different
inner products has been studied, and the numerical investigations show that using different
inner products almost has same impacts on the results. Since Example 4.1 is a special case,
it is also interesting to see whether the use of different inner products will cause different
results for Example 4.3.1. For purpose of better comparison, the boundary value problem,
the way to calculate and choose the snapshots are chosen to be same as in Example 4.3.1,
and the application of inner product H1 instead of L2 is the only difference.
Tab. 4.3 shows the rank of the POD modes for each snapshot space with respect to inner
product H1. Similar to the situations in Tab. 4.2 for L2 inner product, there exists
no threshold rank, and the dimension of the snapshot space increases as the number of
snapshots grows. In addition, from the plot of corresponding eigenvalues, a steep drop is
also observed near r=130. However, the dimension of each of 11, 21, 51, 101, 251 and 501
snapshot spaces reaches its maxima (i.e., one less than the number of snapshots, as the
initial value is always preserved), and for 1001 snapshot space, the dimension is even twice
larger than the corresponding one in Tab. 4.2. Note that the extra dimentions won’t be
caused by oscillations due to the usage of the same snapshots, and the usage of H1 inner
product seems to detect more information in the noise. These observations imply that
using H1 inner product yield a more complicated reduced order problem than L2 inner
product. Fig. 4.39 gives the corresponding plot of eigenvalues for each snapshot space.
Similarly to the situation in Fig. 4.30 for inner product L2, the eigenvalues also reduce
rapidly around r≈130, which implies that both inner products find the same number of
essential modes, r ≈ 130.

Number of snapshots 11 21 51 101 251 501 1001

Rank of POD modes 10 20 50 100 250 500 872

Table 4.3: Example 4.3.2: Ranks of POD modes for 11, 21, 51, 101, 251, 501 and 1001
snapshots (from left to right) with respect to inner product H1.
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Figure 4.39: Example 4.3.2: POD eigenvalues for 11, 21, 51, 101, 251, 501 and 1001 snap-
shots with inner product H1 .

Figure 4.40: Example 4.3.2: B1
H1(11) (left) and B2

H1(11) (right).

Figure 4.41: Example 4.3.2: B1
H1(21) (left) and B2

H1(21) (right).
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Figure 4.42: Example 4.3.2: B1
H1(51) (left) and B2

H1(51) (right).

To distinguish B1 from L2 inner product, the first POD modes from H1 inner product
are denoted as B1

H1 with the subscript {H1}, and the same for ROMH1 and other POD
modes. For 11, 21, and 51 snapshots, the first POD modes B1

H1(m), m ∈ {11, 21, 51}
possess distinct forms, see in Figs. 4.40-4.42. This is clearly in contrast to the case for L2

inner product, since in Example 4.3.1 even though the corresponding POD modes behave
different in terms of smoothness for different snapshot spaces, the general shape of the
POD modes almost stays the same.

Figure 4.43: Example 4.3.2: B1
H1(101) (left) and B2

H1(101) (right).

Figure 4.44: Example 4.3.2: B1
H1(251) (left) and B2

H1(251) (right).
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Figure 4.45: Example 4.3.2: B1
H1(501) (left) and B2

H1(501) (right).

Figure 4.46: Example 4.3.2: B1
H1(1001) (left) and B2

H1(1001) (right).

Figs. 4.43-4.46 show the first two POD modes for 101, 251, 501 and 1001 snapshot
spaces. A similar behavior as that in Example 4.3.1 is observed that the POD modes
share almost the same shape as for different snapshot spaces. The pictures of the modes
become smoother and smoother as the number of snapshots increases, and the peak of
smoothness is firstly reached for 251 snapshots, since for the number of snapshots more
than 251, one can barely see any difference.

Figure 4.47: Example 4.3.2: SUPG-FEM solution at t=0.5.
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Figure 4.48: Example 4.3.2: ROMH1(1001) at t=0.5 for r=10, 30, 50, 70, 100, 120, 130,
150 (from top left to bottom right).

For the sake of investigating how the ROMH1 are influenced by r, the ROMH1(1001)
for different r at t=0.5 are represented in Fig. 4.48. Similar to the results explored in
Example 4.3.1, as r increases, the spurious oscillations are reduced and the ROMs are
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getting closer to the solution of SUPG-FEM shown in Fig. 4.47.

Figure 4.49: Example 4.3.2: ROML2(1001) at t=0.5 for r=10, 30, 50, 70, 100, 120 (from
top left to bottom right).

For better comparisons of the effects of different inner products on the resulting ROMs,
the corresponding ROMs for L2 inner product at t=0.5 are shown in Fig. 4.49. Even if
ROMH1 and yield nearly as accurate results as ROML2 for r high enough, the ROML2

still perform better, since for ROMH1 there are always deformations on the cambered
surface unless high r is considered.

In Figs. 4.50-4.51, the plots of comparisons of the discrete L2(0, T ;L2) and L2(0, T ;H1)
errors between ROMH1(m) and ROML2(m), m ∈ {11, 51, 101, 251, 1001} are presented
respectively. It is observed that, for both kinds of errors, the errors for ROMH1 are gen-
erally larger than the ones for ROML2 . For each snapshot space, these errors become
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consistent for r being close or equal to its maxima.
When comparing to the plots of L2(0, T ;L2) error in Fig. 4.50, the plots of L2(0, T ;H1) er-
ror in Fig. 4.51 shows some differences: concerning the errors, ROMH1(11) andROMH1(51)
for r being equal to its highest rank, i.e., r=10 and 50 respectively, always perform worse
than the corresponding ones from snapshot spaces of larger amount. In addition, the
differences of errors between ROML2(m) and ROMH1(m),m ∈ {101, 251, 501, 1001}, keep
decreasing as r increases, and become negligible for r ≈ 70, which is r ≈ 130 in the
L2(0, T ;L2) plot. This suggests that, with respect to L2(0, T ;H1) error, ROML2 and
ROMH1 show similar performances for r > 70.

Figure 4.50: Example 4.3.2: Comparisons of discrete L2(0, T ;L2) errors by ROMH1 and
ROML2 for 11, 51, 101, 251, 501 and 1001 snapshots.
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Figure 4.51: Example 4.3.2: Comparisons of discrete L2(0, T ;H1) errors by ROMH1 and
ROMH1 for 11, 51, 101, 251, 501 and 1001 snapshots.
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Figure 4.52: Example 4.3.2: L2(0, T ;L2) (upper) and L2(0, T ;H1) (bottom) errors for
different snapshots.

Fig. 4.52 shows the errors in discrete L2(0, T ;L2) and L2(0, T ;H1) norm for ROMH1

and also the solution of SUPG-FEM and G-FEM. The results for errors in L2(0, T ;H1)
norm are very similar to corresponding one in Example. 4.3.1, see Fig. 4.37. Meanwhile,
the errors in L2(0, T ;L2) norm show different behaviors: On one hand, the error curves
are quite roughly, which are different from the smooth ones in Fig. 4.37. On the other
hand, the error curves for different snapshots intersects at some points. This means that
the conclusion in Example. 4.3.1 that the ROMs for larger snapshots generally cause less
(or equal) errors does not apply in this example, and implies that the dacay of the error
L2(0, T ;L2) is more unpredictable than that in Example 4.3.1.
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Example 4.3.3. Fetching snapshots from the analytical solution

In this example, the snapshots were taken directly from the analytical solution, and the
POD modes were extracted from these snapshots. The L2 inner product is applied for
the computation of the POD modes and ROMs. As for the study of ROMs, not only the
SUPG-ROMs but also the G-ROM were considered, and the comparisons of results from
both were given. Last but not least, the comparisons of ROMs and POD modes from
interpolations of analytical solution and SUPG-FEM were emphasized.

As a usual routine, the ranks of eigenvalues for each snapshot space is given in Tab.
4.4, and the corresponding eigenvalues are shown in Fig. 4.53. It is observed that, for 251,
501 and 1001 snapshot spaces, there exists a maximal rank r = 129, and this maximal
rank is much less than the corresponding ones in Tab. 4.2. Remember that in Example
4.3.1, a fast drop of eigenvalues was observed around r ≈ 130. This phenomenon could be
explained by the fact that the POD modes, which correspond to the eigenvalues smaller
than the eigenvalues at the dropping point, obtain the information from the spurious os-
cillations. These POD modes were computed from the ’noisy data’, which are inevitable
even though the stabilization method was used.

Number of snapshots 11 21 51 101 251 501 1001

Rank of POD modes 10 20 50 100 129 129 129

Table 4.4: Example 4.3.3: Ranks of POD modes for 11, 21, 51, 101, 251, 501 and 1001
snapshots (from left to right).

Figure 4.53: Example 4.3.3: POD eigenvalues for 11, 21, 51, 101, 251, 501 and 1001
snapshots.

Firstly, the SUPG-ROMs were built by using the POD modes extracted from snapshots
of analytical solution. The plots below show the resulting errors in discrete L2(0, T ;L2)
and L2(0, T ;H1) norm for each snapshot space.
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Figure 4.54: Example 4.3.3: L2(0, T ;L2(Ω)) (top) and L2(0, T ;H1(Ω)) (bottom) errors for
ROM(m),m ∈ {11, . . . , 1001}.

Despite the different scalar values, a similar qualitative behavior for both of L2(0, T ;L2)
and L2(0, T ;H1) errors as that in Fig. 4.37 can be observed in Fig. 4.54: as r increases,
the errors decrease (or stay the same for ROM(11)). For a fixed r, the ROMs with larger
amount of snapshots show better performance with respect to the errors. Furthermore,
as both of r and amount of snapshots become large enough, the errors for ROMs closely
approach to the SUPG-FEM solution. It is worth noting that, in the plot of L2(0, T ;L2)
error in Fig. 4.54, the errors from interpolations of analytical solution are slightly smaller
than the ones from solutions of SUPG-FEM, whereas in the plot of L2(0, T ;H1) error,
the errors from interpolations of analytical solution is bigger than the ones not only from
SUPG-FEM solutions but also from SUPG-ROMs for m > 251 and r > 90.

Secondly, the G-ROMs were built by using the same POD modes as for the SUPG-
ROMs. A comparison of the errors in discrete L2(0, T ;L2) norm for these two types of
ROMs is given below:
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Figure 4.55: Example 4.3.3: Comparisons of errors in L2(0, T ;L2(Ω)) norms between G−
ROM(m) and SUPG−ROM(m), m ∈ {11, . . . , 1001}.

The error curves in the top plot of Fig. 4.55 seem quite roughly and erratic. The ex-
plaination for this behavior might be that, concerning the errors, the ROMs for lower
amount of snapshots (i.e., 11,21,51 and 101) are strongly influenced by the spurious os-
cillations which occur in the G-ROMs. However, the error plot below for higher amount
of snapshots (i.e., 251, 501 and 1001) shows very different results: for r 6 80, the errors
of G-ROMs progressively reduce with increasing r. The same as that in Example 4.3.1,
the errors between the ROMs for different snapshots stay the same, and are close to the
errors of SUPG-ROMs. For r > 80, the errors of G-ROMs somehow gradually increase as
r increases.
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Figure 4.56: Example. 4.3.3: G − ROMs for 51, 101, 251 and 1001 snapshots (from top
left to bottom right) at t=1.0 for r=50.

In Fig. 4.56, the G − ROM(m), m ∈ {51, 101, 251, 501}, are presented for r=50. The
results of these G-ROMs seem to be in conformity with the observation of the error
behavior in Fig. 4.55: concerning the oscillations, the G-ROMs for 101, 251 and 501
snapshots perform much better than the G-ROM(51), in which there are huge spurious
oscillations. Nevertheless, in spite of the fact that the averaged errors of G-ROMs for
higher amount of snapshots are slightly less than the ones of corresponding SUPG-ROMs
for r=70, the result of G-ROM may still obtain more oscillations than the corresponding
SUPG-ROM at certain time, see Fig. 4.57 for the comparison of G − ROM(1001) and
SUPG−ROM(1001) for r=70. From the observations of plots of errors and the pictures
of G-ROMs and ROMs, it can be concluded that stabilization method is needed even if
the perfect snapshots are used.

Figure 4.57: Example. 4.3.3: a comparison of G−ROM(1001) and SUPG−ROM(1001)
for r=70.

Next step is to make the comparisons between the SUPG-ROMs constructed by POD
modes from snapshots of SUPG-FEM solution and from the analytical solution. They will
be denoted as ROM − SUPG(m) and ROM(m), m ∈ {11, . . . , 1001}, respectively for
short.
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Figure 4.58: Example. 4.3.3: The comparison of discrete L2(0, T ;L2) errors for ROM(m)
and ROM − SUPG(m), m ∈ {11, . . . , 1001}.

In Fig. 4.58, the comparison of errors in discrete L2(0, T ;L2) norm for ROM(m) and
SUPG − ROM(m) is shown. As already discussed for the error plot in Fig. 4.54, even
though the scalar values of the errors from the ROMs and SUPG-ROMs are different for
each snapshot space, the qualitative behaviors are the same. For lower amount of snap-
shots, i.e., 11, 21, 51 and 101 snapshots, as r increases, the errors from ROM(m) reduce
slower and are always larger than the ones from the corresponding SUPG − ROM(m).
For higher amount of snapshots, i.e., 251, 501 and 1001 snapshots, the error curves for all
the ROMs and ROM-SUPGs are almost overlapping. This implies that once the amount
of snapshots is large enough, the ROMs behave nearly the same as the ROM-SUPGs with
respect to averaged errors. For the maximal rank r = 129 of the POD modes from an-
alytical solution, the ROMs achieve its most accurate result, which seems also the most
accurate result for ROM-SUPGs for r 6 150. Concerning the errors, as r is high enough,
both of the ROMs and ROM-SUPGs closely approximate the solution of SUPG-FEM, but
still some way to go when compared with the one from analytical solution.
The corresponding L2(0, T ;H1) errors are depicted in Fig. 4.59. The similar qualitative
behaviors as that for L2(0, T ;L2) error are observed, except that the errors from interpo-
lations of analytical solution are bigger than then ones from both SUPG-FEM solution
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and ROM(m), SUPG − ROM(m) for m > 251 and r > 90. Besides, the interpolation
errors are almost equal to the ones from SUPG−ROM(101) for r=100.

Figure 4.59: Example. 4.3.3: the comparison of discrete L2(0, T ;H1) errors for ROM(m)
and ROM − SUPG(m), m ∈ {11, . . . , 1001}.
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Figure 4.60: Example. 4.3.3: ROM(51) and ROM − SUPG(51)(from left to right) for
r=50 at t=0.5 and t=1.0(from top to bottom).

Figure 4.61: Example. 4.3.3: ROM(1001)(left) and ROM −SUPG(1001)(right) at t=1.0
for r=129,130 respectively.

Fig. 4.60-4.61 give the comparisons of some ROMs and ROM-SUPGs. For the low
amount of snapshots, e.g., 51 snapshots, when referring to the values from analytical
solution in Fig. 4.62, it is clear that the ROM-SUPG shows more accurate result than the
ROM, since the ROMs are smeared especially at the crossing area of the horizontal and
perpendicular planes. This is in accordance with the behavior of the averaged errors in
Fig. 4.58. However, although both of ROM(1001) and ROM − SUPG(1001) yield good
performance, the result of ROM-SUPG at t=1.0 somehow shows that there are slight
ripples on the horizontal plane, whereas the plane is quite smooth for ROM(1001). The
similar situation also appears for ROM −SUPG(51) (see the bottom right picture in Fig.
4.60), which implies that these ripples come from the SUPG-FEM solution.

Figure 4.62: Example. 4.3.3: Results taken from analytical solution at t=0.5(left) and
t=1.0(right).
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5 Summary and Outlook

This thesis presented firstly the derivation of the POD method and the computation of the
POD basis functions, and then introduced the convection-dominated convection-diffusion
equations on which the POD method was applied. The basic properties and both time
and space discretization methods for this type of equation were presented. The SUPG
method was used not only for computing the snapshots but also for building the ROMs,
due to the fact that the solutions of convetion-dominated problems usually possess sharp
layers and cannot successfully resolved by the regular finite element method unless very
fine meshes are applied.
The numerical investigations were designed for the purpose of finding the factors which
may play a role in the ROMs. This was implemented by studying the sensitivity of ROM
simulations with respect to these factors, or making comparisons of the resulting ROMs
with adjusting the magnitude or types of these factors. The numerical tests were carried
out in the following examples:

• For relatively simple convection-dominated HUMP example, both of G-FEM and
SUPG-FEM with three spatial levels of grid were applied for computing the snap-
shots. L2, H1 and SD inner products were used for the POD modes and ROMs.

• For more complex traveling wave problems, firstly, the non-convection-dominated
problem was considered, and G-FEM was used for computing the snapshots and
building the ROMs. To make better comparisons, afterwards by only changing the
constant diffusion coefficients ε, the convection-dominated problem was obtained,
and consequently the SUPG method was considered.

• Still the traveling wave problems for convection-dominated case was considered, but
using two different inner products of L2 and H1 for the computation of POD modes
and the construction of ROMs.

• The snapshots were fetched from the analytical solution, and the comparisons of the
resulting POD modes and the ROMs with the corresponding ones from SUPG-FEM
were made.

• The impact of different amount of snapshots fetched from the finite element solu-
tions on resulting ROMs were considered in all the investigations of traveling wave
problems for both non-convection-dominated and convection-dominated case.

The numerical investigations gave the following conclusions:

• For convection-dominated problem, the G-FEM fails to offer a reasonable solution,
and the use of stabilization finite element method is necessary. As the grids become
finer, both finite element solution and the ROMs become more accurate.

• The usage of different inner products seem yield very similar results for the simple
problems. However, for more complex problems, by observing the POD modes and
the resulting ROMs, one finds some differences. This implies that, for the goal of
getting the wanted accuracy of the solution with least computations, it is helpful to
use the suitable inner product for different problems.
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• The SUPG method can yield good results, which may obtain only small differences
from the ones by analytical solution. Yet there are always small spurious oscillations,
and these numerical artefects will be inherited in the ROMs.

• Choosing better snapshots doesn’t guarantee the better ROMs, the good choice of
the finite element method for the construction of the ROMs also plays an important
role.

The investigations in this thesis are mainly heuristic, and the conclusions from the obser-
vations strongly depend on the specified problem for the lack of theoretical support. Some
questions are left to be answered, such as the irregular behavior of errors for certain inner
product and the G-ROMs, the reason why better snapshots don’t yield better results, etc,.
Hence further investigations and studies are needed to fully understand these behaviors
and solve the open questions.
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